CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id cf2019_052
id cf2019_052
authors Abdelmohsen, Sherif ;Passaint Massoud, Rana El-Dabaa, Aly Ibrahim and Tasbeh Mokbel
year 2019
title The Effect of Hygroscopic Design Parameters on the Programmability of Laminated Wood Composites for Adaptive Façades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 435
summary Typical adaptive façades respond to external conditions to enhance indoor spaces based on complex mechanical actuators and programmable functions. Hygroscopic embedded properties of wood, as low-cost low-tech programmable material, have been utilized to induce passive motion mechanisms. Wood as anisotropic material allows for different passive programmable motion configurations that relies on several hygroscopic design parameters. This paper explores the effect of these parameters on programmability of laminated wood composites through physical experiments in controlled humidity environment. The paper studies variety of laminated configurations involving different grain orientations, and their effect on maximum angle of deflection and its durability. Angle of deflection is measured using image analysis software that is used for continuous tracking of deflection in relation to time. Durability is studied as the number of complete programmable cycles that wood could withstand before reaching point of failure. Results revealed that samples with highest deflection angle have least programmability durability.
keywords Wood, hygroscopic design, lamination, deflection, durability, adaptive façades
series CAAD Futures
email
last changed 2019/07/29 14:18

_id cf2019_038
id cf2019_038
authors El-Dabaa, Rana and Sherif Abdelmohsen
year 2019
title HMTM: Hygromorphic-Thermobimetal Composites as a Novel Approach to Enhance Passive Actuation of Adaptive Façades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 290-300
summary Typical adaptive facades rely on mechanical actuators that respond to the outdoor climate and regulate its effect on indoor spaces. With the emergence of ubiquitous computing, several studies have independently utilized the latent properties of programmable materials, such as the hygroscopic properties of wood and the difference in expansion coefficient of metals, to passively program material response. Motion stimuli vary for each material however, involving changes in humidity and temperature fluctuation for wood and metals respectively. This paper introduces Hygromorphic-Thermobimetal (HMTM), as a low-tech low-cost passive programmable composite. A series of physical experiments are conducted to deduce design parameters that induce specific actuation mechanisms based on the stimulation of both hygroscopic properties in wood and metal expansion through temperature variation. This allows for an extended implementation of the hygroscopic properties of wood and its actuation configurations in hot arid climates, where variation in temperature, rather than humidity, is more dominant.
keywords Hygroscopic properties of wood, Passive actuation, Thermobimetals, Programmable materials, Adaptive façades
series CAAD Futures
email
last changed 2019/07/29 14:15

_id caadria2019_624
id caadria2019_624
authors Gupta, Sachin Sean, Jayashankar, Dhileep Kumar, Sanandiya, Naresh D, Fernandez, Javier G. and Tracy, Kenneth
year 2019
title Prototyping of Chitosan-Based Shape-Changing Structures
doi https://doi.org/10.52842/conf.caadria.2019.2.441
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 441-450
summary In the built environment, the typical means of achieving responsive changes in the physical features of a structure is through energy-intensive actuation mechanisms that contradict the intended goal of energy-efficient performance. Nature offers several alternative energy-free examples of achieving large-scale shape change through passive actuation mechanisms, such as the intrinsic response of water-absorbing (hygroscopic) materials to humidity fluctuations. We utilize this principle of passive actuation in the context of chitosan biopolymer, a material demonstrating a combination of mechanical strength and hygroscopic potential that enables it to serve for both load-bearing and actuation purposes. By inserting biocomposite films of chitosan as dynamic tensile members into a space truss, a structural system is constructed whose variable structural performance is manipulated and expressed as a large-scale, programmable, and fast-acting shape change. We present a method for rationalizing this responsive structural system as an assembly using a combination of materials engineering and digital design and fabrication. As a proof-of-concept, a two-meter-long fiber-reinforced cantilevering truss prototype was designed and fabricated. The truss transforms in minutes from one shape that shelters the interior from rain to another shape that acts as an air foil to increase ventilation.
keywords Passive Actuation; Chitosan; Structural Assembly; Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_024
id ecaadesigradi2019_024
authors Wit, Andrew John and Ng, Rashida
year 2019
title cloudMAGNET - A prototype for climatically active light-weight skins
doi https://doi.org/10.52842/conf.ecaade.2019.2.627
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 627-636
summary This paper describes a potential for the integration of micro-encapsulated phase change material (mircoPCM) into lightweight skins as a means of regulating internal climatic conditions of volumetric objects. Viewed through the lens of the recently completed series of quarter-scale cloudMAGNET prototypes tested in the cloud forests of Monteverde, Costa Rica, this research utilized a wound, flexible carbon fiber framework and a lightweight fabric skin coated with varying densities of microPCM. The prototypes were monitored using real-time collection of climate data throughout the testing. In this paper we will demonstrate how climatic variables such as temperature, humidity, and pressure can be passively manipulated by varying the form and energy storage properties of materials without the use of active mechanical systems. Produced to bring awareness to the rising cloud levels within the Monteverde cloud forest, this research is intended to explore the fundamental relationships of material, energy and form. Beyond these objectives, the paper will also illustrate how these methods can be more broadly applied to the development of thermal-regulating lightweight tensile structures. Such innovations could be utilized as a method for the reimagining the architectural design and production processes allowing for the emergence of new typologies of environmentally self-mediating architecture.
keywords material performance; phase change material; carbon fiber reinforced polymers; computation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id cdrf2021_286
id cdrf2021_286
authors Yimeng Wei, Areti Markopoulou, Yuanshuang Zhu,Eduardo Chamorro Martin, and Nikol Kirova
year 2021
title Additive Manufacture of Cellulose Based Bio-Material on Architectural Scale
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_27
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary There are severe environmental and ecological issues once we evaluate the architecture industry with LCA (Life Cycle Assessment), such as emission of CO2 caused by necessary high temperature for producing cement and significant amounts of Construction Demolition Waste (CDW) in deteriorated and obsolete buildings. One of the ways to solve these problems is Bio-Material. CELLULOSE and CHITON is the 1st and 2nd abundant substance in nature (Duro-Royo, J.: Aguahoja_ProgrammableWater-based Biocomposites for Digital Design and Fabrication across Scales. MIT, pp. 1–3 (2019)), which means significantly potential for architectural dimension production. Meanwhile, renewability and biodegradability make it more conducive to the current problem of construction pollution. The purpose of this study is to explore Cellulose Based Biomaterial and bring it into architectural scale additive manufacture that engages with performance in the material development, with respect to time of solidification and control of shrinkage, as well as offering mechanical strength. At present, the experiments have proved the possibility of developing a cellulose-chitosan- based composite into 3D-Printing Construction Material (Sanandiya, N.D., Vijay, Y., Dimopoulou, M., Dritsas, S., Fernandez, J.G.: Large-scale additive manufacturing with bioinspired cellulosic materials. Sci. Rep. 8(1), 1–5 (2018)). Moreover, The research shows that the characteristics (Such as waterproof, bending, compression, tensile, transparency) of the composite can be enhanced by different additives (such as xanthan gum, paper fiber, flour), which means it can be customized into various architectural components based on Performance Directional Optimization. This solution has a positive effect on environmental impact reduction and is of great significance in putting the architectural construction industry into a more environment-friendly and smart state.
series cdrf
email
last changed 2022/09/29 07:53

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaadesigradi2019_619
id ecaadesigradi2019_619
authors Beyer, Bastian, Suárez, Daniel and Palz, Norbert
year 2019
title Microbiologically Activated Knitted Composites - Reimagining a column for the 21st century
doi https://doi.org/10.52842/conf.ecaade.2019.2.541
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 541-552
summary A column is an archetypal constituent of architecture which historically underwent constant reiteration in accordance with the prevalent architectural style, material culture or technical and structural possibilities. The project reimagined this architectural element through harnessing the synergies of digital design, textile logic, and contemporary biotechnology. Textile materiality and aesthetic are deeply rooted in architectural history as a soft and ephemeral antipode to rigid building materials. An investigation in historic mechanical hand-knitting techniques allowed to extract their underlying structural and geometric logic to develop a structural optimisation pipeline with a graded yarn as a base material and a geometric optimization based on local distribution of knitting patterns. Bacterially driven biocalcification was applied to transform the soft textile structure into a rigid material. Hereby an active textile microbiome was established through colonizing of the yarn with the bacterium S. pasteurii which successively precipitated calcite on microscale within the textile substrate hence ultimately influencing the global structural behaviour of the column.
keywords textile microbiome; material customization; knitting; yarn augmentation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_602
id caadria2019_602
authors Freitas, José and Leitão, António
year 2019
title Back to Reality - Dendritic structures using current construction techniques
doi https://doi.org/10.52842/conf.caadria.2019.1.173
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 173-182
summary Architects throughout time have designed tree-inspired structures, not only to decorate their creations, but also to explore biomimicry to solve mechanical and structural problems. With the predominance of digital simulation tools, these dendritic-shaped structures are now more easily explored. However, these explorations tend to lack the rationalization required to make them applicable to current production means. In this paper, we take a step back and ensure the connection between the creation and the production of the designs generated with these new digital approaches. The present investigation combines design and analysis tools in search for tree-inspired structures that take advantage of the current techniques of building construction.
keywords Biomimicry; Dendritic structures; Algorithmic design; Performative architecture; Structural analysis
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia19_40
id acadia19_40
authors Garcia del Castillo y López, Jose Luis
year 2019
title Robot Ex Machina
doi https://doi.org/10.52842/conf.acadia.2019.040
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 40-49
summary Industrial robotic arms are increasingly present in digital fabrication workflows due to their robustness, degrees of freedom, and potentially large scale. However, the range of possibilities they provide is limited by their typical software control paradigms, specifically offline programming. This model requires all the robotic instructions to be pre-defined before execution, a possibility only affordable in highly predictable environments. But in the context of architecture, design and art, it can hardly accommodate more complex forms of control, such as responding to material feedback, adapting to changing conditions on a construction site, or on-the-fly decision-making. We present Robot Ex Machina, an open-source computational framework of software tools for real-time robot programming and control. The contribution of this framework is a paradigm shift in robot programming models, systematically providing a platform to enable real-time interaction and control of mechanical actuators. Furthermore, it fosters programming styles that are reactive to, rather than prescriptive about, the state of the robot. We argue that this model is, compared to traditional offline programming, beneficial for creative individuals, as its concurrent nature and immediate feedback provide a deeper and richer set of possibilities, facilitates experimentation, flow of thought, and creative inquiry. In this paper, we introduce the framework, and discuss the unifying model around which all its tools are designed. Three case studies are presented, showcasing how the framework provides richer interaction models and novel outcomes in digital making. We conclude by discussing current limitations of the model and future work.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id caadria2020_395
id caadria2020_395
authors Loo, Stella Yi Ning, Jayashankar, Dhileep Kumar, Gupta, Sachin and Tracy, Kenneth
year 2020
title Hygro-Compliant: Responsive Architecture with Passively Actuated Compliant Mechanisms
doi https://doi.org/10.52842/conf.caadria.2020.1.223
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 223-232
summary Research investigating water-driven passive actuation demonstrates the potential to transform how buildings interact with their environment while avoiding the complications of conventionally powered actuation. Previous experiments evidence the possibilities of bi-layer materials (Reichert, Menges, and Correa 2015; Correa et al. 2015) and mechanical assemblies with discretely connected actuating members (Gupta et al. 2019). By leveraging changes in weather to power actuated building components these projects explore the use of smart biomaterials and responsive building systems. Though promising the implementation of these technologies requires deep engagement into material synthesis and fabrication. This paper presents the design and prototyping of a rain responsive façade system using chitosan hygroscopic films as actuators counterbalanced by programmed compliant mechanisms. Building on previous work into chitosan film assemblies this research focuses on the development of compliant mechanisms as a means of controlling movement without over-complicated rotating parts.
keywords Passive Actuation; Responsive Architecture; Bio-polymers; 4D Structures; Compliant Mechanism
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2019_049
id cf2019_049
authors Lu, Heng; Chen Liu, Daekwon Park, Guohua Ji and Ziyu Tong
year 2019
title Pneumatic Origami Joints A 3D Printed Flexible Joint
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 432
summary This paper describes the design and fabrication process of an adaptive joint using foldable 3D printed structures encased in heat-sealed synthetic polymer films (e.g. airtight plastic casing). The proposed joint can be pneumatically actuated using the airtight casing, and the shape of the deformation can be controlled using origami-inspired 3D printed structures. A zigzag-gap microstructure is designed for the connection portion of the origami structure inside the joint, in order that the rigid 3D printed material (PLA) acquires properties of mollusk material, such as flexibility and softness. Finally, the paper presents some applications adopting pneumatic origami joints which can interact with people or adapting indoor environment, and compares the advantages of this pneumatic technology with mechanical technology.
keywords 3D printing · Adaptive joint · Pneumatic architecture · Origami structure
series CAAD Futures
email
last changed 2019/07/29 14:18

_id acadia19_586
id acadia19_586
authors Mitterberger, Daniela; Derme, Tiziano
year 2019
title Soil 3D Printing
doi https://doi.org/10.52842/conf.acadia.2019.586
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 586-595
summary Despite, the innovation of additive manufacturing (AM) technology, and in spite of the existence of natural bio-materials offering notable mechanical properties, materials used for AM are not necessarily more sustainable than materials used in traditional manufacturing. Furthermore, potential material savings may be partially overshadowed by the relative toxicity of the material and binders used for AM during fabrication and post-fabrication processes, as well as the energy usage necessary for the production and processing workflow. Soil as a building material offers a cheap, sustainable alternative to non-biodegradable material systems, and new developments in earth construction show how earthen buildings can create light, progressive, and sustainable structures. Nevertheless, existing large-scale earthen construction methods can only produce highly simplified shapes with rough detailing. This research proposes to use robotic additive manufacturing processes to overcome current limitations of constructing with earth, supporting complex three-dimensional geometries, and the creation of novel organic composites. More specifically the research focuses on robotic binder-jetting with granular bio-composites and non-toxic binding agents such as hydrogels. This paper is divided into two main sections: (1) biodegradable material system, and (2) multi-move robotic process, and describes the most crucial fabrication parameters such as compaction pressure, density of binders, deposition strategies and toolpath planning as well as identifying the architectural implications of using this novel biodegradable fabrication process. The combination of soil and hydrogel as building material shows the potential of a fully reversible construction process for architectural components and foresees its potential full-scale architectural implementations.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_183
id ecaadesigradi2019_183
authors Mughal, Humera and Beirao, Jose
year 2019
title A Workflow for the Performance Based Design of Naturally Ventilated Tall Buildings Using a Genetic Algorithm (GA)
doi https://doi.org/10.52842/conf.ecaade.2019.2.645
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 645-654
summary Optimization of Natural Ventilation process in highrise buildings is one of the most complex and least addressed phenomenon in the field of sustainable architecture. This issue requires urgent consideration to reduce the computation time due to fast growing demand of vertical construction in metropolitan cities. Until recently most highrise buildings have been operated with mechanical systems, causing high energy loads in hot climates and have high carbon footprints. Highrise buildings with natural ventilation and sky gardens can address these problems. This study involves the development of a Genetic Algorithm (GA) addressing the multi objective optimization of natural ventilation in tall buildings incorporated with Sky-Gardens at different levels all connected through a central ventilation shaft. The fitness function for this GA is composed of three scales; temperature reduction due to evapotranspiration of plants of sky-gardens, optimum wind velocity for channelizing air inside the corridors and ventilation shaft, and optimum building configuration. The aim is to find the best solutions for tall buildings constructed in hot climate through the provision of optimized airflow paths suitable for the effectiveness of natural ventilation, within a reasonably short computation time for supporting design processes at early stage.
keywords Optimization; Natural Ventilation; Tall buildings; Genetic Algorithms
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id caadria2019_337
id caadria2019_337
authors Papanikolaou, Dimitris
year 2019
title Architectural Computing - Pedagogical Experiments at the Intersection of Architectural Design and Mechanical Computation
doi https://doi.org/10.52842/conf.caadria.2019.2.511
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 511-520
summary This paper describes the development of a pedagogy that aims to engage architecture students in principles of mechanical computation and to develop critical thinking on how information and computation can be manifested and performed tectonically. I pose the question: Can we create architectures that compute?
keywords mechanical computation; computing machines; architectural education; architectural computing
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_102
id ecaadesigradi2019_102
authors Passsaro, Andres Martin, Henriques, Gonçalo Castro, Sans?o, Adriana and Tebaldi, Isadora
year 2019
title Tornado Pavilion - Simplexity, almost nothing, but human expanded abilities
doi https://doi.org/10.52842/conf.ecaade.2019.1.305
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 305-314
summary In the context of the fourth industrial revolution, not all regions have the same access to technology for project development. These technological limitations do not necessarily result in worst projects and, on the contrary, can stimulate creativity and human intervention to overcome these shortcomings. We report here the design of a small pavilion with scarce budget and an ambitious goal to qualify a space through tactical urbanism. We develop the project in a multidisciplinary partnership between academy and industry, designing, manufacturing and assembling Tornado Pavilion, a complex structure using combined HIGH-LOW technologies, combining visual programming with analog manufacture and assembly. The design strategy uses SIMPLEXITY with ruled surfaces strategy to achieve a complex geometry. Due to the lack of automated mechanical cutting or assembly, we used human expanded abilities for the construction; instead of a swarm of robots, we had a motivated and synchronized swarm of students. The pavilion became a reference for local population that adopted it. This process thus shows that less or almost nothing (Sola-Morales 1995), need not to be boring (Venturi 1966) but less can be much more (Kolarevic 2017).
keywords Simplexity; CAD-CAM; Ruled Surfaces; expanded abilities; pavilion
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id caadria2019_632
id caadria2019_632
authors Raspall, Felix, Banon, Carlos and Tay, Jenn Chong
year 2019
title AirTable - Stainless steel printing for functional space frames
doi https://doi.org/10.52842/conf.caadria.2019.1.113
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 113-122
summary In architecture, the use of Additive Manufacturing (AM) technologies has been typically undermined by the long production time, elevated cost to manufacture parts and the low mechanical properties of 3D printed components. As AM becomes faster cheaper and stronger, opportunities for architectures that make creative use of AM to produce functional architectural pieces are emerging. In this paper, we propose and discuss the application of metal AM in complex space frames and the theoretical and practical implications. A functional lightweight metal table by the authors support our hypothesis that AM has a clear application in architecture and furniture design, and that space frames constitutes a promising structural typology. Specifically, we investigate how AM using metal as a material can be used in the application of fabrication of complex space frame structure components and connection details. The paper presents background research and our contribution to the digital design tools, the manufacturing and assembly processes, and the analysis of the performances of a parametrically designed and digitally fabricated large meeting table. Insights from this paper are deployed in an architectural scale project, AIRMesh, a metal 3D-printed pavilion set in the greenery of Gardens by the Bay, Singapore.
keywords Metal Additive Manufacturing; Space Frame; 3D Printing; Furniture Design
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia19_246
id acadia19_246
authors Zhang, Viola; Qian, William; Sabin, Jenny
year 2019
title PolyBrickH2.0
doi https://doi.org/10.52842/conf.acadia.2019.246
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 246-257
summary This project emerged from collaborative trans-disciplinary research between architecture, engineering, biology, and materials science to generate novel applications in micro-scale 3D printed ceramics. Specifically, PolyBrick H2.0 adapts internal bone-based hydraulic networks through controlled water flow from 3D printed micro-textures and surface chemistry. Engagement across disciplines produced the PolyBrick series at the Sabin Lab (Sabin, Miller, and Cassab 2014) . The series is a manifestation of novel digital fabrication techniques, bioinspired design, materials inquiry, and contemporary evolutions of building materials. A new purpose for the brick is explored that is not solely focused on the mechanical constraints necessary for built masonry structures. PolyBrick H2.0 interweaves the intricacies of living systems (beings and environments combined) to create a more responsive and interactive material system. The PolyBrick 2.0 series looks at human bone as a design model for foundational research. PolyBrick H2.0 merges the cortical bone hydraulic network with new functionalities as a water filtration and collection system for self-preservation and conservation as well as passive cooling solutions. It also pushes the ability of 3D printing techniques to the microscale. These functionalities are investigated under context for a better construction material, but its use may extend further.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id caadria2019_413
id caadria2019_413
authors Ahrens, Chandler, Chamberlain, Roger, Mitchell, Scott, Barnstorff, Adam and Gelbard, Joshua
year 2019
title Controlling Daylight Reflectance with Cyber-physical Systems
doi https://doi.org/10.52842/conf.caadria.2019.1.433
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 433-442
summary Cyber-physical systems increasingly inform and alter the perception of atmospheric conditions within interior environments. The Catoptric Surface research project uses computation and robotics to precisely control the location of reflected daylight through a building envelope to form an image-based pattern of light on the building interior's surfaces. In an attempt to amplify or reduce spatial perception, the daylighting reflected onto architectural surfaces within a built environment generates atmospheric effects. The modification of light patterns mapped onto existing or new surfaces enables the perception of space to not rely on form alone. The mapping of a new pattern that is independent of architectural surfaces creates a visual effect of a formless atmosphere and holds the potential to affect the way people interact with the space. People need different amounts and quality of daylight depending on physiological differences due to age or the types of tasks they perform. This research argues for an informed luminous and atmospheric environment that is relative both to the user and more conceptual architectural aspirations of spatial perception controlled by a cyber-physical robotic façade system.
keywords Contextual; Computation
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_005
id caadria2019_005
authors Alva, Pradeep, Janssen, Patrick and Stouffs, Rudi
year 2019
title A Spatial Decision Support Framework For Planning - Creating Tool-Chains for Organisational Teams
doi https://doi.org/10.52842/conf.caadria.2019.2.011
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 11-20
summary In practice, most planners do not make significant use of planning support systems. Although significant research has been conducted, the focus tends to be on supporting individual tasks, and the outcomes are often the development of new stand-alone tools that are difficult to integrate into existing workflows. The knowledge contribution in this paper focuses on developing a novel spatial decision support framework focusing on the workflows and tool-chains that span across different teams within an organisation, with varying skill sets and objectives. In the proposed framework, the core decision-making process uses set decision parameters that are combined using a weighted decision tree. The framework is evaluated by developing and testing tool-chains for a real-world land suitability case study. The tool-chain was implemented on top of a GIS platform.
keywords GIS SDSS PSS; Planning Automation; Geoprocessing; Data Analytics; Geoinformatics
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201917403
id ijac201917403
authors Alva, Pradeep; Patrick Janssen and Rudi Stouffs
year 2019
title Geospatial tool-chains: Planning support systems for organisational teams
source International Journal of Architectural Computing vol. 17 - no. 4, 336-356
summary In practice, most planners do not make significant use of planning support systems. Although extensive research has been conducted, the focus tends to be on supporting individual tasks, and the outcomes are often the development of new stand-alone tools that are difficult to integrate into existing workflows. The knowledge contribution in this article focuses on developing a novel spatial decision support framework focusing on the workflows and tool-chains that span across different teams with varying skill sets and objectives, within an organisation. In the proposed framework, the core decision-making process uses a set of decision parameters that are combined using a weighted decision tree. The framework is evaluated by developing and testing a workflow and GIS tool-chain for a real-world case study of land suitability and mixed-use potentiality analysis.
keywords GIS, SDSS, PSS, planning automation, TOD, raster geoprocessing, data analytics, geoinformatics
series journal
email
last changed 2020/11/02 13:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_146236 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002