CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 449

_id ecaadesigradi2019_024
id ecaadesigradi2019_024
authors Wit, Andrew John and Ng, Rashida
year 2019
title cloudMAGNET - A prototype for climatically active light-weight skins
doi https://doi.org/10.52842/conf.ecaade.2019.2.627
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 627-636
summary This paper describes a potential for the integration of micro-encapsulated phase change material (mircoPCM) into lightweight skins as a means of regulating internal climatic conditions of volumetric objects. Viewed through the lens of the recently completed series of quarter-scale cloudMAGNET prototypes tested in the cloud forests of Monteverde, Costa Rica, this research utilized a wound, flexible carbon fiber framework and a lightweight fabric skin coated with varying densities of microPCM. The prototypes were monitored using real-time collection of climate data throughout the testing. In this paper we will demonstrate how climatic variables such as temperature, humidity, and pressure can be passively manipulated by varying the form and energy storage properties of materials without the use of active mechanical systems. Produced to bring awareness to the rising cloud levels within the Monteverde cloud forest, this research is intended to explore the fundamental relationships of material, energy and form. Beyond these objectives, the paper will also illustrate how these methods can be more broadly applied to the development of thermal-regulating lightweight tensile structures. Such innovations could be utilized as a method for the reimagining the architectural design and production processes allowing for the emergence of new typologies of environmentally self-mediating architecture.
keywords material performance; phase change material; carbon fiber reinforced polymers; computation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_641
id ecaadesigradi2019_641
authors Dunn, Kate, Haeusler, M. Hank, Zavoleas, Yannis, Bishop, Mel, Dafforn, Katherine, Sedano, Francisco, Yu, Daniel and Schaefer, Nina
year 2019
title Recycled Sustainable 3D Printing Materials for Marine Environments
doi https://doi.org/10.52842/conf.ecaade.2019.2.583
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 583-592
summary The paper discusses the design and testing of sustainable recycled materials for large scale 3D printed construction in a marine context. This research is part of a 3-phase project involving a multidisciplinary team of designers, architects, material specialists and marine ecologists. The Bio Shelters Project uses an innovative approach to designing and fabricating marine bio-shelters that ecologically enhance seawalls, by promoting native biodiversity and providing seawater filtration, carbon sequestration and fisheries productivity. The design of the 3D print structure is a data-driven approach that incorporates ecological data to optimise the form for growth and survivorship of marine species under the environmental conditions of the installation site as well as being an integral part of the design project and the site.
keywords 3D printing; material research; sustainability; marine biology
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_624
id caadria2019_624
authors Gupta, Sachin Sean, Jayashankar, Dhileep Kumar, Sanandiya, Naresh D, Fernandez, Javier G. and Tracy, Kenneth
year 2019
title Prototyping of Chitosan-Based Shape-Changing Structures
doi https://doi.org/10.52842/conf.caadria.2019.2.441
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 441-450
summary In the built environment, the typical means of achieving responsive changes in the physical features of a structure is through energy-intensive actuation mechanisms that contradict the intended goal of energy-efficient performance. Nature offers several alternative energy-free examples of achieving large-scale shape change through passive actuation mechanisms, such as the intrinsic response of water-absorbing (hygroscopic) materials to humidity fluctuations. We utilize this principle of passive actuation in the context of chitosan biopolymer, a material demonstrating a combination of mechanical strength and hygroscopic potential that enables it to serve for both load-bearing and actuation purposes. By inserting biocomposite films of chitosan as dynamic tensile members into a space truss, a structural system is constructed whose variable structural performance is manipulated and expressed as a large-scale, programmable, and fast-acting shape change. We present a method for rationalizing this responsive structural system as an assembly using a combination of materials engineering and digital design and fabrication. As a proof-of-concept, a two-meter-long fiber-reinforced cantilevering truss prototype was designed and fabricated. The truss transforms in minutes from one shape that shelters the interior from rain to another shape that acts as an air foil to increase ventilation.
keywords Passive Actuation; Chitosan; Structural Assembly; Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_305
id ecaadesigradi2019_305
authors Kabošová, Lenka, Worre Foged, Isak, Kme, Stanislav and Katunský, Dušan
year 2019
title Building envelope adapting from and to the wind flow
doi https://doi.org/10.52842/conf.ecaade.2019.2.131
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 131-138
summary The paper presents research for wind-responsive architecture. The main objective is the digital design methodology incorporating the dynamic, fluctuating wind flow into the shape-generating process of architectural envelopes. These computational studies are advanced and informed through physical prototyping models, allowing a hybrid method approach. The negative impacts of the wind at the building scale (wind loads), as well as urban scale (wind discomfort), can be avoided and even transformed into an advantage by incorporating the local wind conditions to the process of creating architectural envelopes with adaptive structures. The paper proposes a tensegrity-membrane system which, when exposed to the dynamic wind flow, enables a local passive shape adaptation. Thus, the action of the wind pressure transforms the shape of the building envelope to an unsmoothed, dimpled surface. As a consequence, the aerodynamic properties of the building are modified, which contributes to reducing wind suction and drag force. Moreover, the slight shape change materializes and articulates the immaterial wind phenomena. For a better understanding of the dynamic geometric properties, one unit of the wind-responsive envelope is tested through simulations, and through physical prototypes. The idea and material-geometric studies are subsequently applied in a specific case study, including a designed building envelope in an industrial silo cluster in Stockholm.
keywords adaptive envelope; tensegrity; wind flow; digital designing; shape-change
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id cf2019_045
id cf2019_045
authors Rahmani, Ayad and Mona Ghandi
year 2019
title Morphogenesis: Masonry, Social Justice, and Evolutionary Thinking
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 389-398
summary This paper is the product of work generated in an undergraduate design studio, looking at masonry as a way to tackle the question of culture and the environment. Might masonry be so assembled as to address changes in human and non-human dynamics? The material has been largely used as a veneer to turn an otherwise colorless building into a spectacle of artistic and economic worth. Might we be able to change that, and see in it the capacity for adaptation, accommodating shifts in climate but also taste and seasonal function? To answer these questions, the studio relied, among other methods, on computational design, digital tools whose virtue lies precisely in their capacity to recognize and respond to change. Pedagogically, this meant a different approach to design, a nonlinear back and forth between the physical and the digital, including the use of body installation as an examination of the site.
keywords Computational Design, Algorithmic and Parametric Design, Material Computation, Masonry, Environment and Culture, Social Design, Adaptive Thinking
series CAAD Futures
email
last changed 2019/07/29 14:15

_id lasg_whitepapers_2019_291
id lasg_whitepapers_2019_291
authors Sabin, Jenny
year 2019
title Lumen
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.291 - 318
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for [Lumen], winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, [Lumen] employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id acadia21_76
id acadia21_76
authors Smith, Rebecca
year 2021
title Passive Listening and Evidence Collection
doi https://doi.org/10.52842/conf.acadia.2021.076
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 76-81.
summary In this paper, I present the commercial, urban-scale gunshot detection system ShotSpotter in contrast with a range of ecological sensing examples which monitor animal vocalizations. Gunshot detection sensors are used to alert law enforcement that a gunshot has occurred and to collect evidence. They are intertwined with processes of criminalization, in which the individual, rather than the collective, is targeted for punishment. Ecological sensors are used as a “passive” practice of information gathering which seeks to understand the health of a given ecosystem through monitoring population demographics, and to document the collective harms of anthropogenic change (Stowell and Sueur 2020). In both examples, the ability of sensing infrastructures to “join up and speed up” (Gabrys 2019, 1) is increasing with the use of machine learning to identify patterns and objects: a new form of expertise through which the differential agendas of these systems are implemented and made visible. I trace the differential agendas of these systems as they manifest through varied components: the spatial distribution of hardware in the existing urban environment and / or landscape; the software and other informational processes that organize and translate the data; the visualization of acoustical sensing data; the commercial factors surrounding the production of material components; and the apps, platforms, and other forms of media through which information is made available to different stakeholders. I take an interpretive and qualitative approach to the analysis of these systems as cultural artifacts (Winner 1980), to demonstrate how the political and social stakes of the technology are embedded throughout them.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac201917201
id ijac201917201
authors Trilsbeck, Matthew; Nicole Gardner, Alessandra Fabbri, Matthias Hank Haeusler, Yannis Zavoleas and Mitchell Page
year 2019
title Meeting in the middle: Hybrid clay three-dimensional fabrication processes for bio-reef structures
source International Journal of Architectural Computing vol. 17 - no. 2, 148-165
summary Despite the relative accessibility of clay, its low cost and reputation as a robust and sustainable building material, clay three-dimensional printing remains an under-utilized digital fabrication technique in the production of architectural artefacts. Given this, numerous research projects have sought to extend the viability of clay three-dimensional digital fabrication by streamlining and automating workflows through computational methods and robotic technologies in ways that afford agency to the digital and machinic processes over human bodily skill. Three-dimensional printed clay has also gained prominence as a resilient material well suited to the design and fabrication of artificial reef and habitat- enhancing seawall structures for coastal marine environments depleted and disrupted by human activity, climate change and pollution. Still, these projects face similar challenges when three-dimensional printing complex forms from the highly plastic and somewhat unpredictable feed material of clay. In response, this article outlines a research project that seeks to improve the translation of complex geometries into physical clay artefacts through additive three- dimensional printing processes by drawing on the notion of digital craft and giving focus to human–machine interaction as a collaborative practice. Through the case study of the 1:1 scale fabrication of a computationally generated bio-reef structure using clay as a feed material and a readily available Delta Potterbot XLS-2 ceramic printer, the research project documents how, by exploiting the human ability to intuitively handle clay and adapt, and the machine’s ability to work efficiently and with precision, humans and machines can fabricate together . With the urgent need to develop more sustainable building practices and materials, this research contributes valuable knowledge of hybrid fabrication processes towards extending the accessibility and viability of clay three-dimensional printing as a resilient material and fabrication system.
keywords Clay three-dimensional printing, digital fabrication, hybrid fabrication, digital craft, human–machine interaction
series journal
email
last changed 2019/08/07 14:04

_id caadria2019_379
id caadria2019_379
authors Vazquez, Elena, Gursoy, Benay and Duarte, Jose
year 2019
title Designing for Shape Change - A Case study on 3D Printing Composite Materials for Responsive Architectures
doi https://doi.org/10.52842/conf.caadria.2019.2.391
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 391-400
summary This paper presents the initial stages of a research that aims to develop hydroactive architectural skin systems that respond to environmental humidity. As part of this study, we have developed wood-based bio-composite materials that are 3D printed with wood filament. Shape-changing behavior is not predictable in advance. We developed customized 3D printing protocols to systematically study shape-changing behavior. The paper presents this systematic material study and the prototypes that we have developed.
keywords smart materials; responsive architecture; 3D printing; material computation
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_308
id ecaadesigradi2019_308
authors Yetkin, Ozan and Gönenç Sorguç, Arzu
year 2019
title Design Space Exploration of Initial Structural Design Alternatives via Artificial Neural Networks
doi https://doi.org/10.52842/conf.ecaade.2019.1.055
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 55-60
summary Increasing implementation of digital tools within a design process generates exponentially growing data in each phase, and inevitably, decision making within a design space with increasing complexity will be a great challenge for the designers in the future. Hence, this research aimed to seek potentials of captured data within a design space and solution space of a truss design problem for proposing an initial novel approach to augment capabilities of digital tools by artificial intelligence where designers are allowed to make a wise guess within the initial design space via performance feedbacks from the objective space. Initial structural design and modelling phase of a truss section was selected as a material of this study since decisions within this stage affect the whole process and performance of the end product. As a method, a generic framework was proposed that can help designers to understand the trade-offs between initial structural design alternatives to make informed decisions and optimizations during the initial stage. Finally, the proposed framework was presented in a case study, and future potentials of the research were discussed.
keywords design space; objective space; structural design; artificial intelligence; machine learning; optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id cf2019_052
id cf2019_052
authors Abdelmohsen, Sherif ;Passaint Massoud, Rana El-Dabaa, Aly Ibrahim and Tasbeh Mokbel
year 2019
title The Effect of Hygroscopic Design Parameters on the Programmability of Laminated Wood Composites for Adaptive Façades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 435
summary Typical adaptive façades respond to external conditions to enhance indoor spaces based on complex mechanical actuators and programmable functions. Hygroscopic embedded properties of wood, as low-cost low-tech programmable material, have been utilized to induce passive motion mechanisms. Wood as anisotropic material allows for different passive programmable motion configurations that relies on several hygroscopic design parameters. This paper explores the effect of these parameters on programmability of laminated wood composites through physical experiments in controlled humidity environment. The paper studies variety of laminated configurations involving different grain orientations, and their effect on maximum angle of deflection and its durability. Angle of deflection is measured using image analysis software that is used for continuous tracking of deflection in relation to time. Durability is studied as the number of complete programmable cycles that wood could withstand before reaching point of failure. Results revealed that samples with highest deflection angle have least programmability durability.
keywords Wood, hygroscopic design, lamination, deflection, durability, adaptive façades
series CAAD Futures
email
last changed 2019/07/29 14:18

_id caadria2019_660
id caadria2019_660
authors Aghaei Meibodi, Mania, Giesecke, Rena and Dillenburger, Benjamin
year 2019
title 3D Printing Sand Molds for Casting Bespoke Metal Connections - Digital Metal: Additive Manufacturing for Cast Metal Joints in Architecture
doi https://doi.org/10.52842/conf.caadria.2019.1.133
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 133-142
summary Metal joints play a relevant role in space frame constructions, being responsible for large amount of the overall material and fabrication cost. Space frames which are constructed with standardized metal joints are constrained to repetitive structures and topologies. For customized space frames, the fabrication of individual metal joints still remains a challenge. Traditional fabrication methods such as sand casting are labour intensive, while direct 3D metal printing is too expensive and slow for the large volumes needed in architecture.This research investigates the use of Binder Jetting technology to 3D print sand molds for casting bespoke metal joints in architecture. Using this approach, a large number of custom metal joints can be fabricated economically in short time. By automating the generation of the joint geometry and the corresponding mold system, an efficient digital process chain from design to fabrication is established. Several design studies for cast metal joints are presented. The approach is successfully tested on the example of a full scale space frame structure incorporating almost two hundred custom aluminum joints.
keywords 3D printing; binder jetting; sand casting; metal joints; metal casting; space frame; digital fabrication; computational design; lightweight; customization
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia19_630
id acadia19_630
authors Ahlquist, Sean
year 2019
title Expanding the Systematic Agencyof a Material System
doi https://doi.org/10.52842/conf.acadia.2019.630
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 630-641
summary Computational design and fabrication have reached an accomplished level of ubiquity and proficiency in the field of architecture, in both academia and practice. Materiality driving structure, responsiveness, and spatial organization can be seen to evolve, in kind, with the capabilities to fabricate deeper material hierarchies. Such maturity of a procedural material-driven approach spurs a need to shift from the dictations of how to explorations of why material efficiencies, bespoke aesthetics, and performativity are critical to a particular architecture, requiring an examination of linkages between approach, techniques, and process. The material system defines a branch of architectural research utilizing bespoke computational techniques to generate performative material capacities that are inextricably linked to both internal and external forces and energies. This paper examines such a self-referential view to define an expanded ecological approach that integrates new modes of design agency and shift the material system from closed-loop relationship with site to open-ended reciprocation with human behavior. The critical need for this capacity is shown in applications of novel textile hybrid material systems—as sensorially-responsive environments for children with the neurological autism spectrum disorder—in ongoing research titled Social Sensory Architectures. Through engaging fabrication across all material scales, manners of elastic responsivity are shown, through a series of feasibility studies, to exhibit a capacity for children to become design agents in exploring the beneficial interrelationship of sensorimotor agency and social behavior. The paper intends to contribute a theoretical approach by which novel structural capacities of a material system can support a larger ecology of social and behavioral agency.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia19_490
id acadia19_490
authors Alvarez, Martín; Wagner, Hans Jakob; Groenewolt, Abel; Krieg, Oliver David; Kyjanek, Ondrej; Sonntag, Daniel; Bechert, Simon; Aldinger, Lotte; Menges, Achim; Knippers, Jan
year 2019
title The Buga Wood Pavilion
doi https://doi.org/10.52842/conf.acadia.2019.490
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 490-499
summary Platforms that integrate developments from multiple disciplines are becoming increasingly relevant as the complexity of different technologies increases day by day. In this context, this paper describes an integrative approach for the development of architectural projects. It portrays the benefits of applying such an approach by describing its implementation throughout the development and execution of a building demonstrator. Through increasing the agility and extending the scope of existing computational tools, multiple collaborators were empowered to generate innovative solutions across the different phases of the project´s cycle. For this purpose, novel solutions for planar segmented wood shells are showcased at different levels. First, it is demonstrated how the application of a sophisticated hollow-cassette building system allowed the optimization of material use, production time, and mounting logistics due to the modulation of the parameters of each construction element. Second, the paper discusses how the articulation of that complexity was crucial when negotiating between multiple professions, interacting with different contractors, and complying with corresponding norms. Finally, the innovative architectural features of the resulting building are described, and the accomplishments are benchmarked through comparison with typological predecessor.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia19_596
id acadia19_596
authors Anton, Ana; Yoo, Angela; Bedarf, Patrick; Reiter, Lex; Wangler, Timothy; Dillenburger, Benjamin
year 2019
title Vertical Modulations
doi https://doi.org/10.52842/conf.acadia.2019.596
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 596-605
summary The context of digital fabrication allows architects to reinvestigate material, process and the design decisions they entail to explore novel expression in architecture. This demands a new approach to design thinking, as well as the relevant tools to couple the form of artefacts with the process in which they are made. This paper presents a customised computational design tool developed for exploring the novel design space of Concrete Extrusion 3D Printing (CE3DP), enabling a reinterpretation of the concrete column building typology. This tool allows the designer to access generative engines such as trigonometric functions and mesh subdivision through an intuitive graphical user interface. Balancing process efficiency as understood by our industry with a strong design focus, we aim to articulate the unique architectural qualities inherent to CE3DP, energising much needed innovation in concrete technology.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia19_208
id acadia19_208
authors Baghi, Ali; Baghi, Aryan; Kalantari, Saleh
year 2019
title FLEXI-NODE
doi https://doi.org/10.52842/conf.acadia.2019.207
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 207-218
summary This paper is part of an ongoing research project on flexible molds for use in concrete fabrication. It continues and advances the concept of adjustable molds by creating a flexible system to produce a variety of concrete grid-joints. This reusable and adaptive mold streamlines the process of fabricating inherently diverse nodal joints without the need for cost-intensive mass-customization methods. The paper also proposes a novel way to cope with some of the significant drawbacks of similar mold techniques that have been explored and found wanting in similar projects. The technique used for the mold in the current research is inspired by a flexible mechanism that has been implemented in other manufacturing contexts, such as expansion joints and bendable straws. The outcomes of the project are a platform called “Flexi-node” and relevant software components that allow users to computationally design and fabricate a great variety of concrete joints for grid structures, using just one mold, with minimum material waste and no distortion from hydrostatic pressure.
keywords flexible molds, nodal joints, computational design, concrete fabrication, mass customization, grid structures
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaadesigradi2019_449
id ecaadesigradi2019_449
authors Becerra Santacruz, Axel
year 2019
title The Architecture of ScarCity Game - The craft and the digital as an alternative design process
doi https://doi.org/10.52842/conf.ecaade.2019.3.045
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-52
summary The Architecture of ScarCity Game is a board game used as a pedagogical tool that challenges architecture students by involving them in a series of experimental design sessions to understand the design process of scarcity and the actual relation between the craft and the digital. This means "pragmatic delivery processes and material constraints, where the exchange between the artisan of handmade, representing local skills and technology of the digitally conceived is explored" (Huang 2013). The game focuses on understanding the different variables of the crafted design process of traditional communities under conditions of scarcity (Michel and Bevan 1992). This requires first analyzing the spatial environmental model of interaction, available human and natural resources, and the dynamic relationship of these variables in a digital era. In the first stage (Pre-Agency), the game set the concept of the craft by limiting students design exploration from a minimum possible perspective developing locally available resources and techniques. The key elements of the design process of traditional knowledge communities have to be identified (Preez 1984). In other words, this stage is driven by limited resources + chance + contingency. In the second stage (Post-Agency) students taking the architects´ role within this communities, have to speculate and explore the interface between the craft (local knowledge and low technological tools), and the digital represented by computation data, new technologies available and construction. This means the introduction of strategy + opportunity + chance as part of the design process. In this sense, the game has a life beyond its mechanics. This other life challenges the participants to exploit the possibilities of breaking the actual boundaries of design. The result is a tool to challenge conventional methods of teaching and leaning controlling a prescribed design process. It confronts the rules that professionals in this field take for granted. The game simulates a 'fake' reality by exploring in different ways with surveyed information. As a result, participants do not have anything 'real' to lose. Instead, they have all the freedom to innovate and be creative.
keywords Global south, scarcity, low tech, digital-craft, design process and innovation by challenge.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id cf2019_020
id cf2019_020
authors Belém, Catarina; Luís Santos and António Leitão
year 2019
title On the Impact of Machine Learning: Architecture without Architects?
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 148-167
summary Architecture has always followed and adopted technological breakthroughs of other areas. As a case in point, in the last decades, the field of computation changed the face of architectural practice. Considering the recent breakthroughs of Machine Learning (ML), it is expectable to see architecture adopting ML-based approaches. However, it is not yet clear how much this adoption will change the architectural practice and in order to forecast this change it is necessary to understand the foundations of ML and its impact in other fields of human activity. This paper discusses important ML techniques and areas where they were successfully applied. Based on those examples, this paper forecast hypothetical uses of ML in the realm of building design. In particular, we examine ML approaches in conceptualization, algorithmization, modeling, and optimization tasks. In the end, we conjecture potential applications of such approaches, suggest future lines of research, and speculate on the future face of the architectural profession.
keywords Machine Learning, Algorithmic Design, AI for Building Design
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:54

_id ecaadesigradi2019_619
id ecaadesigradi2019_619
authors Beyer, Bastian, Suárez, Daniel and Palz, Norbert
year 2019
title Microbiologically Activated Knitted Composites - Reimagining a column for the 21st century
doi https://doi.org/10.52842/conf.ecaade.2019.2.541
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 541-552
summary A column is an archetypal constituent of architecture which historically underwent constant reiteration in accordance with the prevalent architectural style, material culture or technical and structural possibilities. The project reimagined this architectural element through harnessing the synergies of digital design, textile logic, and contemporary biotechnology. Textile materiality and aesthetic are deeply rooted in architectural history as a soft and ephemeral antipode to rigid building materials. An investigation in historic mechanical hand-knitting techniques allowed to extract their underlying structural and geometric logic to develop a structural optimisation pipeline with a graded yarn as a base material and a geometric optimization based on local distribution of knitting patterns. Bacterially driven biocalcification was applied to transform the soft textile structure into a rigid material. Hereby an active textile microbiome was established through colonizing of the yarn with the bacterium S. pasteurii which successively precipitated calcite on microscale within the textile substrate hence ultimately influencing the global structural behaviour of the column.
keywords textile microbiome; material customization; knitting; yarn augmentation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_908182 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002