CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 603

_id ecaadesigradi2019_456
id ecaadesigradi2019_456
authors Pereira, In?s, Belém, Catarina and Leit?o, António
year 2019
title Optimizing Exhibition Spaces - A Multi-Objective Approach
doi https://doi.org/10.52842/conf.ecaade.2019.3.053
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 53-62
summary Nowadays, there is a widespread awareness towards environmental issues. This is already visible in architecture by the increasing number of analysis tools that evaluate different performance criteria. However, the application of these tools is usually restricted to the final design stages, conditioning the implementation of design changes. Performance-Based Design (PBD) is an approach that addresses this limitation. Through PBD, architects integrate analysis tools since early design stages to make informed decisions regarding the performance of their designs. Since the success of PBD highly depends on the number of evaluations that can be performed, these approaches usually end up benefiting from Parametric Models (PMs), which facilitate the generation of a wide range of design variations, by simply changing the values of the parameters. Furthermore, in order to more efficiently achieve a PBD approach, architects can take advantage of the combination between PMs, analysis tools, and optimization processes. In this paper, we explore this combination to optimize an exhibition space regarding its daylight performance and the material cost of the new elements intended for that space.
keywords Environmental Design; Algorithmic Design and Analysis; Performance-Based Design; Multi-Objective Optimization; Daylight Optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id acadia20_148p
id acadia20_148p
authors Vansice, Kyle; Attraya, Rahul; Culligan, Ryan; Johnson, Benton; Sondergaard, Asbjorn; Peters, Nate
year 2020
title Stereoform Slab
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 148-153
summary Stereoform Slab is both a pavilion and a prototype - an exhibition for the 2019 Chicago Architectural Biennial. It is an experiment in how digital form-finding and robotics can be leveraged to rethink the future of concrete construction. Stereoform Slab examines the role of one of the most ubiquitous horizontal elements in the city - the concrete slab, also the most common element in contemporary construction. Using smarter forming systems - in this case, a ruled-surface-derived, robotic hotwire process - the Stereoform Slab prototype proved that the amount of material used and waste generated could be minimized without increasing construction complexity, by about 20% over a conventional system. Stereoform also extends the conventional concrete span (column spacing), specifically in Chicago, from 30’ to 45’. In developing a concrete forming system that affords added flexibility without increasing construction costs, it is possible to reduce embodied carbon significantly. The method allows reducing carbon in buildings that aren’t typically the subject of advanced architectural design or rigorous optimization – conventional buildings that compose a majority of our built environment, and its respective contributions to global carbon emissions. Stereoform is the result of a multi-objective design optimization process. Optimal materialization, according to the compressive/tensile physics present in beam design, was balanced against the fabrication constraints of a singularly ruled-surface, which enables fast form-making using robotic hotwire cutting. SOM and Autodesk collaborated to mirror the approach developed to optimize Stereoform slab as a pavilion, to the building scale, using the multi-objective optimization platform Refinery. Project Refinery allowed the team to create a hyper-responsive system design that could adapt to any number of varying programmatic conditions and loading patterns. The development of this approach is a crucial step in making optimization techniques flexible enough to balance the number of competing parameters in the design process available and accessible to a broader design audience within architecture and engineering.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id ecaadesigradi2019_265
id ecaadesigradi2019_265
authors Vegas, Gonzalo, Bernal, Marcelo and Calvo, Francisco
year 2019
title Multi-Criteria Agent Based Systems - Generation of circulations through local decisions
doi https://doi.org/10.52842/conf.ecaade.2019.2.121
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 121-130
summary This study explores to what extent Agent Based Systems (ABS) can handle multi-criteria optimization problems. The implementation of ABS in the field of optimization has limitations to address multiple criteria in a continuous generation process due to ABS usually merge the perceived information in a single response. To address this limitation, we increase the responsiveness of the systems through a multiple production approach. This approach breaks down the problem into two parts: the configuration through the interactions of the agents, and the overall performance through their local decisions. The method is tested in a case study of the network circulations of a park, optimizing the slope, views and sun. Performance and differentiation capabilities are evaluated in populations generated in two different scenarios. Data analysis methods verify the effectiveness of the algorithm and quantify the influence of each parameter on the final results.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_504
id ecaadesigradi2019_504
authors Karagianni, Anna, Geropanta, Vasiliki and Parthenios, Panagiotis
year 2019
title Exploring the ICT Potential to Maximize User - Built Space Interaction in Monumental Spaces - The case of the municipal agora in Chania, Crete
doi https://doi.org/10.52842/conf.ecaade.2019.2.603
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 603-610
summary During the last two decades, the introduction of digital multimedia into the museums, monuments and exhibition spaces describe a new open and flexible institution, which is attentive to the needs of its visitors. In fact, many different opinions, preferences and personalized agendas acquire now a symbiotic relationship with the strict archeological site contexts with ICT. This relationship is established the moment that the actual space comes into terms with the visitors' needs and without compromising spatially, it reveals all the different movement alternatives that could satisfy the visitor. In fact, ICTs create alternative experiences through the juxtaposition of a digital layer on physical space. Drawing on this objective, this paper studies the relation between user and monument by enhancing their interaction in the Municipal Market of Chania, in Crete. The objective of the paper is to examine how state-of-the-art IoT systems can be seamlessly incorporated into the smart cultural heritage strategy of the suggested place. The macroscope is to explore alternatives strategies to enhance sustainable tourism in Chania.
keywords ICT; Digital Heritage; Smart Tourism; IoT Systems; Hybrid Space;
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id cf2019_034
id cf2019_034
authors Usman, Muhammad; Davide Schaumann, Brandon Haworth, Mubbasir Kapadia and Petros Faloutsos
year 2019
title Joint Parametric Modeling of Buildings and Crowds for Human-Centric Simulation and Analysis
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 256
summary Simulating groups of virtual humans (crowd simulation) affords the analysis and data-driven design of interactions between buildings and their occupants. For this to be useful in practice however, crowd simulators must be well coupled with modeling tools in a way that allows users to iteratively use simulation feedback to adjust their designs. This is a non-trivial research and engineering task as designers often use parametric exploration tools early in their design pipelines. To address this issue, we propose a platform that provides a joint parametric representation of (a) a building and the bounds of its permissible alterations, (b) a crowd that populates the environment, and (c) the activities that the crowd engages in. Based on this input, users can systematically run simulations and analyze the results in the form of data-maps, spatialized representations of human-centric analyses. The platform combines Dynamo with SteerSuite, two established tools for parametric design and crowd simulations, to create a familiar node-based workow. We systematically evaluate the approach by tuning spatial, social, and behavioral parameters to generate human-centric analyses for the design of a generic exhibition space.
keywords Human-centric analytics, crowd simulation, parametric modeling, building occupancy, multi-agent systems
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ecaadesigradi2019_290
id ecaadesigradi2019_290
authors Assem, Ayman, Abdelmohsen, Sherif and Ezzeldin, Mohamed
year 2019
title A Fuzzy-Based Approach for Evaluating Existing Spatial Layout Configurations
doi https://doi.org/10.52842/conf.ecaade.2019.2.035
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
summary This paper proposes a fuzzy-based approach for the automated evaluation of spatial layout configurations. Our objective is to evaluate soft and interdependent design qualities (such as connectedness, enclosure, spaciousness, continuity, adjacency, etc.), to satisfy multiple and mutually inclusive criteria, and to account for all potential and logical solutions without discarding preferable, likely or even less likely possible solutions. Using fuzzyTECH, a fuzzy logic software development tool, we devise all possible spatial relation inputs affecting physical and non-physical outputs for a given space using descriptive rule blocks. We implement this fuzzy logic system on an existing residential space to evaluate different layout alternatives. We define all linguistic input variables, output variables, and fuzzy sets, and present space-space relations using membership functions. We use the resulting database of fuzzy agents to evaluate the design of the existing residential spaces.
keywords Fuzzy logic; Space layout planning; Heuristic methods
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_159
id ecaadesigradi2019_159
authors Lopes, Jo?o, Paio, Alexandra and Beir?o, José Nuno
year 2019
title The Morphology of Public Open Spaces as Visual Opportunity Fields - A space syntax approach based on Revelation and VGA maps customization with SalaScript
doi https://doi.org/10.52842/conf.ecaade.2019.3.277
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 277-286
summary This paper explores the visual dynamics of the morphology of public open spaces. Resorting to space syntax concepts, visual graph analysis (VGA), and the innovative use of its standard tool Depthmap, a set of case studies is analysed under the perspective of visual opportunity fields and building upon the established concept and metrics of Revelation. A series of related novel measures and visualizations are developed, which are only possible, in Depthmap environment, by the advanced use of its scripting language: SalaScript. Despite Depthmap being the standard tool among the space syntax community, there is a lack of references to the explicit use of SalaScript. One major objective of this paper is to illustrate, and document, its possibilities to a broad audience by extending, customizing and introducing a more interactive approach in handling VGA maps. We present SalaScript functionalities and its use in the development of visual analysis scripts that allow the study of revelation, which we then apply to a set of real public open spaces case studies.
keywords Visibility graph analysis; Space syntax; Public open space; Depthmap SalaScript; Revelation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id cf2019_024
id cf2019_024
authors Tuncer, Bige; Francisco Benita, and Francesco Scandola
year 2019
title Data-driven Thinking for Urban Spaces, Immediate Environment, and Body Responses
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 172-184
summary This paper presents a methodology to implement data-driven thinking in the context of urban design. We conducted a 7-day workshop with international students from landscape design and architecture backgrounds, with the objective of designing an experimental setup to measure real-time urban spaces, immediate environment, and body responses. The goal of the workshop was to expose participants to data-driven thinking through experimental design, multi-sensor data collection, data analysis, visualization, and insight generation. We made use of mixed methods, including validated pre- and postquestionnaires, and content analyses of the visualizations and results generated by the participants. The evidence suggest that the workshop resulted in an increase in participants’ knowledge about measuring, visualizing and understanding data of the surrounding built environment.
keywords Data-driven Thinking; Urban sensing; Body responses; Pedagogy; Comfort; Big Data; Design Support
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ijac201917204
id ijac201917204
authors Karaoglan Füsun Cemre and Sema Alaçam
year 2019
title Design of a post-disaster shelter through soft computing
source International Journal of Architectural Computing vol. 17 - no. 2, 185-205
summary Temporary shelters become a more critical subject of architectural design as the increasing number of natural disasters taking place each year result in a larger number of people in need of urgent sheltering. Therefore, this project focuses on designing a temporary living space that can respond to the needs of different post-disaster scenarios and form a modular system through differentiation of units. When designing temporary shelters, it is a necessity to deal with the provision of materials, low-cost production and the time limit in the emergency as well as the needs of the users and the experiential quality of the space. Although computational approaches might lead to much more efficient and resilient design solutions, they have been utilized in very few examples. For that reason and due to their suitability to work with architectural design problems, soft computing methods shape the core of the methodology of the study. Initially, a digital model is generated through a set of rules that define a growth algorithm. Then, Multi-Objective Genetic Algorithms alter this growth algorithm while evaluating different configurations through the objective functions constructed within a Fuzzy Neural Tree. The struggle to represent design goals in the form of Fuzzy Neural Tree holds potential for the further use of it for architectural design problems centred on resilience. Resilience in this context is defined as a measure of how agile a design is when dealing with a major sheltering need in a post-disaster environment. Different from the previous studies, this article aims to focus on the design of a temporary shelter that can respond to different user types and disaster scenarios through mass customization, using Fuzzy Neural Tree as a novel approach. While serving as a temporary space, the design outcomes are expected to create a more neighbourhood-like pattern with a stronger sense of community for the users compared to the previous examples.
keywords Humanitarian design, emergency architecture, computational design, Fuzzy Neural Tree, Multi-Objective Genetic Algorithms
series journal
email
last changed 2019/08/07 14:04

_id caadria2019_657
id caadria2019_657
authors Chen, Zhewen, Zhang, Liming and Yuan, Philip F.
year 2019
title Innovative Design Approach to Optimized Performance on Large-Scale Robotic 3D-Printed Spatial Structure
doi https://doi.org/10.52842/conf.caadria.2019.2.451
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 451-460
summary This paper presents an innovative approach on designing large-scale spatial structure with automated robotic 3D-printing. The incipient design approach mainly focused on optimizing structural efficiency at an early design stage by transform the object into a discrete system, and the elements in this system contains unique structural parameters that corresponding to its topology results of stiffness distribution. Back in 2017, the design team already implemented this concept into an experimental project of Cloud Pavilion in Shanghai, China, and the 3D-printed spatial structure was partitioned into five zones represent different level of structure stiffness and filled with five kinds of unit toolpath accordingly. Through further research, an upgrade version, the project of Cloud Pavilion 2.0 is underway and will be completed in January 2019. A detailed description on innovative printing toolpath design in this project is conducted in this paper and explains how the toolpath shape effects its overall structural stiffness. This paper contributes knowledge on integrated design in the field of robotic 3D-printing and provides an alternative approach on robotic toolpath design combines with the optimized topological results.
keywords 3D-Printing; Robotic Fabrication; Structural Optimization; Discrete System; Toolpath Design
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_177
id ecaadesigradi2019_177
authors Ostrowska-Wawryniuk, Karolina
year 2019
title BIM-Aided Prefabrication for Minimum Waste DIY Timber Houses
doi https://doi.org/10.52842/conf.ecaade.2019.1.251
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 251-258
summary The continuous housing shortage demands efficient ways of design and construction. In the context of rising construction standards and shrinking manpower, one of the possible answers to the problem is prefabrication oriented towards do-it-yourself (DIY) construction methods, which could contribute to the low and middle income housing supply in the market. The article covers the process of developing an experimental tool for aiding single-family housing design with the use of small-element solid timber prefabrication, suitable for DIY assembly. The presented tool uses the potential of BIM technology adapting a traditionally-designed house to the needs of prefabrication and optimizing it in terms of waste generated in the assembly process. The presented experiment was realized in the Autodesk Revit environment and incorporates custom generative scripts developed in Dynamo-for-Revit. The prototype analyzed an input model and converted it into a prefabricated alternative based on the user- and technology-specified boundary conditions. The prototype was tested on the example design of a two-story single-family house. The results compare the automated optimized model conversion with manual adaptation approach. The implemented algorithm allowed for reducing the construction waste by more than 50%.
keywords do-it-yourself construction; do-it-yourself house; generative BIM; BIM-aided prefabrication; small-panel timber prefabrication; self-help housing
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id cf2019_012
id cf2019_012
authors Su, Zhouzhou
year 2019
title Optimizing Spatial Adjacency in Hospital Master Planning
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 101
summary Hospitals are one of the most complex building types. Each is comprised of a wide range of service areas and functional spaces. Spatial relationships comprise one of the most critical design criteria, to be considered early-on in the master planning stage. Proper adjacency contributes to shorter travel distances, better wayfinding, improved patient care, higher satisfaction, and reduced overall cost. However, there is a lack of research on the automatic generation of design solutions that can be applied to real-world hospital master planning projects. Moreover, given the complexity of hospital design, an optimization tool is needed that is capable of evaluating both machine- and human-generated solutions. This study proposes a rating system for evaluating existing plans and proposed designs in hospital master planning, and explores optimal design solutions through rapid computational simulations. The first stage of this work presents interviews with senior professionals in the industry to explore best practices regarding spatial relationships in hospital planning. The second stage describes an automatic analysis tool for ranking the design options generated by healthcare planners and examining optimal design solutions that feature the best spatial adjacencies. This tool was employed in a recent master planning project with over fifty programming spaces, in order to test its validity.
keywords Optimization, Spatial Adjacency, Hospital Master Planning
series CAAD Futures
email
last changed 2019/07/29 14:08

_id caadria2021_445
id caadria2021_445
authors Noel, Vernelle A. A., Nikookar, Niloofar, Pye, Jamieson, Tran, Phuong 'Karen' and Laudeman, Sara
year 2021
title The Infinite Line Active Bending Pavilion: Culture,Craft and Computation
doi https://doi.org/10.52842/conf.caadria.2021.1.351
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 351-360
summary Active bending projects today employ highly specialized, complex computer software and machines for design, simulation, and materialization. At times, these projects lack a sensitivity to cultures limited in high-tech infrastructures but rich in low-tech knowledges. Situated Computations is an approach to computational design that grounds it in the social world by acknowledging historical, cultural, and material contexts of design and making, as well as the social and political structures that drive them. In this article, we ask, how can a Situated Computations approach to contemporary active bending broaden the design space and uplift low-tech cultural practices? To answer this question, we design and build "The Infinite Line"- an active bending pavilion that draws on the history, material practices, and knowledges in design in the Trinidad Carnival - for the 2019 International Association for Shell and Spatial Structures (IASS) exhibition in Barcelona, Spain. We conclude that Situated Computations provide an opportunity to integrate local knowledges, histories, design practices, and material behaviors as drivers in active bending approaches, so that structure, material practices, and cultural settings are considered concurrently.
keywords Situated Computations; craft; wire-bending; active bending structures; Trinidad Carnival; dancing sculptures
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_369
id ecaadesigradi2019_369
authors Contreras, Camilo Hernán
year 2019
title Surfaces Plot - A data visualization system to support design space exploration
doi https://doi.org/10.52842/conf.ecaade.2019.2.145
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 145-152
summary The notion of design spaces (DS) can be understood as the potential of a parametric model, it is basically the number of possible combinations for its input parameters. When combining tools that produce these alternatives automatically with different simulation softwares, the concept of parametric analysis (PA) emerges. This implies a simultaneous evaluation of the alternatives as they are constructed by the parametric model, producing large amounts of information. This article describes a sectional approach to the management of this information and a visualization technique to represent it looking for correlations between the input parameters and their performance. Correlations that are fundamental to making decisions with confidence when design problems challenge traditional methods of decision-making based on heuristics and design expertise.
keywords Design Space ; Performance-Based Design; Parametric Analysis; Generative Design; Data Visualization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id cf2019_038
id cf2019_038
authors El-Dabaa, Rana and Sherif Abdelmohsen
year 2019
title HMTM: Hygromorphic-Thermobimetal Composites as a Novel Approach to Enhance Passive Actuation of Adaptive Façades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 290-300
summary Typical adaptive facades rely on mechanical actuators that respond to the outdoor climate and regulate its effect on indoor spaces. With the emergence of ubiquitous computing, several studies have independently utilized the latent properties of programmable materials, such as the hygroscopic properties of wood and the difference in expansion coefficient of metals, to passively program material response. Motion stimuli vary for each material however, involving changes in humidity and temperature fluctuation for wood and metals respectively. This paper introduces Hygromorphic-Thermobimetal (HMTM), as a low-tech low-cost passive programmable composite. A series of physical experiments are conducted to deduce design parameters that induce specific actuation mechanisms based on the stimulation of both hygroscopic properties in wood and metal expansion through temperature variation. This allows for an extended implementation of the hygroscopic properties of wood and its actuation configurations in hot arid climates, where variation in temperature, rather than humidity, is more dominant.
keywords Hygroscopic properties of wood, Passive actuation, Thermobimetals, Programmable materials, Adaptive façades
series CAAD Futures
email
last changed 2019/07/29 14:15

_id caadria2019_398
id caadria2019_398
authors Hannouch, Adam
year 2019
title Acoustic Simulation and Conditioning in Vaulted Structures - Faceted Stereotomic Strategies for Multi-listener Spaces
doi https://doi.org/10.52842/conf.caadria.2019.1.403
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 403-412
summary This paper examines faceted tessellations in an acoustic vault ceiling typology for the enhancement of human speech comfort in multi-listener environments. Geometric modelling explores simulated results for various tessellation arrangements within the overall segmentation of a global ceiling geometry. Where pattern-based design for acoustic surfaces often overlooks the optimisation of vault typologies, the tests demonstrated in this research seek a trade-off between acoustic properties and faceted detailing. This involves the performance-based design of micro joint topologies and ruled-surface geometries, and a macro-analysis of the vaulted surface for acoustic studies embedded into this workflow, using Pachyderm software.
keywords Architectural Acoustics; Mutli-listener Environments; Simulation; Faceted Patterns; Vaulted Design
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2019_671
id caadria2019_671
authors Mun, Kristine, Clemenson, Dane and Bogosian, Biayna
year 2019
title The Well Tempered Environment of Experience - (Neuro)Scientific Methods for Data Collection, Analysis & Visualization
doi https://doi.org/10.52842/conf.caadria.2019.1.573
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 573-582
summary In our ever increasing media(ted) world, the robustness of digital communication networked environment is transforming how we relate to our environment. With the rise of the Internet of Things (IOTs) and other ubiquitous mobile communication devices connecting our bodies to our environments, our spaces are requiring a recalibration of the 'well tempered environment'. As technological devices are becoming seamlessly fused with our everyday lifestyles, habits and spaces, articulating experience is one of the most important topics to discuss in human-centered approach to design. This paper presents the initial methods for a data-driven process to enhance human experience as the central motivation. Combining knowledge from neuroscience and experimenting with embodied medias such as Virtual and Augmented Reality (+ MR) , the inquiries into the human dimension is explored in novel ways. The aim is to show how data-driven experiments could be used to assist designers find better performative solutions and that new collaborations between scientist and designers are on the rise as data moves fluidly between bodies and spaces like air in our 21st century.
keywords Experience Design; Human-Computer-Interface; Emotion; Neuroscience; VR, AR & Mixed Reality, Human Centered Design, Data-Driven Design; Interactivity
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_307
id caadria2019_307
authors Nguyen, Binh Vinh Duc, Peng, Chengzhi and Wang, Tsung-Hsien
year 2019
title KOALA - Developing a generative house design system with agent-based modelling of social spatial processes
doi https://doi.org/10.52842/conf.caadria.2019.1.235
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 235-244
summary The paper presents the development of an agent-based approach to modelling the interaction of human emotion and behaviour with built spaces. The study addresses how human behaviour and social relation can be represented and modelled to interact with a virtual built environment composed in parametric architectural geometry. KOALA, a prototype of agent-based modelling of social spatial dynamics at the core of a parametric architectural design environment is proposed. In building KOALA's system architecture, we adapted the PECS (Physical, Emotional, Cognitive, Social) reference model of human behaviour (Schmidt 2002) and introduced the concept of Social Spatial Comfort as a measurement of three key factors influencing human spatial experiences. KOALA was evaluated by a comparative modelling of two contrasting Vietnamese dwellings known to us. As expected, KOALA returns very different temporal characteristics of spatial modifications of the two dwellings over a simulated timeframe of one year. We discuss the lessons learned and further research required.
keywords Parametricism; generative house design system; architectural parametric geometry; human behaviour; social-spatial dynamics
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2020_138
id ecaade2020_138
authors Patel, Sayjel Vijay, Tchakerian, Raffi, Lemos Morais, Renata, Zhang, Jie and Cropper, Simon
year 2020
title The Emoting City - Designing feeling and artificial empathy in mediated environments
doi https://doi.org/10.52842/conf.ecaade.2020.2.261
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 261-270
summary This paper presents a theoretical blueprint for implementing artificial empathy into the built environment. Transdisciplinary design principles have oriented the creation of a new model for autonomous environments integrating psychology, architecture, digital media, affective computing and interactive UX design. 'The Emoting City', an interactive installation presented at the 2019 Shenzhen Bi-City Biennale of Urbanism/Architecture, is presented as a first step to explore how to engage AI-driven sensing by integrating human perception, cognition and behaviour in a real-world scenario. The approach described encompasses two main elements: embedded cyberception and responsive surfaces. Its human-AI interface enables new modes of blended interaction that are conducive to self-empathy and insight. It brings forth a new proposition for the development of sensing systems that go beyond social robotics into the field of artificial empathy. The installation innovates in the design of seamless affective computing that combines 'alloplastic' and 'autoplastic' architectures. We believe that our research signals the emergence of a potential revolution in responsive environments, offering a glimpse into the possibility of designing intelligent spaces with the ability to sense, inform and respond to human emotional states in ways that promote personal, cultural and social evolution.
keywords Artificial Intelligence; Responsive Architecture; Affective Computation; Human-AI Interfaces; Artificial Empathy
series eCAADe
email
last changed 2022/06/07 07:59

_id lasg_whitepapers_2019_291
id lasg_whitepapers_2019_291
authors Sabin, Jenny
year 2019
title Lumen
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.291 - 318
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for [Lumen], winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, [Lumen] employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_974019 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002