CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 382

_id acadia19_60
id acadia19_60
authors Yousif, Shermeen; Yan, Wei
year 2019
title Application of an Automatic Shape Clustering Method
doi https://doi.org/10.52842/conf.acadia.2019.060
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 60-69
summary Despite their prevalence and extensive applications, generative and design optimization systems lack effective organizational methods of the excessive number of design options they produce, which is problematic for designers’ interaction. Ideally, a diverse and organized set of designs can mediate successful designers’ evaluation and exploration of the design space. Cluster analysis, a big-data management strategy, offers a solution. Yet, there is a need for investigating appropriate methods for applying cluster-analysis to a dataset of geometric shapes. Therefore, we have recently developed and published a new approach, the Shape Clustering using K-Medoids (SC-KM) method as an articulation mechanism in generative systems. The method involves shape description, shape difference measure calculation, and implementation of the K-Medoids clustering algorithm. The focus of this work is on incorporating the method into a generative system with parametric building shape generation and design optimization. The method organizes a dataset of shapes into clusters where shapes within the cluster share similarities yet differ from other clusters, and each cluster is signified by one representative shape. The SC-KM method contributes to an organized design presentation and facilitates designers’ examination of their designs’ geometric qualities.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id ijac201917103
id ijac201917103
authors Bejarano, Andres; and Christoph Hoffmann
year 2019
title A generalized framework for designing topological interlocking configurations
source International Journal of Architectural Computing vol. 17 - no. 1, 53-73
summary A topological interlocking configuration is an arrangement of pieces shaped in such a way that the motion of any piece is blocked by its neighbors. A variety of interlocking configurations have been proposed for convex pieces that are arranged in a planar space. Published algorithms for creating a topological interlocking configuration start from a tessellation of the plane (e.g. squares colored as a checkerboard). For each square S of one color, a plane P through each edge E is considered, tilted by a given angle ? against the tessellated plane. This induces a face F supported by P and limited by other such planes nearby. Note that E is interior to the face. By adjacency, the squares of the other color have similarly delimiting faces. This algorithm generates a topological interlocking configuration of tetrahedra or antiprisms. When checked for correctness (i.e. for no overlap), it rests on the tessellation to be of squares. If the tessellation consists of rectangles, then the algorithm fails. If the tessellation is irregular, then the tilting angle is not uniform for each edge and must be determined, in the worst case, by trial and error. In this article, we propose a method for generating topological interlocking configurations in one single iteration over the tessellation or mesh using a height value and a center point type for each tile as parameters. The required angles are a function of the given height and selected center; therefore, angle choices are not required as an initial input. The configurations generated using our method are compared against the configurations generated using the angle-choice approach. The results show that the proposed method maintains the alignment of the pieces and preserves the co-planarity of the equatorial sections of the pieces. Furthermore, the proposed method opens a path of geometric analysis for topological interlocking configurations based on non-planar tessellations.
keywords Topological interlocking, surface tessellation, irregular geometry, parametric design, convex assembly
series journal
email
last changed 2019/08/07 14:04

_id caadria2019_190
id caadria2019_190
authors Chan, Zion and Crolla, Kristof
year 2019
title Simplifying Doubly Curved Concrete - Post-Digital Expansion of Concrete's Construction Solution Space
doi https://doi.org/10.52842/conf.caadria.2019.1.023
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 23-32
summary This action research project develops a novel conceptual method for non-standardised concrete construction component fabrication and tests its validity through a speculative design project. The paper questions the practical, procedural and economic drivers behind the design and construction of geometrically complex concrete architecture. It proposes an alternative, simple and economical fabrication method for doubly curved concrete centred on the robotic manufacturing of casting moulds through 5-axis hotwire foam cutting for the making of doubly-curved fiber-reinforced concrete (FRC) panels. These panels are used as light-weight sacrificial formwork for in-situ concrete casting. The methodology's opportunity space is tested, evaluated and discussed through a conceptual architectural design project proposal that operates as demonstrator. The paper concludes by addressing the advantages of a design-and-build architecture delivery setup, the potential from using computational technology to adapt conventional design and construction procedures and the expanded role within the design and construction process this gives to architects.
keywords Doubly Curved Concrete; Robotic Manufacture; Post-Digital Architecture; Design and Build; Casting Mould Making
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2019_014
id cf2019_014
authors Ferrando, Cecilia; Niccolo Dalmasso, Jiawei Mai, Daniel Cardoso Llach
year 2019
title Architectural Distant Reading Using Machine Learning to Identify Typological Traits Across Multiple Buildings
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 114-127
summary This paper introduces an approach to architectural “distant reading”: the use of computational methods to analyze architectural data in order to derive spatial insights from—and explore new questions concerning—large collections of architectural work. Through a case study comprising a dataset of religious buildings, we show how we may use machine learning techniques to identify typological and functional traits from building plans. We find that spatial structure, rather than local features, is particularly effective in supporting this type of analysis. Further, we speculate on the potential of this computational method to enrich architectural design, research, and criticism by, for example, enabling new ways of thinking about architectural concepts such as typology in ways that reflect gradual variations, rather than sharp distinctions.
keywords Architectural Analytics, Machine Learning, Classification, Religious buildings, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:08

_id caadria2019_624
id caadria2019_624
authors Gupta, Sachin Sean, Jayashankar, Dhileep Kumar, Sanandiya, Naresh D, Fernandez, Javier G. and Tracy, Kenneth
year 2019
title Prototyping of Chitosan-Based Shape-Changing Structures
doi https://doi.org/10.52842/conf.caadria.2019.2.441
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 441-450
summary In the built environment, the typical means of achieving responsive changes in the physical features of a structure is through energy-intensive actuation mechanisms that contradict the intended goal of energy-efficient performance. Nature offers several alternative energy-free examples of achieving large-scale shape change through passive actuation mechanisms, such as the intrinsic response of water-absorbing (hygroscopic) materials to humidity fluctuations. We utilize this principle of passive actuation in the context of chitosan biopolymer, a material demonstrating a combination of mechanical strength and hygroscopic potential that enables it to serve for both load-bearing and actuation purposes. By inserting biocomposite films of chitosan as dynamic tensile members into a space truss, a structural system is constructed whose variable structural performance is manipulated and expressed as a large-scale, programmable, and fast-acting shape change. We present a method for rationalizing this responsive structural system as an assembly using a combination of materials engineering and digital design and fabrication. As a proof-of-concept, a two-meter-long fiber-reinforced cantilevering truss prototype was designed and fabricated. The truss transforms in minutes from one shape that shelters the interior from rain to another shape that acts as an air foil to increase ventilation.
keywords Passive Actuation; Chitosan; Structural Assembly; Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2019_091
id caadria2019_091
authors Ilha Pereira, Bianca
year 2019
title Master Planning with Urban Algorithms - Urban parameters, optimization and scenarios
doi https://doi.org/10.52842/conf.caadria.2019.2.051
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 51-60
summary The analogue definition of studies on urban planning can be very time consuming in the top-down process of designing. Keeping in mind the rapid urbanization we had in Brazil, and the continuous migration to the capital of the country located in Federal District, our aim is to use digital aid models that could be flexible and make quicker responses to urban issues. Algorithms as finite sequences of instructions have broad application. Designing cities demands the interpretation of variables linked to the territory and takes into account the current legislation in order to develop urban plans. This research creates an algorithmic basis using Grasshopper® to propose a mathematical solution for interpreting the existing space, and from it, to model urban scenes. The territorial analysis uses the user's perspective, with the interpretation of pre-existing characteristics, such as main roads, function and equipment distributions that make up the basic services. It is based on parameters extracted from theoretical repertoire and community facilities optimization through Galapagos evolutionary solver to deliver different proposed scenarios.
keywords urban algorithms; master planning; Grasshopper; Galapagos; Federal District
series CAADRIA
email
last changed 2022/06/07 07:49

_id ijac201917401
id ijac201917401
authors Kabošová, Lenka; Isak Foged, Stanislav Kmet’ and Dušan Katunský
year 2019
title Hybrid design method for wind-adaptive architecture
source International Journal of Architectural Computing vol. 17 - no. 4, 307-322
summary The linkage of individual design skills and computer-based capabilities in the design process offers yet unexplored environment-adaptive architectural solutions. The conventional perception of architecture is changing, creating a space for reconfigurable, “living” buildings responding, for instance, to climatic influences. Integrating the element of wind to the architectural morphogenesis process can lead toward wind-adaptive designs that in turn can enhance the wind microclimate in their vicinity. Geometric relations coupled with material properties enable to create a tensegrity- membrane structural element, bending in the wind. First, the properties of such elements are investigated by a hybrid method, that is, computer simulations are coupled with physical prototyping. Second, the system is applied to basic- geometry building envelopes and investigated using computational fluid dynamics simulations. Third, the findings are transmitted to a case study design of a streamlined building envelope. The results suggest that a wind-adaptive building envelope plays a great role in reducing the surface wind suction and enhancing the wind microclimate.
keywords Wind, computational fluid dynamics, tensegrity structure, responsive envelope, computational design
series journal
email
last changed 2020/11/02 13:34

_id ecaadesigradi2019_117
id ecaadesigradi2019_117
authors Kido, Daiki, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Development of a Semantic Segmentation System for Dynamic Occlusion Handling in Mixed Reality for Landscape Simulation
doi https://doi.org/10.52842/conf.ecaade.2019.1.641
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 641-648
summary The use of mixed reality (MR) for landscape simulation has attracted attention recently. MR can produce a realistic landscape simulation by merging a three-dimensional computer graphic (3DCG) model of a new building on a real space. One challenge with MR that remains to be tackled is occlusion. Properly handling occlusion is important for the understanding of the spatial relationship between physical and virtual objects. When the occlusion targets move or the target's shape changes, depth-based methods using a special camera have been applied for dynamic occlusion handling. However, these methods have a limitation of the distance to obtain depth information and are unsuitable for outdoor landscape simulation. This study focuses on a dynamic occlusion handling method for MR-based landscape simulation. We developed a real-time semantic segmentation system to perform dynamic occlusion handling. We designed this system for use in mobile devices with client-server communication for real-time semantic segmentation processing in mobile devices. Additionally, we used a normal monocular camera for practice use.
keywords Mixed Reality; Dynamic occlusion handling; Semantic segmentation; Deep learning; Landscape simulation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_078
id ecaadesigradi2019_078
authors Kim, Eonyong, Jeon, Hyunwoo, Jun, Hanjong and Lee, Seongjoon
year 2019
title The Development of Architectural Design Environment for BIPV using BIM
doi https://doi.org/10.52842/conf.ecaade.2019.1.223
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 223-232
summary BIPV is a building integrated photovoltaic power generation system, which is used for building finishing materials, roof, and wall, so there is no need for separate installation space, and the usability is continuously increasing in urban areas with relatively small installation space. And continues to increase. BIPV is a building-integrated type, but the application plan should be made from the early stage of design. However, there is a lack of BIPV related design information. As a result, the possibility of integrating BIPV and building design is reduced and BIPV is applied in a limited range. Method: BIM-based BIPV design process, BIPV installable location, BIPV elevation design factor. And the theory necessary to implement the support model. Lastly, usability was examined using the support model. Result: This study describes a BIM-based design support model for BIPV installed elevation design that designers can apply BIPV installation location planning and design in a BIM environment.
keywords Building Integrated Photovoltaic System ; Building Information Modelling ; Shadow Analysis ; Array design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_339
id ecaadesigradi2019_339
authors Kinugawa, Hina and Takizawa, Atsushi
year 2019
title Deep Learning Model for Predicting Preference of Space by Estimating the Depth Information of Space using Omnidirectional Images
doi https://doi.org/10.52842/conf.ecaade.2019.2.061
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 61-68
summary In this study, we developed a method for generating omnidirectional depth images from corresponding omnidirectional RGB images of streetscapes by learning each pair of omnidirectional RGB and depth images created by computer graphics using pix2pix. Then, the models trained with different series of images shot under different site and weather conditions were applied to Google street view images to generate depth images. The validity of the generated depth images was then evaluated visually. In addition, we conducted experiments to evaluate Google street view images using multiple participants. We constructed a model that estimates the evaluation value of these images with and without the depth images using the learning-to-rank method with deep convolutional neural network. The results demonstrate the extent to which the generalization performance of the streetscape evaluation model changes depending on the presence or absence of depth images.
keywords Omnidirectional image; depth image; Unity; Google street view; pix2pix; RankNet
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_134
id caadria2019_134
authors Li, Yunqin, Zhang, Jiaxin and Yu, Chuanfei
year 2019
title Intelligent Multi-Objective Optimization Method for Complex Building Layout based on Pedestrian Flow Organization - A case study of People's Court building in Anhui, China
doi https://doi.org/10.52842/conf.caadria.2019.1.271
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 271-280
summary The pedestrian flow of the building influences and determines the layout of the building's plan. For buildings with complex flow such as courts, airports, and stations, mixed flow line and low traffic efficiency are prone to be problems. However, the optimization of the layout of complex flow buildings usually relies on the architect's experience to judge and trials to improve. To overcome these problems, we attempt to establish a parametric model of buildings' plan (taking a typical court building as an example) with information about the different pedestrian flow and functional groups. Based on the Rhino and Grasshopper platform, we take the minimum of different pedestrian flow path length and the maximum of total spatial integration value and the minimum of total spatial entropy value as the starting point, combines pathfinding algorithm, Space Syntax and multi-objective genetic algorithm to optimize space allocation. The result shows that, compared with the original scheme, the intelligent optimised scheme can reduce the spatial waste caused by improper flow organisation, effectively improve space transportation capacity and spatial organization efficiency.
keywords Intelligent optimisation; space allocation; multi-objective optimization algorithm; Space Syntax; pathfinding algorithm
series CAADRIA
email
last changed 2022/06/07 07:51

_id cf2019_025
id cf2019_025
authors Lin, Yuqiong; Chenyu Huang ,Yuqiong Lin and Philip F. Yuan
year 2019
title High-rise Building Group Morphology Generation Approach based on Wind Environmental Performance
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 185
summary In the urbanization process, high-rise is favored and popularized? while results to the high-density urban space which aggravated the deterioration of urban wind environment. Using quantifiable environmental factors to control the building, is promoting a more meaningful group formation of the sustainable high-rise buildings. Thus, taking wind performance into account in high-rise design infancy is essential. According to the achievement of CAADRIA2018 “SELF-FORM-FINDING WIND TUNNEL TO ENVIRONMENTAL-PERFORMANCE URBAN AND BUILDING DESIGN” workshop, a preliminary set related to the environmental performance urban morphology generation system and method was constructed. In this study, various of high-rise building forms that might be conducive to urban ventilation were selected, such as “hollow-out”, “twisting”, “façade retracting” and “liftup”, to design the Dynamic Model System with multi-dimensional motion.
keywords High-rise, group morphology, wind tunnel, dynamic models, environmental performance
series CAAD Futures
email
last changed 2019/07/29 14:15

_id caadria2019_183
id caadria2019_183
authors Macken, Marian, Mulla, Sarosh and Paterson, Aaron
year 2019
title Inhabiting the Drawing - 1:1 in time and space
doi https://doi.org/10.52842/conf.caadria.2019.1.505
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 505-514
summary One of the fundamental characteristics of architectural drawing is its use of scale. Since the Renaissance - during which architectural production shifted from the construction site to paper - this scalar understanding began by using bodily measurements. In developing designs, the architect projects future occupation of the drawing with their eyes and hands moving over both its physical surface and represented space. The different relationship established between the digital drawer and the body has been criticised; Paul Emmons argues that CAD's full scale - or rather scale-less - capabilities omit this bodily presence of the drawer (Emmons, 2005). Due to the use of full scale data recording, the drawer zooms in and out to consider aspects, severing the drawing's relation to the operator's body. This paper explores ways in which the body and drawings intersect, beyond Emmons definition, and hence considers the influence of the method of drawing on perceptions of scale and the inhabitation of digital drawings. It uses ongoing collaborative research projects and exhibitions to explore the inhabitation of digital drawing at full scale. These works highlight the fundamental importance of the line within architecture, not as demarcation, divider or indexical reference, but as a traces of bodily projections.
keywords architectural drawing; architectural scale; full scale drawing; post factum documentation
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_233
id ecaadesigradi2019_233
authors Noronha Pinto de Oliveira e Sousa, Marcela, Duarte, Jose and Celani, Gabriela
year 2019
title Urban Street Retrofitting - An Application Study on Bottom-Up Design
doi https://doi.org/10.52842/conf.ecaade.2019.3.287
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 287-296
summary Urban streets will have to be retrofitted to improve walkability and to provide space for a diversity of transport modes. This paper introduces a framework which combines space syntax and shape grammars in a design support method for generating scenarios for urban street retrofitting. A procedure to hierarchize streets and select priority locations for urban street retrofitting is presented. Four different angular choice analyses with decreasing radii are used to derive the hierarchical structure of target urban areas with the aim of triggering shape grammar rules and generating bottom-up intervention designs. The same measure using a local radius to represent walking modal is then used to determine which streets should be retrofitted to improve pedestrian safety and walkability for the largest number of people. An application study using this procedure is presented and results are compared to street hierarchies from two different sources. This study is the first step towards automating the generation of design scenarios for urban street retrofitting.
keywords Space Syntax; Street Hierarchy; Parametric Urbanism; Scenario Modeling; Travel Behavior
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id ecaadesigradi2019_102
id ecaadesigradi2019_102
authors Passsaro, Andres Martin, Henriques, Gonçalo Castro, Sans?o, Adriana and Tebaldi, Isadora
year 2019
title Tornado Pavilion - Simplexity, almost nothing, but human expanded abilities
doi https://doi.org/10.52842/conf.ecaade.2019.1.305
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 305-314
summary In the context of the fourth industrial revolution, not all regions have the same access to technology for project development. These technological limitations do not necessarily result in worst projects and, on the contrary, can stimulate creativity and human intervention to overcome these shortcomings. We report here the design of a small pavilion with scarce budget and an ambitious goal to qualify a space through tactical urbanism. We develop the project in a multidisciplinary partnership between academy and industry, designing, manufacturing and assembling Tornado Pavilion, a complex structure using combined HIGH-LOW technologies, combining visual programming with analog manufacture and assembly. The design strategy uses SIMPLEXITY with ruled surfaces strategy to achieve a complex geometry. Due to the lack of automated mechanical cutting or assembly, we used human expanded abilities for the construction; instead of a swarm of robots, we had a motivated and synchronized swarm of students. The pavilion became a reference for local population that adopted it. This process thus shows that less or almost nothing (Sola-Morales 1995), need not to be boring (Venturi 1966) but less can be much more (Kolarevic 2017).
keywords Simplexity; CAD-CAM; Ruled Surfaces; expanded abilities; pavilion
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_550
id ecaadesigradi2019_550
authors Rhee, Jinmo, Cardoso Llach, Daniel and Krishnamurti, Ramesh
year 2019
title Context-rich Urban Analysis Using Machine Learning - A case study in Pittsburgh, PA
doi https://doi.org/10.52842/conf.ecaade.2019.3.343
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 343-352
summary This paper reports on the analytical potential of machine learning methods for urban analysis. It documents a new method for data-driven urban analysis based on diagrammatic images describing each building in a city in relation to its immediate urban context. By statistically analyzing architectural and contextual features in this new dataset, the method can identify clusters of similar urban conditions and produce a detailed picture of a city's morphological structure. Remapping the clusters from data to 2D space, our method enables a new kind of urban plan that displays gradients of urban similarity. Taking Pittsburgh as a case study we demonstrate this method, and propose "morphological types" as a new category of urban analysis describing a given city's specific set of distinct morphological conditions. The paper concludes with a discussion of the implications of this method and its limitations, as well as its potentials for architecture, urban studies, and computation.
keywords Urban Morphology; Machine Learning; Architectural Contexts; Urban Analysis; GIS
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_081
id caadria2019_081
authors Sheldon, Aron, Dobbs, Tiara, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank, Ramos, Cristina and Zavoleas, Yannis
year 2019
title Putting the AR in (AR)chitecture - Integrating voice recognition and gesture control for Augmented Reality interaction to enhance design practice
doi https://doi.org/10.52842/conf.caadria.2019.1.475
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 475-484
summary The architectural design process involves the development of spatial explorable 3D models, but the computer screen is main medium to communicate information to clients. Yet, Augmented Reality (AR) and Virtual Reality (VR) are the closest way to replicate our world, create new ones and interact within them. AR and VR headsets offer different ways to allow multiple stakeholders to effectively immerse themselves in 3D representations of design projects. But, to interact within these spaces and to perform design modifications, the development of new workflows is required. This research presents a new method where AR is used to visualize and edit project models using both voice recognition and hand-gestures software. While numerous projects are addressing software interoperability issues, user-interaction in an AR space remains a developing area of crucial relevance in research. Although hand-gestures are the usual form of model-state control employed in such systems, voice-control is emerging as a highly desirable and everyday form of human-computer interaction. This paper presents a plugin for the Hololens that allows the user to use voice and hand gestures to enhance the ability to work with 3D models and discusses and evaluates the project.
keywords Augmented Reality; Design Workflows; Interaction Design; Voice Recogition; Gesture Recognition
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2019_259
id caadria2019_259
authors Soltani, Sahar, Gu, Ning, Ochoa Paniagua, Jorge, Sivam, Alpana and McGinley, Tim
year 2019
title A Computational Approach to Measuring Social Impact of Urban Density through Mixed Methods Using Spatial Analysis
doi https://doi.org/10.52842/conf.caadria.2019.1.321
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 321-330
summary While there is a growing interest in using spatial network analysis methods such as Space Syntax to explore the socio-spatial aspects of the built form, some scholars refer to its main limitation of missing the measurements of buildings' fabric and density. Furthermore, new approaches that attempt to address these shortcomings, such as Urban Network Analysis toolbox, do not provide as comprehensive explorations as what Space Syntax does for the street network. Therefore, this paper proposes that a mixed-method applying both the tools in a complementary way enables a deeper understanding of the socio-spatial design metrics addressing density. Employing both tools on two cases of low and high-density neighbourhoods, the results demonstrate that the combination of these tools can minimise the shortcomings of each method individually, and lead to a more comprehensive understanding of socio-spatial design factors in relation with density.
keywords Urban Network Analysis ; Social Impact; Space Syntax ; UNA Toolbox; Urban Density
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2019_033
id cf2019_033
authors Soltani, Sahar; Ning Gu, Jorge Ochoa Paniagua, Alpana Sivam and Tim McGinley
year 2019
title Investigating the Social Impacts of Highdensity Neighbourhoods through Spatial Analysis
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 255
summary Studies argue that higher density areas incur social problems such as lack of safety [1], while other studies provide evidence for the positive impact of high-density urban areas, for instance opportunities for social interactions and equal form of accessibility [2]. This paper argues that design factors can mediate the impacts of density on social aspects. Therefore, this study explores the extent to which design factors can be correlated to the social outcomes of different density areas. To do this, data from an empirical study conducted in the UK, which identified the relationship between density and social sustainability through cases of fifteen neighbourhoods, have been utilised. This paper has conducted further analysis based on these cases using a mixed method with spatial analysis tools. Outcomes show that some of the social results in the UK study such as safety are correlated with spatial factors like normalised angular choice. Moreover, the regression model created from the spatial indices can be used to predict the overall social sustainability index reported by the UK study.
keywords Urban Density, Social Sustainability, Spatial Analysis, Space Syntax, Urban Network Analysis
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ecaadesigradi2019_308
id ecaadesigradi2019_308
authors Yetkin, Ozan and Gönenç Sorguç, Arzu
year 2019
title Design Space Exploration of Initial Structural Design Alternatives via Artificial Neural Networks
doi https://doi.org/10.52842/conf.ecaade.2019.1.055
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 55-60
summary Increasing implementation of digital tools within a design process generates exponentially growing data in each phase, and inevitably, decision making within a design space with increasing complexity will be a great challenge for the designers in the future. Hence, this research aimed to seek potentials of captured data within a design space and solution space of a truss design problem for proposing an initial novel approach to augment capabilities of digital tools by artificial intelligence where designers are allowed to make a wise guess within the initial design space via performance feedbacks from the objective space. Initial structural design and modelling phase of a truss section was selected as a material of this study since decisions within this stage affect the whole process and performance of the end product. As a method, a generic framework was proposed that can help designers to understand the trade-offs between initial structural design alternatives to make informed decisions and optimizations during the initial stage. Finally, the proposed framework was presented in a case study, and future potentials of the research were discussed.
keywords design space; objective space; structural design; artificial intelligence; machine learning; optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 19HOMELOGIN (you are user _anon_316475 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002