CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 617

_id ecaadesigradi2019_514
id ecaadesigradi2019_514
authors de Miguel, Jaime, Villafa?e, Maria Eugenia, Piškorec, Luka and Sancho-Caparrini, Fernando
year 2019
title Deep Form Finding - Using Variational Autoencoders for deep form finding of structural typologies
doi https://doi.org/10.52842/conf.ecaade.2019.1.071
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 71-80
summary In this paper, we are aiming to present a methodology for generation, manipulation and form finding of structural typologies using variational autoencoders, a machine learning model based on neural networks. We are giving a detailed description of the neural network architecture used as well as the data representation based on the concept of a 3D-canvas with voxelized wireframes. In this 3D-canvas, the input geometry of the building typologies is represented through their connectivity map and subsequently augmented to increase the size of the training set. Our variational autoencoder model then learns a continuous latent distribution of the input data from which we can sample to generate new geometry instances, essentially hybrids of the initial input geometries. Finally, we present the results of these computational experiments and lay out the conclusions as well as outlook for future research in this field.
keywords artificial intelligence; deep neural networks; variational autoencoders; generative design; form finding; structural design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id acadia19_412
id acadia19_412
authors Del Campo, Matias; Manninger, Sandra; Carlson, Alexandra
year 2019
title Imaginary Plans
doi https://doi.org/10.52842/conf.acadia.2019.412
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 412-418
summary Artificial Neural Networks (NN) have become ubiquitous across disciplines due to their high performance in modeling the real world to execute complex tasks in the wild. This paper presents a computational design approach that uses the internal representations of deep vision neural networks to generate and transfer stylistic form edits to both 2D floor plans and building sections. The main aim of this paper is to demonstrate and interrogate a design technique based on deep learning. The discussion includes aspects of machine learning, 2D to 2D style transfers, and generative adversarial processes. The paper examines the meaning of agency in a world where decision making processes are defined by human/machine collaborations (Figure 1), and their relationship to aspects of a Posthuman design ecology. Taking cues from the language used by experts in AI, such as Hallucinations, Dreaming, Style Transfer, and Vision, the paper strives to clarify the position and role of Artificial Intelligence in the discipline of Architecture.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_135
id ecaadesigradi2019_135
authors Newton, David
year 2019
title Deep Generative Learning for the Generation and Analysis of Architectural Plans with Small Datasets
doi https://doi.org/10.52842/conf.ecaade.2019.2.021
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 21-28
summary The field of generative architectural design has explored a wide range of approaches in the automation of design production, but these approaches have demonstrated limited artificial intelligence. Generative Adversarial Networks (GANs) are a leading deep generative model that use deep neural networks (DNNs) to learn from a set of training examples in order to create new design instances with a degree of flexibility and fidelity that outperform competing generative approaches. Their application to generative tasks in architecture, however, has been limited. This research contributes new knowledge on the use of GANs for architectural plan generation and analysis in relation to the work of specific architects. Specifically, GANs are trained to synthesize architectural plans from the work of the architect Le Corbusier and are used to provide analytic insight. Experiments demonstrate the efficacy of different augmentation techniques that architects can use when working with small datasets.
keywords generative design; deep learning; artificial intelligence; generative adversarial networks
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id acadia19_380
id acadia19_380
authors Özel, Güvenç; Ennemoser, Benjamin
year 2019
title Interdisciplinary AI
doi https://doi.org/10.52842/conf.acadia.2019.380
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 380- 391
summary Architecture does not exist in a vacuum. Its cultural, conceptual, and aesthetic agendas are constantly influenced by other visual and artistic disciplines ranging from film, photography, painting and sculpture to fashion, graphic and industrial design. The formal qualities of the cultural zeitgeist are perpetually influencing contemporary architectural aesthetics. In this paper, we aim to introduce a radical yet methodical approach toward regulating the relationship between human agency and computational form-making by using Machine Learning (ML) as a conceptual design tool for interdisciplinary collaboration and engagement. Through the use of a highly calibrated and customized ML systems that can classify and iterate stylistic approaches that exist outside the disciplinary boundaries of architecture, the technique allows for machine intelligence to design, coordinate, randomize, and iterate external formal and aesthetic qualities as they relate to pattern, color, proportion, hierarchy, and formal language. The human engagement in this design process is limited to the initial curation of input data in the form of image repositories of non-architectural disciplines that the Machine Learning system can extrapolate from, and consequently in regulating and choosing from the iterations of images the Artificial Neural Networks are capable of producing. In this process the architect becomes a curator that samples and streamlines external cultural influences while regulating their significance and weight in the final design. By questioning the notion of human agency in the design process and providing creative license to Artificial Intelligence in the conceptual design phase, we aim to develop a novel approach toward human-machine collaboration that rejects traditional notions of disciplinary autonomy and streamlines the influence of external aesthetic disciplines on contemporary architectural production.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_510
id ecaadesigradi2019_510
authors Giannopoulou, Effima, Baquero, Pablo, Warang, Angad, Orciuoli, Affonso and T. Estévez, Alberto
year 2019
title Stripe Segmentation for Branching Shell Structures - A Data Set Development as a Learning Process for Fabrication Efficiency and Structural Performance
doi https://doi.org/10.52842/conf.ecaade.2019.3.063
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 63-70
summary This article explains the evolution towards the subject of digital fabrication of thin shell structures, searching for the computational design techniques which allow to implement biological pattern mechanisms for efficient fabrication procedures. The method produces data sets in order to analyse and evaluate parallel alternatives of branching topologies, segmentation patterns, material usage, weight and deflection values as a user learning process. The importance here is given to the selection of the appropriate attributes, referring to which specific geometric characteristics of the parametric model are affecting each other and with what impact. The outcomes are utilized to train an Artificial Neural Network to predict new building information based on new combinations of desired parameters so that the user can decide and adjust the design based on the new information.
keywords Digital Fabrication; Shell Structures; Segmentation; Machine Learning; Branching Topologies; Bio-inspired
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_034
id ecaadesigradi2019_034
authors Chen, Dechen, Luo, Dan, Xu, Weiguo, Luo, Chen, Shen, Liren, Yan, Xia and Wang, Tianjun
year 2019
title Re-perceive 3D printing with Artificial Intelligence
doi https://doi.org/10.52842/conf.ecaade.2019.1.443
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 443-450
summary How can machine learning be combined with intelligent construction, material testing and other related topics to develop a new method of fabrication? This paper presents a set of experiments on the dynamic control of the heat deflection of thermoplastics in searching for a new 3D printing method with the dynamic behaviour of PLA and with a comprehensive workflow utilizing mechanic automation, computer vision, and artificial intelligence. Additionally, this paper will discuss in-depth the performance of different types of neural networks used in the research and conclude with solid data on the potential connection between the structure of neural networks and the dynamic, complex material performance we are attempting to capture.
keywords 3D printing; AI; automation; material; fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id caadria2019_245
id caadria2019_245
authors Jiaxin, Zhang, Yunqin, Li, Haiqing, Li and Xueqiang, Wang
year 2019
title Sensitivity Analysis of Thermal Performance of Granary Building based on Machine Learning
doi https://doi.org/10.52842/conf.caadria.2019.1.665
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 665-674
summary The granary building form has significant effects on thermal performance, especially in hot climate regions. This research is focused on exploring the influences of parameters relevant to building form design on thermal performance for granary buildings in Jiangsu and Anhui, China(both provinces belong to the hot summer region). The usual method is to use simulation software to perform a sensitivity analysis of thermal performance to assess the impacts of granary design parameters and identify the essential characteristics. However, many factors are affecting the thermal performance of granary buildings. The use of traditional energy simulation software requires calculation and analysis of a large number of models. In this study, we build a machine learning model to predict the thermal performance of granary buildings and identify the most influential design parameters of thermal performance in granary building. The input parameters include outdoor temperature, building height, aspect ratio, orientation, heat transmission coefficient of the wall and roof, and overall scale. The results show that the overall building scale is the most influential variable to the annual electricity consumption for cooling, whereas the heat transmission coefficient of the roof is the most influential to the change of the indoor temperature.
keywords Sensitivity analysis; Artificial Neural Networks (ANNs); Thermal performance; Granary building
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_339
id ecaadesigradi2019_339
authors Kinugawa, Hina and Takizawa, Atsushi
year 2019
title Deep Learning Model for Predicting Preference of Space by Estimating the Depth Information of Space using Omnidirectional Images
doi https://doi.org/10.52842/conf.ecaade.2019.2.061
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 61-68
summary In this study, we developed a method for generating omnidirectional depth images from corresponding omnidirectional RGB images of streetscapes by learning each pair of omnidirectional RGB and depth images created by computer graphics using pix2pix. Then, the models trained with different series of images shot under different site and weather conditions were applied to Google street view images to generate depth images. The validity of the generated depth images was then evaluated visually. In addition, we conducted experiments to evaluate Google street view images using multiple participants. We constructed a model that estimates the evaluation value of these images with and without the depth images using the learning-to-rank method with deep convolutional neural network. The results demonstrate the extent to which the generalization performance of the streetscape evaluation model changes depending on the presence or absence of depth images.
keywords Omnidirectional image; depth image; Unity; Google street view; pix2pix; RankNet
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id acadia19_298
id acadia19_298
authors Leach, Neil
year 2019
title Do Robots Dream of Digital Sleep?
doi https://doi.org/10.52842/conf.acadia.2019.298
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 298-309
summary AI is playing an increasingly important role in everyday life. But can AI actually design? This paper takes its point of departure from Philip K Dick’s novel, Do Androids Dream of Electric Sheep? and refers to Google’s DeepDream software, and other AI techniques such as GANs, Progressive GANs, CANs and StyleGAN, that can generate increasingly convincing images, a process often described as ‘dreaming’. It notes that although generative AI does not possess consciousness, and therefore cannot literally dream, it can still be a powerful design tool that becomes a prosthetic extension to the human imagination. Although the use of GANs and other deep learning AI tools is still in its infancy, we are at the dawn of an exciting – but also potentially terrifying – new era for architectural design. Most importantly, the paper concludes, the development of AI is also helping us to understand human intelligence and 'creativity'.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id cf2019_010
id cf2019_010
authors Lorenz, Clara-Larissa; Bleil De Souza, Spaeth and Packianather
year 2019
title Machine Learning in Design Exploration: An Investigation of the Sensitivities of ANN-based Daylight Predictions
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 75-87
summary The use of Artificial Neural Networks (ANNs) promises greater efficiency in the assessment of daylight situations than simulations. With the daylight factor under scrutiny and the recent adaptation of climate-based daylight metrics in British and European buildings standards, ANNs provide a possibility for instantaneous feedback on otherwise time-consuming performance metrices. This study demonstrates the application of ANNs as prediction systems in design exploration. A specific focus of the research is the flexibility of ANNs, their reliability and sensitivity to changes.
keywords Artificial neural networks, atria, climate-based daylight modeling, daylight autonomy, daylight performance, parametric design
series CAAD Futures
email
last changed 2019/07/29 14:08

_id ecaadesigradi2019_302
id ecaadesigradi2019_302
authors Mrosla, Laura, Koch, Volker and von Both, Petra
year 2019
title Quo vadis AI in Architecture? - Survey of the current possibilities of AI in the architectural practice
doi https://doi.org/10.52842/conf.ecaade.2019.2.045
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-54
summary The permeation of various fields by the applications of artificial intelligence (AI) has arrived in the collective consciousness and is increasingly present in the physical world. Current results of AI research in the field of architecture illustrate that already today within every step of the architectural conception and fabrication approaches towards their automation are being made. Even the very human features of motivation and creativity aren't left untouched anymore. This paper discusses, on the basis of different concepts and examples, up to what extent the contemporary possible implementations of AI and their underlying algorithms are able to conquer the architectural profession. Furthermore, it presents a summary of an automation-concept for the whole profession.
keywords Artificial Neural Networks; Artificial Intelligence; Creativity; Architecture; Automatisation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id caadria2019_650
id caadria2019_650
authors Papasotiriou, Tania
year 2019
title Identifying the Landscape of Machine Learning-Aided Architectural Design - A Term Clustering and Scientometrics Study
doi https://doi.org/10.52842/conf.caadria.2019.2.815
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 815-824
summary Recent advances in Machine Learning and Deep Learning revolutionise many industry disciplines and underpin new ways of problem-solving. This paradigm shift hasn't left Architecture unaffected. To investigate the impact on architectural design, this study utilises two approaches. First, a text mining method for content analysis is employed, to perform a robust review of the field's literature. This allows identifying and discussing current trends and possible future directions of this research domain in a systematic manner. Second, a Scientometrics study based on bibliometric reviews is employed to obtain quantitative measures of the global research activity in the described domain. Insights on research trends and identification of the most influential networks in this dataset were acquired by analysing terms co-occurrence, scientific collaborations, geographic distribution, and co-citation analysis. The paper concludes with a discussion on the limitations, opportunities and future research directions in the field of Machine Learning-aided architectural design.
keywords Machine Learning; Text mining; Scientometrics
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2020_259
id caadria2020_259
authors Rhee, Jinmo, Veloso, Pedro and Krishnamurti, Ramesh
year 2020
title Integrating building footprint prediction and building massing - an experiment in Pittsburgh
doi https://doi.org/10.52842/conf.caadria.2020.2.669
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 669-678
summary We present a novel method for generating building geometry using deep learning techniques based on contextual geometry in urban context and explore its potential to support building massing. For contextual geometry, we opted to investigate the building footprint, a main interface between urban and architectural forms. For training, we collected GIS data of building footprints and geometries of parcels from Pittsburgh and created a large dataset of Diagrammatic Image Dataset (DID). We employed a modified version of a VGG neural network to model the relationship between (c) a diagrammatic image of a building parcel and context without the footprint, and (q) a quadrilateral representing the original footprint. The option for simple geometrical output enables direct integration with custom design workflows because it obviates image processing and increases training speed. After training the neural network with a curated dataset, we explore a generative workflow for building massing that integrates contextual and programmatic data. As trained model can suggest a contextual boundary for a new site, we used Massigner (Rhee and Chung 2019) to recommend massing alternatives based on the subtraction of voids inside the contextual boundary that satisfy design constraints and programmatic requirements. This new method suggests the potential that learning-based method can be an alternative of rule-based design methods to grasp the complex relationships between design elements.
keywords Deep Learning; Prediction; Building Footprint; Massing; Generative Design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_280
id ecaadesigradi2019_280
authors Rossi, Gabriella and Nicholas, Paul
year 2019
title Haptic Learning - Towards Neural-Network-based adaptive Cobot Path-Planning for unstructured spaces
doi https://doi.org/10.52842/conf.ecaade.2019.2.201
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 201-210
summary Collaborative Robots, or Cobots, bring new possibilities for human-machine interaction within the fabrication process, allowing each actor to contribute with their specific capabilities. However creative interaction brings unexpected changes, obstacles, complexities and non-linearities which are encountered in real time and cannot be predicted in advance. This paper presents an experimental methodology for robotic path planning using Machine Learning. The focus of this methodology is obstacle avoidance. A neural network is deployed, providing a relationship between the robot's pose and its surroundings, thus allowing for motion planning and obstacle avoidance, directly integrated within the design environment. The method is demonstrated through a series of case-studies. The method combines haptic teaching with machine learning to create a task specific dataset, giving the robot the ability to adapt to obstacles without being explicitly programmed at every instruction. This opens the door to shifting to robotic applications for construction in unstructured environments, where adapting to the singularities of the workspace, its occupants and activities presents an important computational hurdle today.
keywords Architectural Robotics; Neural Networks; Path Planning; Digital Fabrication; Artificial Intelligence; Data
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_602
id ecaadesigradi2019_602
authors Toulkeridou, Varvara
year 2019
title Steps towards AI augmented parametric modeling systems for supporting design exploration
doi https://doi.org/10.52842/conf.ecaade.2019.1.081
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 81-90
summary Dataflow parametric modeling environments have become popular as exploratory tools due to them allowing the variational exploration of a design by controlling the parameters of its parametric model schema. However, the nature of these systems requires designers to prematurely commit to a structure and hierarchy of geometric relationships, which makes them inflexible when it comes to design exploration that requires topological changes to the parametric modeling graph. This paper is a first step towards augmenting parametric modeling systems via the use of machine learning for assisting the user towards topological exploration. In particular, this paper describes an approach where Long Short-Term Memory recurrent neural networks, trained on a data set of parametric modeling graphs, are used as generative systems for suggesting alternative dataflow graph paths to the parametric model under development.
keywords design exploration; visual programming; machine learning
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_171
id ecaadesigradi2019_171
authors Uzun, Can and Çolako?lu, Meryem Birgül
year 2019
title Architectural Drawing Recognition - A case study for training the learning algorithm with architectural plan and section drawing images
doi https://doi.org/10.52842/conf.ecaade.2019.2.029
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 29-34
summary This paper aims to develop a case study for training an algorithm to recognize architectural drawings. In order to succeed that, the algorithm is trained with labeled pixel-based, architectural drawing (plan and section) dataset. During the training process, transfer learning (pre-training model) is applied. The supervised learning and convolutional neural network are utilized. After certain iterations, the algorithm builds awareness and can classify pixel-based plan and section drawings. When the algorithm is shown a section that is not produced with conventional drawing technic but through hybrid technics, it could predict the drawing class correctly with %80 of accuracy. On the other hand, some of the algorithm prediction is misoriented. We examined this prediction problem in the discussion section. The results illustrate that neural networks are successful in training algorithms to recognize and classify pixel-based architectural drawings. But for a highly accurate algorithm prediction, the dataset of the drawing images must be ordered, according to sample resolution, sample size and sample coherence for the dataset.
keywords Classification Algorithm; Pixel-Based Architectural Drawing Recognition; Plan; Section
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_308
id ecaadesigradi2019_308
authors Yetkin, Ozan and Gönenç Sorguç, Arzu
year 2019
title Design Space Exploration of Initial Structural Design Alternatives via Artificial Neural Networks
doi https://doi.org/10.52842/conf.ecaade.2019.1.055
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 55-60
summary Increasing implementation of digital tools within a design process generates exponentially growing data in each phase, and inevitably, decision making within a design space with increasing complexity will be a great challenge for the designers in the future. Hence, this research aimed to seek potentials of captured data within a design space and solution space of a truss design problem for proposing an initial novel approach to augment capabilities of digital tools by artificial intelligence where designers are allowed to make a wise guess within the initial design space via performance feedbacks from the objective space. Initial structural design and modelling phase of a truss section was selected as a material of this study since decisions within this stage affect the whole process and performance of the end product. As a method, a generic framework was proposed that can help designers to understand the trade-offs between initial structural design alternatives to make informed decisions and optimizations during the initial stage. Finally, the proposed framework was presented in a case study, and future potentials of the research were discussed.
keywords design space; objective space; structural design; artificial intelligence; machine learning; optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id caadria2020_395
id caadria2020_395
authors Loo, Stella Yi Ning, Jayashankar, Dhileep Kumar, Gupta, Sachin and Tracy, Kenneth
year 2020
title Hygro-Compliant: Responsive Architecture with Passively Actuated Compliant Mechanisms
doi https://doi.org/10.52842/conf.caadria.2020.1.223
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 223-232
summary Research investigating water-driven passive actuation demonstrates the potential to transform how buildings interact with their environment while avoiding the complications of conventionally powered actuation. Previous experiments evidence the possibilities of bi-layer materials (Reichert, Menges, and Correa 2015; Correa et al. 2015) and mechanical assemblies with discretely connected actuating members (Gupta et al. 2019). By leveraging changes in weather to power actuated building components these projects explore the use of smart biomaterials and responsive building systems. Though promising the implementation of these technologies requires deep engagement into material synthesis and fabrication. This paper presents the design and prototyping of a rain responsive façade system using chitosan hygroscopic films as actuators counterbalanced by programmed compliant mechanisms. Building on previous work into chitosan film assemblies this research focuses on the development of compliant mechanisms as a means of controlling movement without over-complicated rotating parts.
keywords Passive Actuation; Responsive Architecture; Bio-polymers; 4D Structures; Compliant Mechanism
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_605
id ecaadesigradi2019_605
authors Andrade Zandavali, Bárbara and Jiménez García, Manuel
year 2019
title Automated Brick Pattern Generator for Robotic Assembly using Machine Learning and Images
doi https://doi.org/10.52842/conf.ecaade.2019.3.217
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 217-226
summary Brickwork is the oldest construction method still in use. Digital technologies, in turn, enabled new methods of representation and automation for bricklaying. While automation explored different approaches, representation was limited to declarative methods, as parametric filling algorithms. Alternatively, this work proposes a framework for automated brickwork using a machine learning model based on image-to-image translation (Conditional Generative Adversarial Networks). The framework consists of creating a dataset, training a model for each bond, and converting the output images into vectorial data for robotic assembly. Criteria such as: reaching wall boundary accuracy, avoidance of unsupported bricks, and brick's position accuracy were individually evaluated for each bond. The results demonstrate that the proposed framework fulfils boundary filling and respects overall bonding structural rules. Size accuracy demonstrated inferior performance for the scale tested. The association of this method with 'self-calibrating' robots could overcome this problem and be easily implemented for on-site.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_396
id caadria2019_396
authors Cao, Rui, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Quantifying Visual Environment by Semantic Segmentation Using Deep Learning - A Prototype for Sky View Factor
doi https://doi.org/10.52842/conf.caadria.2019.2.623
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 623-632
summary Sky view factor (SVF) is the ratio of radiation received by a planar surface from the sky to that received from the entire hemispheric radiating environment, in the past 20 years, it was more applied to urban-climatic areas such as urban air temperature analysis. With the urbanization and the development of cities, SVF has been paid more and more attention on as the important parameter in urban construction and city planning area because of increasing building coverage ratio to promote urban forms and help creating a more comfortable and sustainable urban residential building environment to citizens. Therefore, efficient, low cost, high precision, easy to operate, rapid building-wide SVF estimation method is necessary. In the field of image processing, semantic segmentation based on deep learning have attracted considerable research attention. This study presents a new method to estimate the SVF of residential environment by constructing a deep learning network for segmenting the sky areas from 360-degree camera images. As the result of this research, an easy-to-operate estimation system for SVF based on high efficiency sky label mask images database was developed.
keywords Visual environment; Sky view factor; Semantic segmentation; Deep learning; Landscape simulation
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_750571 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002