CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 619

_id cf2019_034
id cf2019_034
authors Usman, Muhammad; Davide Schaumann, Brandon Haworth, Mubbasir Kapadia and Petros Faloutsos
year 2019
title Joint Parametric Modeling of Buildings and Crowds for Human-Centric Simulation and Analysis
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 256
summary Simulating groups of virtual humans (crowd simulation) affords the analysis and data-driven design of interactions between buildings and their occupants. For this to be useful in practice however, crowd simulators must be well coupled with modeling tools in a way that allows users to iteratively use simulation feedback to adjust their designs. This is a non-trivial research and engineering task as designers often use parametric exploration tools early in their design pipelines. To address this issue, we propose a platform that provides a joint parametric representation of (a) a building and the bounds of its permissible alterations, (b) a crowd that populates the environment, and (c) the activities that the crowd engages in. Based on this input, users can systematically run simulations and analyze the results in the form of data-maps, spatialized representations of human-centric analyses. The platform combines Dynamo with SteerSuite, two established tools for parametric design and crowd simulations, to create a familiar node-based workow. We systematically evaluate the approach by tuning spatial, social, and behavioral parameters to generate human-centric analyses for the design of a generic exhibition space.
keywords Human-centric analytics, crowd simulation, parametric modeling, building occupancy, multi-agent systems
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ecaadesigradi2019_153
id ecaadesigradi2019_153
authors Gomez-Zamora, Paula, Bafna, Sonit, Zimring, Craig, Do, Ellen and Romero Vega, Mario
year 2019
title Spatiotemporal Occupancy for Building Analytics
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 111-120
doi https://doi.org/10.52842/conf.ecaade.2019.2.111
summary Numerous studies on Space Syntax and Evidence-based Design explored occupancy and movements in the built environment using traditional methods for behavior mapping, such as observation and surveys. This approach, however, has majorly focused on studying such behaviors as aggregated results -totals or averages- to corroborate the idea that people's interactions are outcomes of the influence of space. The research presented in this paper focuses on capturing human occupancy with a high spatiotemporal data resolution of 1 sq.ft per second (0.1 sq.mt./s). This research adapts computer vision to obtain large occupancy datasets in a hospitalization setting for one week, providing opportunities to explore correlations among spatial configurations, architectural programs, organizational activities planned and unplanned, and time. The vision is to develop new analytics for building occupancy dynamics, with the purpose of endorsing the integration of a temporal dimension into architectural research. This study introduces the "Isovist-minute"; a metric that captures the relationship between space and occupancy, towards a point of interest, in a dynamic sequence.
keywords Spatiotemporal Occupancy; Occupancy Analytics; Occupancy Patterns; Building-Organizational Performance; Healthcare Settings
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id cf2019_017
id cf2019_017
authors Cardoso Llach, Daniel and Javier Argota Sánchez-Vaquerizo
year 2019
title An Ecology of Conflicts Using Network Analytics to Explore the Data of Building Design
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 131
summary The scale and socio-technical complexity of contemporary architectural production poses challenges to researchers and practitioners interested in their description and analysis. This paper discusses the novel use of network analysis techniques to study a dataset comprising thousands of design conflicts reported during design coordination of a large project by a group of architects using BIM software. We discuss in detail three approaches to the use of network analysis techniques on these data, showing their potential to offer topological insights about the phenomenon of contemporary architectural design and construction, which complement other forms of architectural analysis.
keywords Architecture, Network Analysis, Design Ecology, BIM, Data Visualization
series CAAD Futures
email
last changed 2019/07/29 14:08

_id cf2019_014
id cf2019_014
authors Ferrando, Cecilia; Niccolo Dalmasso, Jiawei Mai, Daniel Cardoso Llach
year 2019
title Architectural Distant Reading Using Machine Learning to Identify Typological Traits Across Multiple Buildings
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 114-127
summary This paper introduces an approach to architectural “distant reading”: the use of computational methods to analyze architectural data in order to derive spatial insights from—and explore new questions concerning—large collections of architectural work. Through a case study comprising a dataset of religious buildings, we show how we may use machine learning techniques to identify typological and functional traits from building plans. We find that spatial structure, rather than local features, is particularly effective in supporting this type of analysis. Further, we speculate on the potential of this computational method to enrich architectural design, research, and criticism by, for example, enabling new ways of thinking about architectural concepts such as typology in ways that reflect gradual variations, rather than sharp distinctions.
keywords Architectural Analytics, Machine Learning, Classification, Religious buildings, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:08

_id caadria2019_127
id caadria2019_127
authors Nam, Hyunjae
year 2019
title Programming Intelligent Architecture to be Responsive to Real-Time Data
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 273-282
doi https://doi.org/10.52842/conf.caadria.2019.2.273
summary This study examines the development of intelligent architecture capable of reading real-time data and controlling spatial configurations accordingly. In terms of responsiveness at an architectural scale, it is questionable whether an architectural system can adapt or adjust its spatial configurations to the time-based changes of social activities. The urban open data movement allows individuals to navigate or measure real-time occurrences in cities, and such data can be used to accommodate users' demands for social space. Exploiting urban open data, the design experiment focused on extracting data pertaining to real occurrences of social activities and weather conditions in a city, setting an algorithm mapping the sequence from the data to architectural behaviours, and simulating the architectural model in real time. By means of proposing a design strategy, this research contributes to cross-disciplinary approaches to developing smart buildings and cities.
keywords real-time data; urban open data; weather API; architectural responsiveness
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_610
id caadria2019_610
authors Sayah, Iman and Schnabel, Marc Aurel
year 2019
title Amplifying Citizens' Voices in Smart Cities - An Application of Social Media Sentiment Analysis in Urban Sciences
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 773-782
doi https://doi.org/10.52842/conf.caadria.2019.2.773
summary In the past decade, urban researchers have paid significant attention to the emergence of computer science and urban planning. According to the literature, social media as a pool of real-time citizen feedback can be investigated to inform smart city synergies. However, the success factors of such an approach have not been thoroughly investigated. In this study, various factors were derived from an extensive literature review to create an efficient e-participation platform. It is explained how our proposed platform 1) complies to the data protection regulations 2) uses advanced text analysis and natural language processing (NLP) tools to identify opinions and emotions 3) maintains persistent communication between citizens and city planners 4) incorporates creative visualisation techniques 5) is informative for its target audience 6) takes into consideration the socio-cultural diversity and 7) can be used as an informing tool in combination with offline methods of participation.
keywords sentiment analysis; e-participation; social media mining; big data analytics; citizen engagement
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2023_259
id ecaade2023_259
authors Sonne-Frederiksen, Povl Filip, Larsen, Niels Martin and Buthke, Jan
year 2023
title Point Cloud Segmentation for Building Reuse - Construction of digital twins in early phase building reuse projects
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 327–336
doi https://doi.org/10.52842/conf.ecaade.2023.2.327
summary Point cloud processing has come a long way in the past years. Advances in computer vision (CV) and machine learning (ML) have enabled its automated recognition and processing. However, few of those developments have made it through to the Architecture, Engineering and Construction (AEC) industry. Here, optimizing those workflows can reduce time spent on early-phase projects, which otherwise could be spent on developing innovative design solutions. Simplifying the processing of building point cloud scans makes it more accessible and therefore, usable for design, planning and decision-making. Furthermore, automated processing can also ensure that point clouds are processed consistently and accurately, reducing the potential for human error. This work is part of a larger effort to optimize early-phase design processes to promote the reuse of vacant buildings. It focuses on technical solutions to automate the reconstruction of point clouds into a digital twin as a simplified solid 3D element model. In this paper, various ML approaches, among others KPConv Thomas et al. (2019), ShapeConv Cao et al. (2021) and Mask-RCNN He et al. (2017), are compared in their ability to apply semantic as well as instance segmentation to point clouds. Further it relies on the S3DIS Armeni et al. (2017), NYU v2 Silberman et al. (2012) and Matterport Ramakrishnan et al. (2021) data sets for training. Here, the authors aim to establish a workflow that reduces the effort for users to process their point clouds and obtain object-based models. The findings of this research show that although pure point cloud-based ML models enable a greater degree of flexibility, they incur a high computational cost. We found, that using RGB-D images for classifications and segmentation simplifies the complexity of the ML model but leads to additional requirements for the data set. These can be mitigated in the initial process of capturing the building or by extracting the depth data from the point cloud.
keywords Point Clouds, Machine Learning, Segmentation, Reuse, Digital Twins
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2019_286
id caadria2019_286
authors Dobbs, Tiara
year 2019
title Face-to-Face with People in Spaces - A method to identify face-to-face interactions using an indoor positioning system.
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 643-652
doi https://doi.org/10.52842/conf.caadria.2019.2.643
summary Recent developments in indoor positioning technology means gathering personal interaction data is possible however, the process of analysing this data to determine where and when interactions occur indoors is not yet standardised.This paper proposes a method to gather and examine indoor positioning data to infer face-to-face interactions indoors. The case study looks specifically at indoor office environment however the principles shown can be applied to other indoor spaces. This paper explores a high-level technological methodology that gathers indoor positioning data from users. A formula is used to calculate if, when and where interactions occur over a floor-plan, as well as visualising these interactions to highlight high and low interaction areas. The system considers the proximity between the individuals, the angle between their forward physical orientation, and any obstructions that might divide individuals from each other. The information presented in this paper can be used as a theoretical baseline to inform future post-occupancy evaluation methods. Additionally, this paper demonstrates the merit of using indoor positioning systems to test the effectiveness of design principles in encouraging face-to-face interactions of the users.
keywords Post-occupancy evaluations; Face-to-face interac-tions; Indoor positioning system; Data driven design
series CAADRIA
email
last changed 2022/06/07 07:55

_id cf2019_047
id cf2019_047
authors Schaumann, Davide ;Samuel S. Sohn, Muhammad Usman, Brandon Haworth, Petros Faloutsos and Mubbasir Kapadia
year 2019
title Spatiotemporal Influence and Affordance Maps for Occupant Behavior Simulation
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 412-429
summary Simulating the impact that built environments produce on human behavior prior to a building’s construction and occupancy is a complex task in architectural design. Current simulation approaches provide a limited representation of how dynamic spatial, social and environmental conditions affect the behavior of autonomous virtual occupants. We address this issue by means of influence maps – spatial representations of the influence that dynamic stimuli exert on an occupant at a specific time. To support an agent’s decisionmaking, we construct affordance maps that determine possible space-occupant interactions based on the combination of normalized influence maps, weighed by occupant preferences. We demonstrate the proposed approach by simulating the diverse spatial behaviors of virtual occupants in a social setting in response to dynamic stimuli.
keywords Influence maps, Affordance maps, Spatial behavior Simulation, Building Occupancy, Multi-agent systems
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ecaadesigradi2019_645
id ecaadesigradi2019_645
authors Diniz, Nancy, Melendez, Frank, Boonyapanachoti, Woraya and Morales, Sebastian
year 2019
title Body Architectures - Real time data visualization and responsive immersive environments
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 739-746
doi https://doi.org/10.52842/conf.ecaade.2019.2.739
summary This project sets up a design framework that promotes augmenting the human body's interactions exploring methods for merging and blending the users of physical and virtual environments, through the design of wearable devices that are embedded with sensors and actuators. This allows for haptic and visual feedback through the use of data that reflects changes in the surrounding physical environment, and visualized in the immersive Virtual Reality (VR) environment. We consider the Body Architectures project to serve as mechanisms for augmenting the body in relation to the virtual architecture. These wearable devices serve to bring a hyper-awareness to our senses, as closed-loop cybernetic systems that utilize 'digitized' biometric and environmental data through the use of 3D scanning technologies and cloud point models, virtual reality visualization, sensing technologies, and actuation. The design of Body Architectures relies on hybrid design, transdisciplinary collaborations, to explore new possibilities for wearable body architectures that evolve human-machine-environment interactions, and create hyper awareness of the temporal, atmospheric qualities that make up our experience of space, as 'sensorial envelopes' (Lally 2014).
keywords Virtual Reality; Wearable Design; Physical Computing; Data Visualization; Immersive Environments; Responsive Architecture
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id cf2019_044
id cf2019_044
authors Guo, Zhe; Xiang Wang and Philip F. Yuan
year 2019
title Sensing Human Behavior in the Built Environment
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 378-388
summary This paper shows a new application of infrared photography technique in human behavior sensing situated in outdoor built environment. By building a system integrated behavior thermal-infrared images acquisition and processing, the characteristic of city pattern and human behavior related to that certain environment can be captured by the infrared camera equipped auto-control unmanned aerial vehicles (UAVs) and be displayed in a processed visualization interface. By exploring a more efficient, smart and accurate method of collecting high spatial and temporal resolution data, a situated and context-aware behavioral visualization workflow can be developed which inform the behavior related environmental literacy in different culture of the architectsandurbandesignersinordertorevealhiddenpatternsinthecities.
keywords Behavioralvisualization; Thermal-InfraredPhotography; ApplicationofAuto-controlUAVs;ImageProcessingTechnique
series CAAD Futures
email
last changed 2019/07/29 14:15

_id acadia19_664
id acadia19_664
authors Koshelyuk, Daniil; Talaei, Ardeshir; Garivani, Soroush; Markopoulou, Areti; Chronis, Angelo; Leon, David Andres; Krenmuller, Raimund
year 2019
title Alive
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 664-673
doi https://doi.org/10.52842/conf.acadia.2019.664
summary In the context of data-driven culture, built space still maintains low responsiveness and adaptability. Part of this reality lies in the low resolution of live information we have about the behavior and condition of surfaces and materials. This research addresses this issue by exploring the development of a deformation-sensing composite membrane material system following a bottom-up approach and combining various technologies toward solving related technical issues—exploring conductivity properties of graphene and maximizing utilization within an architecture-related proof-of-concept scenario and a workflow including design, fabrication, and application methodology. Introduced simulation of intended deformation helps optimize the pattern of graphene nanoplatelets (GNP) to maximize membrane sensitivity to a specific deformation type while minimizing material usage. Research explores various substrate materials and graphene incorporation methods with initial geometric exploration. Finally, research introduces data collection and machine learning techniques to train recognition of certain types of deformation (single point touch) on resistance changes. The final prototype demonstrates stable and symmetric readings of resistance in a static state and, after training, exhibits an 88% prediction accuracy of membrane shape on a labeled sample data-set through a pre-trained neural network. The proposed framework consisting of a simulation based, graphene-capturing fabrication method on stretchable surfaces, and includes initial exploration in neural network training shape detection, which combined, demonstrate an advanced approach to embedding intelligence.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id caadria2019_530
id caadria2019_530
authors Lu, Siliang, Wang, Shihan, Cochran Hameen, Erica, Shi, Jie and Zou, Yue
year 2019
title Comfort-Based Integrative HVAC System with Non-Intrusive Sensing in Office Buildings
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 785-794
doi https://doi.org/10.52842/conf.caadria.2019.1.785
summary Heating, ventilation and air-conditioning system plays a key role in shaping the built environment. The effective and efficient HVAC operations not only achieve energy savings but also create a more comfortable environment for occupant indoors. Since current HVAC systems with fixed schedules cannot guarantee the operation with high energy efficiency and provision of comfortable thermal environment for occupants, it is of great importance to develop new paradigm of HVAC system framework, especially in the open-plan office environment so that everyone could work under their preferred thermal environment. Moreover, compared to environment-related factors to thermal comfort, sensing systems for occupant-related factors such as clothing insulation, metabolic rate, skin temperature have not had standardized yet and most of sensing systems for occupant-related factors may either result in privacy issue or are too intrusive. Hence, it is necessary to develop a new non-intrusive and less private sensing framework for monitoring individual thermal comfort in real-time. Therefore, this paper proposes an integrative comfort-based personalized cooling system with the operation of the centralized systems in office buildings. The results show that such integrative and interactive HVAC system for workplaces has advantages over thermal comfort improvements and energy savings.
keywords Adaptive thermal comfort; Non-intrusive personalized cooling system; Occupant-responsive HVAC control; Intelligent workplace
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia19_654
id acadia19_654
authors Maierhofer, Mathias; Soana, Valentina; Yablonina, Maria; Erazo, Seiichi Suzuki; Körner, Axel; Knippers, Jan; Menges, Achim
year 2019
title Self-Choreographing Network
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 654-663
doi https://doi.org/10.52842/conf.acadia.2019.654
summary The aim of this research is to challenge the prevalent separation between (digital) design and (physical) operation processes of adaptive and interactive architectural systems. The linearity of these processes implies predetermined material or kinetic behaviors, limiting performances to those that are predictable and safe. This is particularly restricting with regard to compliant or flexible material systems, which exhibit significant kinetic and thus adaptive potential, but behave in ways that are difficult to fully predict in advance. In this paper we present a hybrid approach: a real-time, interactive design and operation process that enables the (material) system to be self-aware, fully utilizing and exploring its kinetic design space for adaptive purposes. The proposed approach is based on the interaction of compliant materials with embedded robotic agents, at the interface between digital and physical. This is demonstrated in the form of a room-scale spatial architectural robot, comprising networks of linear elastic components augmented with robotic joints capable of sensing and two axis actuation. The system features both a physical instance and a corresponding digital twin that continuously augments physical performances based on simulation feedback informed by sensor data from the robotic joints. With this setup, spatial adaptation and reconfiguration can be designed in real-time, based on an openended and cyber-physical negotiation between numerical, robotic, material, and human behaviors, in the context of a physically deployed structure and its occupants.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id caadria2019_365
id caadria2019_365
authors Natephra, Worawan and Motamedi, Ali
year 2019
title BIM-based Live Sensor Data Visualization using Virtual Reality for Monitoring Indoor Conditions
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 191-200
doi https://doi.org/10.52842/conf.caadria.2019.2.191
summary This paper proposes a method for an automated live sensor data visualization of building indoor environment conditions using a VR system. The proposed method is based on the integration of environmental sensors, BIM, and VR technology. Such integration provides an opportunity to utilize an immersive and live sensing technology for improving data visualization. In our case study, the environmental data, such as indoor air temperature, humidity, and light level are captured by sensors connected to Arduino microcontrollers. The data output of sensors obtained from Arduino units are stored onto the BIM model and transferred to the developed VR system. The developed system simultaneously visualizes numerical values of sensors' reading together with the virtual model of the building in a VR headset. The result of the case study showed that the developed system is capable of visualizing various indoor environmental information of the building with the VR technology. It can provide users with useful information to help monitoring indoor thermal comfort conditions of the building in real-time, while performing the walkthrough in the virtual environment.
keywords Building Information Modeling (BIM); environmental sensor; thermal comfort; Virtual Reality (VR); Arduino; IoT
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia21_76
id acadia21_76
authors Smith, Rebecca
year 2021
title Passive Listening and Evidence Collection
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 76-81.
doi https://doi.org/10.52842/conf.acadia.2021.076
summary In this paper, I present the commercial, urban-scale gunshot detection system ShotSpotter in contrast with a range of ecological sensing examples which monitor animal vocalizations. Gunshot detection sensors are used to alert law enforcement that a gunshot has occurred and to collect evidence. They are intertwined with processes of criminalization, in which the individual, rather than the collective, is targeted for punishment. Ecological sensors are used as a “passive” practice of information gathering which seeks to understand the health of a given ecosystem through monitoring population demographics, and to document the collective harms of anthropogenic change (Stowell and Sueur 2020). In both examples, the ability of sensing infrastructures to “join up and speed up” (Gabrys 2019, 1) is increasing with the use of machine learning to identify patterns and objects: a new form of expertise through which the differential agendas of these systems are implemented and made visible. I trace the differential agendas of these systems as they manifest through varied components: the spatial distribution of hardware in the existing urban environment and / or landscape; the software and other informational processes that organize and translate the data; the visualization of acoustical sensing data; the commercial factors surrounding the production of material components; and the apps, platforms, and other forms of media through which information is made available to different stakeholders. I take an interpretive and qualitative approach to the analysis of these systems as cultural artifacts (Winner 1980), to demonstrate how the political and social stakes of the technology are embedded throughout them.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cf2019_024
id cf2019_024
authors Tuncer, Bige; Francisco Benita, and Francesco Scandola
year 2019
title Data-driven Thinking for Urban Spaces, Immediate Environment, and Body Responses
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 172-184
summary This paper presents a methodology to implement data-driven thinking in the context of urban design. We conducted a 7-day workshop with international students from landscape design and architecture backgrounds, with the objective of designing an experimental setup to measure real-time urban spaces, immediate environment, and body responses. The goal of the workshop was to expose participants to data-driven thinking through experimental design, multi-sensor data collection, data analysis, visualization, and insight generation. We made use of mixed methods, including validated pre- and postquestionnaires, and content analyses of the visualizations and results generated by the participants. The evidence suggest that the workshop resulted in an increase in participants’ knowledge about measuring, visualizing and understanding data of the surrounding built environment.
keywords Data-driven Thinking; Urban sensing; Body responses; Pedagogy; Comfort; Big Data; Design Support
series CAAD Futures
email
last changed 2019/07/29 14:15

_id cf2019_026
id cf2019_026
authors Wibranek, Bastian; Oliver Tessmann, Boris Belousov and Alymbek Sadybakasov
year 2019
title Interactive Assemblies: Man-Machine Collaborations for a Material-Based Modeling Environment
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 186
summary This paper presents our concept, named Interactive Assemblies, which facilitates interaction between man and machine in construction process in which specially designed building components are used as a design interface. In our setup, users physically manipulate and reposition building components. The components, digitized by means of machine sensing, become a part of the design interface. Each of the three experiments included in this paper examines a different robotic sensor approach that helps transfer of data, including the position and shape of each component, back into the digital model. We investigate combinations of material systems (material computation, selfcorrecting assembly) and matching sensors. The accumulated data serves as input for design algorithms and generates robot tool paths for collaborative fabrication. Using real-world geometry to move from virtual design tools directly to physical interaction and back, our research proposes enhanced participation of human actors in robotic construction processes in architecture.
keywords Man-Machine Collaboration, Robotics, Machine Sensing, As-Built Modelling, Interactive Assemblies
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ijac201917402
id ijac201917402
authors Worre Foged, Isak ; and Anke Pasold
year 2019
title Development of a hybrid behavioural and thermal adaptive building envelope
source International Journal of Architectural Computing vol. 17 - no. 4, 323-335
summary This study focuses on the design of behavioural mechanisms for a hybrid informed adaptive envelope. Based on a full-scale experimental demonstrator, including a material responsive and a sensor–processing–actuation adaptive system, quantitative and qualitative methods are applied to identify, describe and study behavioural modes of the adaptive envelope. Through sensor data values and observations, the study finds that the adaptive response patterns are best based on subjective, human-mapped sensations, rather than prescribed environmental comfort, numeric-based sensor values. Those adaptive response patterns should account for change in tempi of the environment, occupier and envelope to establish advanced cause and effect relations, beyond generic thermal comfort performance metrics.
keywords Adaptive envelope, behavioural logics, material composites, environmental sensing, hybrid systems
series journal
email
last changed 2020/11/02 13:34

_id caadria2019_551
id caadria2019_551
authors Zheliazkova, Maia, Kummamuru, Bhargava Ram and Paoletti, Ingrid
year 2019
title A Computational Workflow for Understanding Acoustic Performance in Existing Buildings
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 443-452
doi https://doi.org/10.52842/conf.caadria.2019.1.443
summary Designing the acoustic conditions of the built environment we live in is fundamental to improving our daily life. However, architects and designers still know very little about the way buildings perform in terms of sound. In order to facilitate the comprehension, and therefore the design of acoustic solutions, it is here proposed a methodology for the investigation of existing architectural spaces. The paper discusses a low-cost setup and computational methodology to create an advanced mapping of spaces with the goal of supporting custom design solutions. A case study is used to apply and compare the sensitivity of the proposed approach with professional equipment. The results show that portable systems can be a viable way to understand how our spaces perform in terms of sound, and encourage the diffusion of performance-driven acoustics design.
keywords Performance-based design; User-space interaction; Architectural acoustics; Sound measurements and sensing
series CAADRIA
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_844364 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002