CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 625

_id acadia20_142p
id acadia20_142p
authors Kilian, Axel
year 2020
title The Flexing Room
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 142-147
summary Robotics has been largely confined to the object category with fewer examples at the scale of buildings. Robotic buildings present unique challenges in communicating intent to the enclosed user. Precedent work in architectural robotics explored the performative dimension, the playful and interactive qualities, and the cognitive challenges of AI systems interacting with people in architecture. The Flexing Room robotic skeleton was installed at MIT at its full designed height for the first time and tested for two weeks in the summer of 2019. The approximately 13-foot-tall structure is comprised of 36 pneumatic actuators and an active bend fiberglass structure. The full height allowed for a wide range of postures the structure could take. Acoustic monitoring through Piezo pickup mics was added that allowed for basic rhythmic responses of the structure to people tapping or otherwise triggering the vibration sensors. Data streams were collected synchronously from Kinect skeleton tracking, piezo pickup mics, camera streams, and posture data. The emphasis in this test period was first to establish reliable hardware operations at full scale and second to record correlated data streams of the sensors installed in the structure together with the actuation triggers and the human poses of the inhabitant. The full-scale installation of hardware was successful and proved the feasibility of the structural and actuation approach previously tested on a one-level setup. The range of postures was increased and more transparent for the occupant. The perception of the structure as space was also improved as the system reached regular ceiling height and formed a clearer architectural scale enclosure. The ambition of communicating through architectural postures has not been achieved yet, but promising directions emerged from the test and data collection
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id caadria2019_259
id caadria2019_259
authors Soltani, Sahar, Gu, Ning, Ochoa Paniagua, Jorge, Sivam, Alpana and McGinley, Tim
year 2019
title A Computational Approach to Measuring Social Impact of Urban Density through Mixed Methods Using Spatial Analysis
doi https://doi.org/10.52842/conf.caadria.2019.1.321
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 321-330
summary While there is a growing interest in using spatial network analysis methods such as Space Syntax to explore the socio-spatial aspects of the built form, some scholars refer to its main limitation of missing the measurements of buildings' fabric and density. Furthermore, new approaches that attempt to address these shortcomings, such as Urban Network Analysis toolbox, do not provide as comprehensive explorations as what Space Syntax does for the street network. Therefore, this paper proposes that a mixed-method applying both the tools in a complementary way enables a deeper understanding of the socio-spatial design metrics addressing density. Employing both tools on two cases of low and high-density neighbourhoods, the results demonstrate that the combination of these tools can minimise the shortcomings of each method individually, and lead to a more comprehensive understanding of socio-spatial design factors in relation with density.
keywords Urban Network Analysis ; Social Impact; Space Syntax ; UNA Toolbox; Urban Density
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2019_013
id cf2019_013
authors Boychenko, Kristina
year 2019
title Agency of Interactive Architecture in socio-technological relationship through Actor-Network Theory
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 102
summary With fast development of new technologies built environment transitioned from a silent background of activities performed by users to another participant of those activities. Agency of interactive architecture is based on interpretation of input data, like users’ actions, their response to the spatial agency, data from environment or other actors, and changing its performance accordingly. Architectural components, environmental conditions and people are all treated as agents and closely correspond to Actor-Network Theory (ANT). This theory generally aims to reveal the complexities of socio-technological world. ANT incorporates a principle of generalized symmetry, it means that human and nonhuman (artifacts, organization structures, etc.) actors are incorporated into the same conceptual framework and assigned equal level of agency. By analysis of the agency of Interactive Architecture through ANT the paper provides insight on social role of this new emerging type of space and its influence on other participants on socio-technological relationship.
keywords Interactive architecture, Communication, Agency, Social, ActorNetwork Theory
series CAAD Futures
email
last changed 2019/07/29 14:08

_id ecaadesigradi2019_645
id ecaadesigradi2019_645
authors Diniz, Nancy, Melendez, Frank, Boonyapanachoti, Woraya and Morales, Sebastian
year 2019
title Body Architectures - Real time data visualization and responsive immersive environments
doi https://doi.org/10.52842/conf.ecaade.2019.2.739
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 739-746
summary This project sets up a design framework that promotes augmenting the human body's interactions exploring methods for merging and blending the users of physical and virtual environments, through the design of wearable devices that are embedded with sensors and actuators. This allows for haptic and visual feedback through the use of data that reflects changes in the surrounding physical environment, and visualized in the immersive Virtual Reality (VR) environment. We consider the Body Architectures project to serve as mechanisms for augmenting the body in relation to the virtual architecture. These wearable devices serve to bring a hyper-awareness to our senses, as closed-loop cybernetic systems that utilize 'digitized' biometric and environmental data through the use of 3D scanning technologies and cloud point models, virtual reality visualization, sensing technologies, and actuation. The design of Body Architectures relies on hybrid design, transdisciplinary collaborations, to explore new possibilities for wearable body architectures that evolve human-machine-environment interactions, and create hyper awareness of the temporal, atmospheric qualities that make up our experience of space, as 'sensorial envelopes' (Lally 2014).
keywords Virtual Reality; Wearable Design; Physical Computing; Data Visualization; Immersive Environments; Responsive Architecture
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id acadia19_380
id acadia19_380
authors Özel, Güvenç; Ennemoser, Benjamin
year 2019
title Interdisciplinary AI
doi https://doi.org/10.52842/conf.acadia.2019.380
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 380- 391
summary Architecture does not exist in a vacuum. Its cultural, conceptual, and aesthetic agendas are constantly influenced by other visual and artistic disciplines ranging from film, photography, painting and sculpture to fashion, graphic and industrial design. The formal qualities of the cultural zeitgeist are perpetually influencing contemporary architectural aesthetics. In this paper, we aim to introduce a radical yet methodical approach toward regulating the relationship between human agency and computational form-making by using Machine Learning (ML) as a conceptual design tool for interdisciplinary collaboration and engagement. Through the use of a highly calibrated and customized ML systems that can classify and iterate stylistic approaches that exist outside the disciplinary boundaries of architecture, the technique allows for machine intelligence to design, coordinate, randomize, and iterate external formal and aesthetic qualities as they relate to pattern, color, proportion, hierarchy, and formal language. The human engagement in this design process is limited to the initial curation of input data in the form of image repositories of non-architectural disciplines that the Machine Learning system can extrapolate from, and consequently in regulating and choosing from the iterations of images the Artificial Neural Networks are capable of producing. In this process the architect becomes a curator that samples and streamlines external cultural influences while regulating their significance and weight in the final design. By questioning the notion of human agency in the design process and providing creative license to Artificial Intelligence in the conceptual design phase, we aim to develop a novel approach toward human-machine collaboration that rejects traditional notions of disciplinary autonomy and streamlines the influence of external aesthetic disciplines on contemporary architectural production.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id cf2019_037
id cf2019_037
authors Aljammaz, Mohammed ; Tsung-Hsien Wang and Chengzhi Peng
year 2019
title The influence of Saudi Arabian culture on energy use: Improving the time-use schedules in energy simulation for houses in Riyadh
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 273-289
summary Culture influences the way that people act and behave in all societies. In Saudi Arabia, culture and beliefs directly influence the lifestyle and behaviour of its citizens. Culture also impacts on energy usage of buildings, but this factor is often excluded from energy use simulations. A consequence of this is a mismatch between energy prediction and real energy usage. This paper demonstrates how a time-use data (TUD) model can be used to create a more realistic estimate of energy consumption in Saudi Arabia. TUD has been collected through a survey of 300 people living in Riyadh. The performance of the computational TUD model is cross-referenced with empirical data and the outcomes are used to discuss how the TUD model can be applied more effectively in energy use simulations.
keywords time-use data, energy simulation, energy use prediction, load schedules, occupant behaviours,
series CAAD Futures
email
last changed 2019/07/29 14:15

_id caadria2019_234
id caadria2019_234
authors Bamborough, Chris
year 2019
title The Nature of Data in Early Modern Architectural Practice.
doi https://doi.org/10.52842/conf.caadria.2019.2.343
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 343-352
summary In contemporary data-driven society, forces of capital increasingly seek risk-averse decision making through data and digital calculation, aligned to this the discourse around design intelligence in architecture has begun to embrace the role of data and the technical non-human as much as the human. In parallel, the cultural understanding of data, in technologically mediated societies, has become tied to the digital representation of information experienced in everyday life, which in turn influences human practices. A problem exists in the dominance of scientific thought around data in architecture that exerts disciplinary bias towards quantity rather than quality. In contemporary digital practice, data is assumed to offer an objective characterisation of the world and have faithful representation through the mechanisms of the computer. From this shift, a macro question exists concerning the influence of data's conceptualisation on the physical products of architecture. To contribute to this overall question this paper considers the register of data in early modernism identified as a moment when scientific abstraction and the mapping capacity of the machine combine to afford recognisable data practices and infrastructures.
keywords Data; Design Practice; Infrastructure; History; Theory
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_628
id ecaadesigradi2019_628
authors Borunda, Luis, Ladron de Guevara, Manuel and Anaya, Jesus
year 2019
title Design Method for Optimized Infills in Additive Manufacturing Thermoplastic Components
doi https://doi.org/10.52842/conf.ecaade.2019.1.493
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 493-502
summary The following article extends and tests computational methodologies of design to consider Finite Element Analysis in the creation of optimized infill structures based on regular and semi-regular patterns that comply with the geometrical constraints of deposition. The Stress-Deformation relationship manifested in Finite Element Analysis is structured in order to influence the geometrical arrangement of the complex spatial infill. The research presents and discusses a program of performance informed infill design, and validates the generalizability of a method of internalizing and automating Finite Element Method (FEM) processing in Fused Deposition Modeling (FDM) workflows, and tests manufacturability of the methods through its ability to handle the FDM process constraints of FEM influenced intricate geometries.
keywords Additive Manufacturing; Finite Element Analysis; Fused Deposition Modeling; 3D infill
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2021_115
id caadria2021_115
authors Chen, Qin Chuan, Lakshmi Narasimhan, Vaishnavi and Lee, Hyunsoo
year 2021
title The potential of IoT-based smart environment in reaction to COVID-19 pandemic
doi https://doi.org/10.52842/conf.caadria.2021.2.709
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 709-718
summary COVID-19 was first reported in late December 2019 and quickly become a global health crisis. In the COVID-19 pandemic context, the dense and open characteristics make the public spaces a potential virus transmission hotspot. Therefore, it is extremely critical to adopt a more advanced and effective method in public environments to slow down its spread until a vaccine is widely used. A smart environment in the form of IoT, also known as the architecture of IoT, consists of three layers: perception layer, network layer, and application layer. A smart environment allows data and activities that happen in this environment to be collected, processed, and shared in real-time through various sensors. It can be introduced for early detection, tracking, and monitoring of potential confirmed cases. The smart environment is considered one of the most promising approaches to face and tackle the current scenario. However, research focusing on the potential of IoT smart environment in reaction to COVID-19 is still meager. Therefore, this paper identifies the smart environments potential based on the concept of IoT architectures three layers and further discusses how IoT can be introduced in public spaces to help battle the pandemic.
keywords Internet of Things; Smart environment; COVID-19
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_376
id ecaadesigradi2019_376
authors Das, Avishek, Worre Foged, Isak, Jensen, Mads Brath and Hansson, Michael Natapon
year 2019
title Collaborative Robotic Masonry and Early Stage Fatigue Prediction
doi https://doi.org/10.52842/conf.ecaade.2019.3.171
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 171-178
summary The nature of craft has often been dictated by the type and nature of the tool. The authors intend to establish a new relationship between a mechanically articulated tool and a human through the development a symbiotic relationship between them. This study attempts to develop and deploy a framework for collaborative robotic masonry involving one mason and one industrial robotic arm. This study aims to study the harmful posture and muscular stress developed during the construction work and involve a robotic arm to aid the mason to reduce the cumulative damage to one's body. Through utilization of RGBD sensors and surface electromyography procedure the study develops a framework that distributes the task between the mason and robot. The kinematics and electromyography detects the fatigue and harmful postures and activates the robot to collaborate with the mason in the process.
keywords interactive robotic fabrication; human robot collaboration; fatigue and pose estimation; masonry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_242
id caadria2019_242
authors Davidova, Marie
year 2019
title Intelligent Informed Landscapes - The Eco-Systemic Prototypical Interventions' Generative and Iterative Co-Designing Co-Performances, Agencies and Processes
doi https://doi.org/10.52842/conf.caadria.2019.2.151
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 151-160
summary The work fights for a shift from Anthropocene in urban environment through both, analogue and digital eco-systemic prototypical urban interventions, mixing biological as well as digital performances of post-digital landscape. It directly engages with the local human and non-human communities as well as it offers its online recipes and codes for DIY local iterations tagged in public space. Such intelligent and informed cultural landscape therefore covers several multi-layered generative and iterative agencies for its self-development.
keywords Systemic Approach to Architectural Performance; Intelligent Informed Landscapes; Post-Anthropocene; Eco-Systemic Prototypical Urban Interventions ; DIY
series CAADRIA
type normal paper
email
last changed 2024/01/09 06:23

_id ecaadesigradi2019_200
id ecaadesigradi2019_200
authors Ghandi, Mona
year 2019
title Cyber-Physical Emotive Spaces: Human Cyborg, Data, and Biofeedback Emotive Interaction with Compassionate Spaces
doi https://doi.org/10.52842/conf.ecaade.2019.2.655
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 655-664
summary This paper aims to link human's emotions and cognition to the built environment to improve the user's mental health and well-being. It focuses on cyber-physical adaptive spaces that can respond to the user's physiological and psychological needs based on their biological and neurological data. Through artificial intelligence and affective computing, this paper seeks to create user-oriented spaces that can learn from occupant's behavioral patterns in real-time, reduce user's anxiety and depression, enhance environmental quality, and promote more flexible human-centered designs for people with mental/physical disabilities. To achieve its objectives, this research integrates tangible computing devices/interfaces, robotic self-adjusting structures, interactive systems of control, programmable materials, human behavior, and a sensory network. Through embedded responsiveness and material intelligence, the goal is to blur the lines between the physical, digital, and biological spheres and create cyber-physical spaces that can "feel" and be controlled by the user's mind and feelings.
keywords AI for Design and Built Environment; Cyber-Physical Spaces; Artificial Emotional Intelligence; Human-Computer Interaction; Affective Computing; Mental Health and Well-Being; Interactive and Responsive Built Environments;
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_285
id caadria2019_285
authors Holth, James, Meekings, Scott, Schnabel, Marc Aurel and Moleta, Tane Jacob
year 2019
title Influences of a New Digital Cultural Layer on Design at Varying Scales
doi https://doi.org/10.52842/conf.caadria.2019.2.373
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 373-380
summary Architects work with data daily. Spatial metrics, building codes and client requirements form the main considerations for many designers, yet new layers of data are impacting the way cities and inhabitants interact with each. This data can be used to more effectively analyse and predict patterns and behaviors to produce environments better suited to users.This paper reviews a selection of ideas from across digital architectural discourse by discussing tangible outcomes from a practitioner point of view and advocates for a greater integration of this digital cultural context into the design process. This paper considers a city-wide digital logic, rather than a new-age technological zeitgeist, that is as much a part of a city as its buildings are and through this provides a lens into our environment and devices that can be used to influence design at multiple scales.
keywords Big Data; Digital Identity; Built Environment; Authenticity
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_438
id ecaadesigradi2019_438
authors Iunes Salles Esteves, Paula, Carmo Pena Martinez, Andressa, Francisco da Matta Vegi, Lucas, Rodrigues Cardoso, Igor, Nacif Rocha, Mauro, dos Santos Ferreira, Ricardo and Mônaco dos Santos, Denise
year 2019
title SEEstem - Wearable navigation device for people with visual impairments
doi https://doi.org/10.52842/conf.ecaade.2019.1.681
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 681-690
summary Visually impaired people represent a large amount of the Brazilian population. However, although a wide range of existing legislation ensures accessibility, most of the Brazilian public spaces are inadequate to accommodate disabled citizens. In this context, this paper presents a digital device, which combines the smartphone technologies with Arduino microcontrollers, for orientation and obstacle detection. We tested the minimum viable product and the first vest prototype through a user-centered usability test, which combines HCI assessments to other techniques, such as semi-structured interviews. As known, these wearable devices and mobile applications are in the center of the Internet of Things discussion. This study is expected to be an alternative for the urban mobility of visually impaired people, allowing them to have a more active and independent behavior in public spaces.
keywords Assistive wearable devices; Visually impaired people; Accessibility; Human-computer interaction; Collaborative design.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id caadria2019_416
id caadria2019_416
authors Keisen, U, Fujii, Haruyuki and Kobayashi, Yuki
year 2019
title A Study on Interior Light Environment in Japanese Teahouse and its Relation with Tea Ceremony
doi https://doi.org/10.52842/conf.caadria.2019.1.463
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 463-472
summary The lighting of a traditional Japanese tea house mainly relies on natural light introduced through the windows. The light environment is designed very skillfully under influence of both functional consideration and tea ceremony ideology. In order to explore the relation between the lighting strategy and tea ceremony, the paper proposed and examined a new way to study the traditional tea house daylight environment by using CAD and daylight simulation tool. Through the investigation of the daylight environment in various tea houses, the study gained more understanding of how the light environment is composed under the influences of tea house designers and tea ceremony ritual.
keywords Traditional ; Cultural; Tea House; Daylight Study
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia19_310
id acadia19_310
authors Leblanc, Maxime; Vardouli, Theodora
year 2019
title Bursting the Bubble
doi https://doi.org/10.52842/conf.acadia.2019.310
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 310-319
summary The “bubble" is an oft-used keyword in discussions about Virtual Reality (VR) and Virtual Environments (VE). Apart from pointing to the growing, yet precarious, rise of these domains in technology markets, the “bubble" is also a prolific metaphor for spatial, experiential, and technical aspects of virtual worlds. Combining material from architectural history and history of computing, this paper situates and critically activates two threads of the “bubble" metaphor: the bubble as a closed, autonomous system severed from its surroundings, and the bubble as an ubiquitous, limitless environment. Through historical episodes from the development of Head Mounted Displays (HMDs), the paper positions current VR HDMs into a genealogy of miniaturization of actual architectural “bubbles”— from military simulation domes to wearable “micro environments”—and examines the techniques that support the illusion of these closed, autonomous worlds as limitless and ubiquitous. The paper concludes with the description of a critical design project that exposes the limits of VR's limitless worlds and the role of context (physical, architectural) in both making and breaking the VR bubble.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia20_136p
id acadia20_136p
authors López Lobato, Déborah; Charbel, Hadin
year 2020
title Foll(i)cle
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 136-141
summary In the early months of 2019, air pollution in Bangkok reached a record high, bringing national and international attention to the air quality in the South East Asian cosmopolitan. Although applications such as real-time pollution maps provide an environmental reading from the exterior, such information reveals the ‘here and now,’ where its record is inevitably lost through the ‘refreshing’ process of the live update and does not take increment and accumulation as factors to consider. The project was conceived around understanding the human body as precisely that medium that resists classification as either an interior or exterior environment that inherently performs as an impressionable record of its surroundings. Can a city’s toxicity be read through its living constituents? Can the living bodies that dwell, navigate, breathe, and process habitable environments be accessed? Can architecture retain a degree of independence while also performing as a beacon for the collective? Along this line of questioning, it was found that human hair can be transformed from a material that is effortlessly and continuously grown, cut, stylized, and discarded, and instead be intercepted and used in the production of public information gathering. Foll(i)cle is a collective being made of discarded human hair. Performing as a parliament for collectivity embedded with a protocol; the hairy pavilion invites the public in and presents them with a device at the center that hosts all the necessary equipment and information for anonymously and voluntarily providing hair samples for heavy metal analysis, the data of which is used in making a publically accessible toxi-cartography. Although humans are the primary subject for this study, the results suggest that extending the methodology to non-humans could prove useful in reading urban toxicity through various life forms.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id cf2019_018
id cf2019_018
authors Poustinchi, Ebrahim
year 2019
title Oriole A Parametric Solution for Animation-Based Robotic Motion Design
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 132
summary This paper presents a project-based research study using Oriole—a custom-made plug-in for robotic motion control solutions in grasshopper 3D visual programming environment. Oriole is a parametric tool that enables users/designers to design robotic motion-paths, based on the notion of keyframing and animation. Using Oriole, designers are able to simulate—and ultimately develop robotic movements in more intuitive free-form ways. Using Rhino 3D as a digital modeling platform and Grasshopper 3D and its robotic simulation platforms for different industrial robots such as KUKA, ABB, and Universal, Oriole enables designers to create a precise interaction between the robot, its spatial “performance” and the physical environment through animation.
keywords Robotics, Parametric Design, Human-Computer Interaction
series CAAD Futures
email
last changed 2019/07/29 14:08

_id ecaadesigradi2019_280
id ecaadesigradi2019_280
authors Rossi, Gabriella and Nicholas, Paul
year 2019
title Haptic Learning - Towards Neural-Network-based adaptive Cobot Path-Planning for unstructured spaces
doi https://doi.org/10.52842/conf.ecaade.2019.2.201
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 201-210
summary Collaborative Robots, or Cobots, bring new possibilities for human-machine interaction within the fabrication process, allowing each actor to contribute with their specific capabilities. However creative interaction brings unexpected changes, obstacles, complexities and non-linearities which are encountered in real time and cannot be predicted in advance. This paper presents an experimental methodology for robotic path planning using Machine Learning. The focus of this methodology is obstacle avoidance. A neural network is deployed, providing a relationship between the robot's pose and its surroundings, thus allowing for motion planning and obstacle avoidance, directly integrated within the design environment. The method is demonstrated through a series of case-studies. The method combines haptic teaching with machine learning to create a task specific dataset, giving the robot the ability to adapt to obstacles without being explicitly programmed at every instruction. This opens the door to shifting to robotic applications for construction in unstructured environments, where adapting to the singularities of the workspace, its occupants and activities presents an important computational hurdle today.
keywords Architectural Robotics; Neural Networks; Path Planning; Digital Fabrication; Artificial Intelligence; Data
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaade2023_259
id ecaade2023_259
authors Sonne-Frederiksen, Povl Filip, Larsen, Niels Martin and Buthke, Jan
year 2023
title Point Cloud Segmentation for Building Reuse - Construction of digital twins in early phase building reuse projects
doi https://doi.org/10.52842/conf.ecaade.2023.2.327
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 327–336
summary Point cloud processing has come a long way in the past years. Advances in computer vision (CV) and machine learning (ML) have enabled its automated recognition and processing. However, few of those developments have made it through to the Architecture, Engineering and Construction (AEC) industry. Here, optimizing those workflows can reduce time spent on early-phase projects, which otherwise could be spent on developing innovative design solutions. Simplifying the processing of building point cloud scans makes it more accessible and therefore, usable for design, planning and decision-making. Furthermore, automated processing can also ensure that point clouds are processed consistently and accurately, reducing the potential for human error. This work is part of a larger effort to optimize early-phase design processes to promote the reuse of vacant buildings. It focuses on technical solutions to automate the reconstruction of point clouds into a digital twin as a simplified solid 3D element model. In this paper, various ML approaches, among others KPConv Thomas et al. (2019), ShapeConv Cao et al. (2021) and Mask-RCNN He et al. (2017), are compared in their ability to apply semantic as well as instance segmentation to point clouds. Further it relies on the S3DIS Armeni et al. (2017), NYU v2 Silberman et al. (2012) and Matterport Ramakrishnan et al. (2021) data sets for training. Here, the authors aim to establish a workflow that reduces the effort for users to process their point clouds and obtain object-based models. The findings of this research show that although pure point cloud-based ML models enable a greater degree of flexibility, they incur a high computational cost. We found, that using RGB-D images for classifications and segmentation simplifies the complexity of the ML model but leads to additional requirements for the data set. These can be mitigated in the initial process of capturing the building or by extracting the depth data from the point cloud.
keywords Point Clouds, Machine Learning, Segmentation, Reuse, Digital Twins
series eCAADe
email
last changed 2023/12/10 10:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_67044 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002