CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id ecaadesigradi2019_613
id ecaadesigradi2019_613
authors Guedes, Ítalo and Andrade, Max
year 2019
title Automatic Rule-Based Checking for the Approval of Building Architectural Designs of Airport Passenger Terminals based on BIM
doi https://doi.org/10.52842/conf.ecaade.2019.2.333
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 333-338
summary In Brazil, the evaluation processes of building architectural designs of Airports Passenger Terminal (PT) are carried out manually. It depends on the architects' knowledge, leading to possible errors. On the other hand, the rule checking in BIM-modeled building projects opens up new horizons for this type of activity. Based on Code Checking concepts, this paper presents a method for automating rule checking for building code in building architectural design of PT. Following the aspects of Design Science Research, it is developed in two stages: Construction (theoretical foundation, creating rule checking for the PT, implementation of the rules in BIM softwares for code checking and validation) and Evaluation of artefact. This paper shows a series of problems resulting from the evaluation of PT using traditional methods. It can be concluded that the use of rules for regulatory code checking with BIM allows standardization in the evaluation of architectural design of PT.
keywords Code Checking; Passenger Terminal; Building Information Modeling; Rule checking
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_422
id ecaadesigradi2019_422
authors Kepczynska-Walczak, Anetta
year 2019
title Building Information Modelling Implementation in Progress
doi https://doi.org/10.52842/conf.ecaade.2019.2.279
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 279-286
summary The paper presents a critical evaluation of the latest achievements in Building Information Modelling (BIM) implementation in academia, based on its adoption in Architecture curriculum at Lodz University of Technology, Poland. It reflects upon a significant shift in architectural practice which is strongly influencing ongoing modernization of higher education curricula. Furthermore, it undertakes the challenge to answer one of the main eCAADe2019 questions, viz.: "What is the impact of new technologies in architectural education and practice, and, what are the emerging opportunities and main threats to our discipline?" It contributes to the discussion on the place of BIM in academia - the controversial topic that still needs to be explored and debated to receive a comprehensive feedback and wider publicity.
keywords Building Information Modelling; BIM; digital technologies; collaborative design process; architectural curriculum
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_078
id ecaadesigradi2019_078
authors Kim, Eonyong, Jeon, Hyunwoo, Jun, Hanjong and Lee, Seongjoon
year 2019
title The Development of Architectural Design Environment for BIPV using BIM
doi https://doi.org/10.52842/conf.ecaade.2019.1.223
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 223-232
summary BIPV is a building integrated photovoltaic power generation system, which is used for building finishing materials, roof, and wall, so there is no need for separate installation space, and the usability is continuously increasing in urban areas with relatively small installation space. And continues to increase. BIPV is a building-integrated type, but the application plan should be made from the early stage of design. However, there is a lack of BIPV related design information. As a result, the possibility of integrating BIPV and building design is reduced and BIPV is applied in a limited range. Method: BIM-based BIPV design process, BIPV installable location, BIPV elevation design factor. And the theory necessary to implement the support model. Lastly, usability was examined using the support model. Result: This study describes a BIM-based design support model for BIPV installed elevation design that designers can apply BIPV installation location planning and design in a BIM environment.
keywords Building Integrated Photovoltaic System ; Building Information Modelling ; Shadow Analysis ; Array design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
doi https://doi.org/10.52842/conf.caadria.2020.1.873
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_307
id ecaadesigradi2019_307
authors Kovacs, Adam Tamas, Szoboszlai, Mihaly and Csusz, Istvan
year 2019
title Key for Entering Industry 4.0 in the AEC Sector - BIM Organisation Development
doi https://doi.org/10.52842/conf.ecaade.2019.1.275
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 275-282
summary More and more sectors are entering Industry 4.0 but when we look around in the Architecture, Engineering and Construction industry, we do not see it happening. We wanted to investigate the reason behind this. Therefore, we conducted research among Hungarian design studios to find out what level of development they are at, and what the obstacles could be for implementing the latest technologies. This paper identifies the main problem we uncovered and discusses a possible solution. We explain what BIM Organisation Development is and why it is fundamental for architect studios who would like to enter Industry 4.0. We introduce the so-called Brick+Data Method, specifying its three essential development steps to get BIM technologies implemented and to make architect studios more efficient. Finally, we share our findings according to the feedback of the companies we worked with using this method.
keywords BIM; organisation development; technology implementation; Industry 4.0; design process
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaade2023_227
id ecaade2023_227
authors Moorhouse, Jon and Freeman, Tim
year 2023
title Towards a Genome for Zero Carbon Retrofit of UK Housing
doi https://doi.org/10.52842/conf.ecaade.2023.2.197
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 197–206
summary The United Kingdom has some of the worst insulated housing stock in Northern Europe. This is in part due to the age of housing in the UK, with over 90% being built before 1990 [McCrone 2017, Piddington 2020]. Moreover, 85% of current UK housing will still be in use in 2050 by which stage their Government are targeting Net Carbon Zero [Eyre 2019]. Domestic energy use accounts for around 25% of UK carbon emissions. The UK will need to retrofit 20 million dwellings in order to meet this target. If this delivery were evenly spread, it would equate to over 2,000 retrofit completions each day. Government-funded initiatives are stimulating the market, with upwards of 60,000 social housing retrofits planned for 2023, but it is clear that a system must be developed to enable the design and implementation of housing-stock improvement at a large scale.This paper charts the 20-year development of a digital approach to the design for low-carbon domestic retrofit by architects Constructive Thinking Studio Limited and thence documents the emergence of a collaborative approach to retrofit patterns on a National scale. The author has led the Research and Development stream of this practice, developing a Building Information Modelling methodology and integrated Energy Modelling techniques to optimise design for housing retrofit [Georgiadou 2019, Ben 2020], and then inform a growing palette of details and a database of validated solutions [Moorhouse 2013] that can grow and be used to predict options for future projects [D’Angelo 2022]. The data is augmented by monitoring energy and environmental performance, enabling a growing body of knowledge that can be aligned with existing big data to simulate the benefits of nationwide stock improvement. The paper outlines incremental case studies and collaborative methods pivotal in developing this work The proposed outcome of the work is a Retrofit Genome that is available at a national level.
keywords Retrofit, Housing, Zero-Carbon, BIM, Big Data, Design Genome
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2019_535
id caadria2019_535
authors Song, Jaeyeol, Kim, Jinsung and Lee, Jin-Kook
year 2019
title Converting KBimCode into an Executable Code for the Automated Design Rule Checking System
doi https://doi.org/10.52842/conf.caadria.2019.1.795
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 795-804
summary This research aims to describe an implementation approach for a translator of KBimCode as a part of a BIM-enabled automated design rule checking system. KBimCode is an explicit and computer-readable form written in a scripting language to represent Korea Building Act sentences. KBimCode separates the rule-making process that conventionally dependent on rule-checking software. Based on the approach, KBimCode implemented with its own logic rule components and has been managed with the database. On the other hand, there are several rule-checking software executed with their own rule set. Translating natural language rules into the rule set of each software and translating a rule of specific software into others require a lot of manual effort. The manual translation also hinders interoperability between rule checking software. We address the problem with developing the KBimCode translator for each rule checking software. In this research, we focused on translating KBimCode into an executable code of specific rule checking software, named KBimAssess. KBimCode translator will integrate the rule-making and rule-checking process, which means various stakeholders, even who are not familiar with programming, can easily conduct BIM-enabled rule checking by utilizing KBimCode. Furthermore, the implementation of KBimCode translator is expected to contribute to the enhancement of interoperability between various rule-checking applications.
keywords Automated design rule checking; Building information modeling (BIM); Executable code; Language translator; KBimCode
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_312
id ecaadesigradi2019_312
authors Veraldo da Costa Pita, Juliano and Tramontano, Marcelo Cláudio
year 2019
title Building Information Modeling for Participatory Decision-making Processes
doi https://doi.org/10.52842/conf.ecaade.2019.1.283
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 283-292
summary This paper presents and discusses the partial results of ongoing research on the development of computer applications connected to Building Information Modeling (BIM) software, aiming at the participation of non-technical actors in decision-making processes for public facilities projects. The research proposes the construction of a web-based application in which remote collaboration between technicians and non-technicians can be carried out in architectural design processes. The article points to the relevance of such cooperation in newly industrialised countries, reviews the key features of BIM, and presents the application currently under development. The paper focuses the theoretical discussion and characterisation of relationships between the involved parties and the practical implications of these reflections on the structure and design of the application. This research work is underway at the research group Nomads.usp of the University of S?o Paulo (USP), Brazil, and expects to contribute to the formulation and implementation of public policies in the sectors involved.
keywords BIM; Participation; Public facilities
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id acadia19_338
id acadia19_338
authors Aviv, Dorit; Houchois, Nicholas; Meggers, Forrest
year 2019
title Thermal Reality Capture
doi https://doi.org/10.52842/conf.acadia.2019.338
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 338-345
summary Architectural surfaces constantly emit radiant heat fluxes to their surroundings, a phenomenon that is wholly dependent on their geometry and material properties. Therefore, the capacity of 3D scanning techniques to capture the geometry of building surfaces should be extended to sense and capture the surfaces’ thermal behavior in real time. We present an innovative sensor, SMART (Spherical-Motion Average Radiant Temperature Sensor), which captures the thermal characteristics of the built environment by coupling laser geometry scanning with infrared surface temperature detection. Its novelty lies in the combination of the two sensor technologies into an analytical device for radiant temperature mapping. With a sensor-based dynamic thermal-surface model, it is possible to achieve representation and control over one of the major factors affecting human comfort. The results for a case-study of a 3D thermal scan conducted in the recently completed Lewis Center for the Arts at Princeton University are compared with simulation results based on a detailed BIM model of the same space.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_498
id ecaadesigradi2019_498
authors Bermek, Mehmet Sinan, Shelden, Dennis and Gentry, T. Russel
year 2019
title A Holistic Approach to Feature-based Structural Mapping in Cross Laminated Timber Buildings
doi https://doi.org/10.52842/conf.ecaade.2019.2.789
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 789-796
summary Mass Engineered Timber products provide a unique opportunity in configuring panelized building systems that are suitable for both prefabrication and onsite customization. The structural nature of these large section elements also brings about the need for a coordinated design-fabrication-assembly workflow. These products can assume different geometric configurations and their behaviour can be approximated globally by simplifying framing schemas. Current BIM Interoperability standards such as STEP or IFC already acknowledge and support the interconnected nature of component properties, yet these Data Models are component focused. Expanding on the relationships between components and using sets to define part to whole, or exteriority relationships could yield a more flexible and agile querying of building information.This would be a framework fit for automated feature derivation and rule based design applications. To this end Graph structures and Graph Databases, alongside existing ontology authoring tools are studied to probe new cognitive possibilities in collaborative AEC workflows
keywords Graph theory; BIM; CLT; IFC
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2020_093
id caadria2020_093
authors Cerovsek, Tomo and Martens, Bob
year 2020
title The Evolution of CAADRIA Conferences - A Bibliometric Approach
doi https://doi.org/10.52842/conf.caadria.2020.1.325
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 325-334
summary This paper presents an analysis of the output, impact, use and content of 1,860 papers that were published in the CAADRIA conference proceedings over the last 20+ years (from 1996 to 2019). The applied methodology is a blend of bibliometrics, webometrics and clustering with text mining. The bibliometric analysis leads to quantitative and qualitative results on three levels: (1) author, (2) article and (3) association. The most productive authors authored over 50 papers, and the top 20% authors have over 80 % of all citations generated by CAADRIA proceedings. The overall impact of CAADRIA may be characterised by nearly 2,000 known citations and by the h-index that is 17. The webometrics based on CumInCAD.org reveals that the CAADRIA papers served over 200 k users, which is a considerable visibility for scientific CAAD output. The keywords most frequently used by authors were digital fabrication, BIM and parametric, generative, computational design. Notably, 90% of the papers' descriptors are 2-grams. This study may be useful to researchers, educators and publishers interested in CAAD.
keywords bibliometrics; open source; text clustering; n-gram
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2019_136
id caadria2019_136
authors Dounas, Theodoros and Lombardi, Davide
year 2019
title Blockchain Grammars - Designing with DAOs - The blockchain as a design platform for shape grammarists' decentralised collaboration
doi https://doi.org/10.52842/conf.caadria.2019.2.293
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 293-302
summary This paper presents an application of Decentralised Autonomous Organisation (DAO) in the field of design and AEC industry. The model is applied in the realm of shape grammar proposing the possibility of allowing multiple grammarists to collaborate in the definition of a new grammar within a Blockchain environment that acts as a distributed ledger. DAOs systems and Blockchain are introduced as well as shape grammar and its fundamental rules. The collaborative nature of a DAO with the inner logic of shape grammar, which bases its principle and rules in multiple variations and combinations of simple initial shapes, brings to the problem of recording and validating changes and improvements in the design chain. For this reason, a voting system to govern the process is introduced, based on both quantitative values, i.e. number of votes, and qualitative power, i.e. the reputation of who votes, applying a factor that scales the vote according to the expertise of the voter. An example is provided showing a possible scenario in a design environment along with validation criteria, and predicting future stages applied in an always more BIM-oriented practice.
keywords Decentralised Autonomous Organisation; Shape Grammar; Intelligent organisms; Distributed Ledger; Blockchain;
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_296
id ecaadesigradi2019_296
authors Dounas, Theodoros, Lombardi, Davide and Jabi, Wassim
year 2019
title Towards Blockchains for architectural design - Consensus mechanisms for collaboration in BIM
doi https://doi.org/10.52842/conf.ecaade.2019.1.267
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 267-274
summary We present a Blockchain collaboration mechanism on optimisation problems between distributed participants who work with building information modelling tools. The blockchain mechanism is capable of executing smart contracts, acting as a reward mechanism of independent designers attempting to collaborate or compete on optimising a design performance problem. Earlier work has described the potential integration through different levels of Computer Aided Design and Blockchain. We present an expanded version of that integration and we showcase how a team can collaboratively and competitively work, using BIM tools, through the blockchain. The original contribution of the paper is the use of the design optimisation performance as a consensus mechanism for block writing in blockchains. To accomplish that we introduce mechanisms for BIM to Blockchain Integration but also describe a special category of blockchains for architectural design and the built environment. The paper concludes with an analysis of the relationship between trust and values as encapsulated in the blockchain and how these could affect the design collaboration.
keywords Blockchain; BIM; agent; collaboration; competition
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_282
id ecaadesigradi2019_282
authors Fernández González, Alberto, Guerrero del Rio, Camilo and Jorquera Sepúlveda, Layla
year 2019
title BIM Chilean Social Housing Analysis - from the 70´s to 90´s
doi https://doi.org/10.52842/conf.ecaade.2019.1.259
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 259-266
summary This research based on education digs on the "evolution" of Chilean social housing between the period from 70's to 90's asking us the "phylogenic" relation between "typos" of designs that developed several problems in the urban fabric development during 20 years of intricate design just thinking in quantity but not quality in our country.The focus in this research is as the first step understanding the design behind dwellings between this time range, then its process of evolution and transformation by users, and then by BIM understand the virtues and defects of each design and rethink the typologies in a housing life cycle look for the next years.
keywords BIM; Social Housing; Catalogue; Design; Intervention; Strategies
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id caadria2019_406
id caadria2019_406
authors Fitriawijaya, Adam, Hsin-Hsuan, Tsai and Taysheng, jeng
year 2019
title A Blockchain Approach to Supply Chain Management in a BIM-Enabled Environment
doi https://doi.org/10.52842/conf.caadria.2019.2.411
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 411-420
summary The blockchain is a distributed ledger managed by a peer to peer network that stores all transaction records. The distributed ledger technology offers new possibilities, promising to ensure that data is secure, decentralized and incomparable. In the Architecture, Engineering, Construction (AEC) industry, Building Information Modeling (BIM) has quickly become a standard platform where all parties work together on a single and shared model for collaboration. The issues of Supply Chain Management (SCM) within BIM can be identified in BIM maturity level, based on PAS1193 that developed through Common Data Environment (CDE). The research strategy is to make model and simulation of SCM using BIM and create CDE to become decentralized and integrate the blockchain technology. The smart contract system validates every material and configuration of components within the model from the design stage until the operation stage. Traceability and auditability through an immutable historic eventually be more visible and allow real-time tracking of a material to a construction site providing a history from the origin.
keywords Blockchain; BIM; Supply Chain
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia19_346
id acadia19_346
authors Gehron, Luke; Chernick, Adam; Morse, Christopher; Naumovski, Sabrina; Ren, Zeyu
year 2019
title Sound Space
doi https://doi.org/10.52842/conf.acadia.2019.346
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 346-351
summary Sound Space, an interactive virtual reality tool, allows architects and designers to simulate and visualize the acoustic implications of their building designs. By providing designers with the ability to pause, rewind and fast forward a sound wave within a virtual built environment, we empower them to let acoustics influence their design decisions. With a focus on simulation accuracy as well as user experience, we let the user interact with, explore, and curate their own experience while gaining an intuitive understanding of the acoustic implications of their design. Sound Space explores the opportunities that a linked BIM connection may bring within game engine based experiences, and looks at some of the tools we used to try to make that connection. Sound Space focuses on evaluating the acoustic performance of a space in an interactive and visual experience. For buildings such as symphony halls or theaters, acoustic engineers are a part of the design process from the beginning, but the majority of projects such as schools, hospitals, or museums might employ acoustic specialists only near the end, if at all. At this point it is often too late to make meaningful changes to account for the important acoustic characteristics that can make such spaces work better for students, patients, and visitors. Our goal was to create an environment that was visually interesting enough to immerse and retain users in the experience, and accurate enough to give useful results to the users for them to make informed choices about their design decisions.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id cf2019_008
id cf2019_008
authors Han, Zhen; Ning Cao, Gang Liu and Wei Yan
year 2019
title MOPSO for BIM: A Multi-Objective Optimization Tool Using Particle Swarm Optimization Algorithm on a BIMbased Visual Programming Platform
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 39-51
summary With the increasing applications of computational methods in the field of design optimization, intelligent metaheuristic algorithms are playing a more important role in building performance optimization. To enable the integration of optimization algorithms with Building Information Modeling (BIM), this research implemented the Particle Swarm Optimization (PSO) algorithm on Revit + Dynamo, which is a parametric BIM platform. A MultiObjective PSO (MOPSO) Solver has been developed in Dynamo using MATLAB and C# programming languages. The methodology of the research and the validation studies are presented in the paper. The validation studies prove the effectiveness of the MOPSO Solver for both standard optimization test functions and an optimization example of a simplified building design.
keywords Particle Swarm Optimization, BIM, multi-objective optimization, visual programming
series CAAD Futures
email
last changed 2019/07/29 14:08

_id caadria2019_546
id caadria2019_546
authors Holzer, Dominik
year 2019
title Teaching Computational Design and BIM in the Age of (Semi)flipped Classrooms
doi https://doi.org/10.52842/conf.caadria.2019.2.715
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 715-724
summary With academic curricula for architectural education increasingly packed with new and expanding fields of inquiry, questions emerge on how to incorporate the ever-growing number of subjects that tackle the use of computational tools for design and delivery. This paper analyses approaches to blended learning under a semi-flipped classroom model where learning content gets divided into complementary in-class and online components. The author describes the epistemological challenges in curating the blended-learning mix and discusses ways to optimise learning outcomes while minimising the effort for custom content-development of training material. Two subjects taught at the author's home institution (one in Computational Design and the other for BIM education) serve as case studies to test the flipped classroom approach and to derive feedback from students about their preferred method of delivery.
keywords BIM; Flipped-Classroom; Computational Design; Education; Online learning
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2019_007
id cf2019_007
authors Kim, Jong Bum and Bimal Balakrishnan
year 2019
title Visualize Smart Growth Development with Parametric BIM: A Case Study of Columbia Unified Development Plan
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 26
summary Smart Growth is a multifaceted urban planning approach that has embraced planning regulation reforms across the municipalities in the United States. Urban planning regulations undoubtedly have formed built environment, but their impact on sustainability is often unforeseen in the early stage of community development. This research investigates an urban modeling framework that can envision Smart Growth development with parametric modeling, Building Information Modeling (BIM), Virtual Reality (VR), and software prototyping. As a pilot test, the paper presents a case study of Downtown Columbia Unified Development Code.
keywords Smart Growth, Parametric Building Information Modeling, Immersive Visualization, Community Design/ Development
series CAAD Futures
email
last changed 2019/07/29 14:08

_id ecaadesigradi2019_114
id ecaadesigradi2019_114
authors Lee, Gyueun and Lee, Ji-hyun
year 2019
title Sustainable Design Framework for the Anthropocene - Preliminary research of integrating the urban data with building information
doi https://doi.org/10.52842/conf.ecaade.2019.2.561
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 561-568
summary In terms of the efficiency and informatization in the architecture and construction industry, the Fourth Industrial Revolution presents positive aspects of technological development, but we need to discuss the expanded concept, the Anthropocene. The era of the human-made environment having a powerful influence on the global system is called Anthropocene. Since the 1950s, many indicators representing human activity and earth system have shown the 'Great acceleration'. Currently, lots of urban data including building information, construction waste, and GHG emission ratio is indicating how much the urban area was contaminated with artifacts. So, the integrated planning and design approach are needed for sustainable design with data integration. This paper examines the GIS, LCA and BIM tools focusing on building information and environmental load. With the literature review, the computational system for sustainable design is demonstrated to integrate into one holistic framework for the Anthropocene. There were some limitations that data was simplified during the statistical processing, and the framework has limitations that must be demonstrated by actual data in the future. However, this could be an early approach to integrating geospatial and environmental analysis with the design framework. And it can be applied to another urban area for sustainable urban models for the Anthropocene
keywords Anthropocene; Sustainable Design Framework; Urban Data Analysis; GIS; LCA; BIM
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_813753 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002