CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 275

_id caadria2019_136
id caadria2019_136
authors Dounas, Theodoros and Lombardi, Davide
year 2019
title Blockchain Grammars - Designing with DAOs - The blockchain as a design platform for shape grammarists' decentralised collaboration
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 293-302
doi https://doi.org/10.52842/conf.caadria.2019.2.293
summary This paper presents an application of Decentralised Autonomous Organisation (DAO) in the field of design and AEC industry. The model is applied in the realm of shape grammar proposing the possibility of allowing multiple grammarists to collaborate in the definition of a new grammar within a Blockchain environment that acts as a distributed ledger. DAOs systems and Blockchain are introduced as well as shape grammar and its fundamental rules. The collaborative nature of a DAO with the inner logic of shape grammar, which bases its principle and rules in multiple variations and combinations of simple initial shapes, brings to the problem of recording and validating changes and improvements in the design chain. For this reason, a voting system to govern the process is introduced, based on both quantitative values, i.e. number of votes, and qualitative power, i.e. the reputation of who votes, applying a factor that scales the vote according to the expertise of the voter. An example is provided showing a possible scenario in a design environment along with validation criteria, and predicting future stages applied in an always more BIM-oriented practice.
keywords Decentralised Autonomous Organisation; Shape Grammar; Intelligent organisms; Distributed Ledger; Blockchain;
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_339
id ecaadesigradi2019_339
authors Kinugawa, Hina and Takizawa, Atsushi
year 2019
title Deep Learning Model for Predicting Preference of Space by Estimating the Depth Information of Space using Omnidirectional Images
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 61-68
doi https://doi.org/10.52842/conf.ecaade.2019.2.061
summary In this study, we developed a method for generating omnidirectional depth images from corresponding omnidirectional RGB images of streetscapes by learning each pair of omnidirectional RGB and depth images created by computer graphics using pix2pix. Then, the models trained with different series of images shot under different site and weather conditions were applied to Google street view images to generate depth images. The validity of the generated depth images was then evaluated visually. In addition, we conducted experiments to evaluate Google street view images using multiple participants. We constructed a model that estimates the evaluation value of these images with and without the depth images using the learning-to-rank method with deep convolutional neural network. The results demonstrate the extent to which the generalization performance of the streetscape evaluation model changes depending on the presence or absence of depth images.
keywords Omnidirectional image; depth image; Unity; Google street view; pix2pix; RankNet
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_150
id ecaadesigradi2019_150
authors Thomsen, Mette, Nicholas, Paul, Tamke, Martin, Gatz, Sebastian and Sinke, Yuliya
year 2019
title Predicting and steering performance in architectural materials
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 485-494
doi https://doi.org/10.52842/conf.ecaade.2019.2.485
summary This paper presents the prototyping of new methods by which functionally graded materials can be specified and produced. The paper presents a case study exploring how machine learning can be used to train a model in order to predict fabrication files from formalised design requirements. By using knit as a model for material fabrication, the paper outlines the making of new cyclical design methods employing machine learning in which simpler prototypical materials acts as input for more complex graded materials. A case study - Ombre - showcases the implementation of this workflow and results and perspectives are discussed.
keywords computational design; material specification; machine learning; convolution algorithm; knit
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id cf2019_055
id cf2019_055
authors Agirbas, Asli
year 2019
title A proposal for the use of fractal geometry algorithmically in tiling design
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 438-453
summary The design inspired by nature is an ongoing issue from the past to the present. There are many design examples inspired from nature. Fractal geometry formation, which is focused on this study, is a system seen in nature. A model based on fractal growth principle was proposed for tile design. In this proposal made with using Visual Programming Language, a tiling design experiment placed in a hexagonal grid system was carried out. Thus, a base was created for tile designs to be made using the fractal principle. The results of the case study were evaluated and potential future studies were discussed.
keywords Fractals, Tile design, Biomimetic design, Algorithmic design
series CAAD Futures
email
last changed 2019/07/29 14:18

_id caadria2019_204
id caadria2019_204
authors Calixto, Victor, Gu, Ning and Celani, Gabriela
year 2019
title A Critical Framework of Smart Cities Development
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 685-694
doi https://doi.org/10.52842/conf.caadria.2019.2.685
summary This paper investigates through a review of the current literature on smart cities, reflecting different concepts across different political-social contexts, seeking to contribute to the establishment of a critical framework for smart cities development. The present work provides a review of the literature of 250 selected publications from four databases (Scielo, ScienceDirect, worldwide science, and Cumincad), covering the years from 2012 to 2018. Publications were categorised by the following steps: 3RC framework proposed by Kummitha and Crutzen (2017), the main political sectors of city planning, implementation strategies, computational techniques, and organisation rules. The information was analised graphically trying to identify tendencies along the time, and also, seeking to explore future possibilities for implementations in different political-social contexts. As a case of study, Australia and Brazil were compared using the proposed framework.
keywords smart city; smart cities; literature review
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2019_016
id cf2019_016
authors Cardoso Llach, Daniel and Scott Donaldson
year 2019
title An Experimental Archaeology of CAD Using Software Reconstruction to Explore the Past and Future of ComputerAided Design
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 130
summary This paper proposes software reconstruction as a method to shed new light into the material, gestural, and sensual dimensions of computer-aided design technologies. Specifically, it shows how by combining historical research and creative prototyping this method can bring us closer to distant ways of seeing, touching, drawing, and designing—while raising new questions about the impact of CAD technologies on present-day architectural practices. It documents the development of two software reconstructions—of Ivan Sutherland’s “Sketchpad” and of Steven A. Coons’s “Coons Patch”—and reflects on the responses they elicited in the context of two exhibitions. The paper shows how software reconstruction can offer access to overlooked aspects of computer-aided design systems, specially their material and sensual dimensions, and how we may explore its broader potential for research, preservation, pedagogy, and speculative design of design technologies.
keywords Software Reconstruction, Media Archaeology, CAD, Sketchpad, Steven A. Coons, Ivan Sutherland, Computational Design History
series CAAD Futures
email
last changed 2019/07/29 14:08

_id ecaadesigradi2019_592
id ecaadesigradi2019_592
authors Carvalho, Jo?o, Figueiredo, Bruno and Cruz, Paulo
year 2019
title Free-form Ceramic Vault System - Taking ceramic additive manufacturing to real scale
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 485-492
doi https://doi.org/10.52842/conf.ecaade.2019.1.485
summary The use of Additive Manufacturing (AM) for the production of architectural components has more and more examples attesting the possibilities and the advantages of its application. At the same time we seen a fast grow of the usage of ceramic materials to produce fully customised architectural components using Layer Deposition Modelling (LDM) [1] techniques. However, the use of this material, as paste, leads to a series of constraints relative to its behaviour when in the viscous state, but also in the drying and firing stages. Thus, when ceramic dries, the retraction effects may be a barrier to the regular use of this material to build future architectural systems. In this sense, it is important to study the material behaviour and know how to control and use it as a primary construction material. To do that we present the challenges and outcomes of project Hexashade, a ceramic vault shading system prototype whose geometry and internal structure is defined according to the solar incidence. This paper explain how we expect to build a real scale self-supporting prototype.
keywords Ceramic 3D printing; Additive Manufacturing; Vaulting Systems; Parametric Design; Performative Design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_514
id ecaadesigradi2019_514
authors de Miguel, Jaime, Villafa?e, Maria Eugenia, Piškorec, Luka and Sancho-Caparrini, Fernando
year 2019
title Deep Form Finding - Using Variational Autoencoders for deep form finding of structural typologies
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 71-80
doi https://doi.org/10.52842/conf.ecaade.2019.1.071
summary In this paper, we are aiming to present a methodology for generation, manipulation and form finding of structural typologies using variational autoencoders, a machine learning model based on neural networks. We are giving a detailed description of the neural network architecture used as well as the data representation based on the concept of a 3D-canvas with voxelized wireframes. In this 3D-canvas, the input geometry of the building typologies is represented through their connectivity map and subsequently augmented to increase the size of the training set. Our variational autoencoder model then learns a continuous latent distribution of the input data from which we can sample to generate new geometry instances, essentially hybrids of the initial input geometries. Finally, we present the results of these computational experiments and lay out the conclusions as well as outlook for future research in this field.
keywords artificial intelligence; deep neural networks; variational autoencoders; generative design; form finding; structural design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id caadria2019_117
id caadria2019_117
authors Deniz Kiraz, Leyla and Kocaturk, Tuba
year 2019
title Integrating User-Behaviour as Performance Criteria in Conceptual Parametric Design
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 215-224
doi https://doi.org/10.52842/conf.caadria.2019.1.215
summary Prediction of user behaviour has always been problematic in architectural design. Several methods have already been developed and explored to model human behaviour in architecture. However, the majority of these methods are implemented during post-design evaluation where the insights obtained can only be implemented in a limited capacity. There is an apparent gap and opportunity, in current research and practice, to embed behaviour simulations directly into the conceptual design process. The proposed paper (research) aims to fill this gap. This paper will report on the results of a recently completed research exploring the integration process of Agent Based Modelling into the conceptual design process, using a parametric design approach. The research resulted in the development of a methodological framework for the integration of behavioural parameters into the explorative stages of the early design process. This paper also offers a categorisation and critical evaluation of existing Agent Based Modelling applications in current research and practice, which leads to the formulation of possible pathways for future implementation.
keywords Performance Based Design; Generative Design; Behaviour Modelling; Agent Based Modelling; Parametric Design
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2019_286
id caadria2019_286
authors Dobbs, Tiara
year 2019
title Face-to-Face with People in Spaces - A method to identify face-to-face interactions using an indoor positioning system.
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 643-652
doi https://doi.org/10.52842/conf.caadria.2019.2.643
summary Recent developments in indoor positioning technology means gathering personal interaction data is possible however, the process of analysing this data to determine where and when interactions occur indoors is not yet standardised.This paper proposes a method to gather and examine indoor positioning data to infer face-to-face interactions indoors. The case study looks specifically at indoor office environment however the principles shown can be applied to other indoor spaces. This paper explores a high-level technological methodology that gathers indoor positioning data from users. A formula is used to calculate if, when and where interactions occur over a floor-plan, as well as visualising these interactions to highlight high and low interaction areas. The system considers the proximity between the individuals, the angle between their forward physical orientation, and any obstructions that might divide individuals from each other. The information presented in this paper can be used as a theoretical baseline to inform future post-occupancy evaluation methods. Additionally, this paper demonstrates the merit of using indoor positioning systems to test the effectiveness of design principles in encouraging face-to-face interactions of the users.
keywords Post-occupancy evaluations; Face-to-face interac-tions; Indoor positioning system; Data driven design
series CAADRIA
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia19_576
id acadia19_576
authors García del Castillo y López, Jose Luis; Bechthold, Martin; Seibold, Zach; Mhatre, Saurabh; Alhadidi, Suleiman
year 2019
title Janus Printing
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 576-585
doi https://doi.org/10.52842/conf.acadia.2019.576
summary The benefits of additive manufacturing technologies for the production of customized construction elements has been well documented for several decades. Multi-material additive manufacturing (MM-AM) enhances these capacities by introducing region-specific characteristics to printed objects. Several examples of the production of multi-material assemblies, including functionally-graded materials (FGMs) exist at the architectural scale, but none are known for ceramics. Factors limiting the development and application of this production method include the cost and complexity of existing MM-AM machinery, and the lack of a suitable computational workflow for the production of MM-AM ceramics, which often relies on a continuous linear toolpath. We present a method for the MM-AM of paste-based ceramics that allows for unique material expressions with relatively simple end-effector design. By borrowing methods of co-extrusion found in other industries and incorporating a 4th axis of motion into the printing process, we demonstrate a precisely controlled MM-AM deposition strategy for paste-based ceramics. We present a computational workflow for the generation of toolpaths, and describe full-body tiles and 3D artifacts that can be produced using this method. Future process refinements include the introduction of more precise control of material gradation and refinements to material composition for increased element functionality.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id caadria2019_211
id caadria2019_211
authors Globa, Anastasia, Wang, Rui and Beza, Beau B.
year 2019
title Sensory Urbanism and Placemaking - Exploring Virtual Reality and the Creation of Place
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 737-746
doi https://doi.org/10.52842/conf.caadria.2019.2.737
summary Sensory Urbanism is an experimental prototyping project exploring the potential of immersive Virtual Reality (VR) environments to support the incorporation of sensory and intangible aspects of place. The study investigates how sensory exploration of urban places can be integrated into decision making regarding the future of cities. In the past, numerous studies reported various sophisticated 'livability' measures, deeming to determine what makes a city a great place to live in. While a part of these measures can be quantified and be represented as text, graphs or images, most of the qualitative aspects of place are inherently abstract and sensory. These aspects have to be experienced to be understood and therefore they are extremely difficult to communicate using conventional representation means. The proposition explored in this study is that the increasing ubiquity of VR and Augmented Reality (AR) technologies can provide new opportunities to engage with the multi-sensory and temporal aspects of urban place. A mixed media approach was adopted, tapping into a temporal dimension as well as visual, aural and kinesthetic range of human senses. The paper reports on the development of the VR sensory urbanism prototype and the initial pilot study that demonstrated the proof-of-concept.
keywords Sensory Urbanism; Immersive Environments; Virtual Reality; Design Evaluation; Placemaking
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2022_247
id ecaade2022_247
authors Güntepe, Rahma
year 2022
title Building with Expanded Cork - A novel monolithic building structure
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 29–36
doi https://doi.org/10.52842/conf.ecaade.2022.1.029
summary This research presents the development of a construction system for a solid expanded cork building envelope. The inspiration for this research is the “Cork House” built in 2019 by Matthew Barnett Howland and Oliver Wilton, who developed a Cork Construction Kit for a monolithic dry-jointed cork structure. The goal of this research is to analyze and develop different varieties of construction methods for a dry-joined cork building by combining and applying traditional masonry techniques. The objective is to generate a material-based design for cork construction elements trough prototyping and using a selection of digital tools such as 3D modeling and 3D printing. Expanded cork is a 100% plant-based material which, if applied correctly, has the capacity to be used as a load bearing, insulating and protective structure all at once. It has almost no environmental impact and is completely compostable. To maintain the material's compostable property, this construction system has to be developed without any kind of binders or mortar. Additionally, this more reduced and simplified form of construction will not only make it possible to build without any specific expertise, but at the same time ensure resources to be reused or composted at the end of building life.
keywords Expanded Cork, Cork, Material-Based Design, Masonry, Stereotomy, 3D Modeling, 3D Printing, Sustainable Material, Dry-Joint Construction
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2019_280
id caadria2019_280
authors Hack, Norman, Lindemann, Hendrik and Kloft, Harald
year 2019
title Adaptive Modular Spatial Structures for Shotcrete 3D Printing
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 363-372
doi https://doi.org/10.52842/conf.caadria.2019.2.363
summary This paper presents a modular, digital construction system for lightweight spatial structures made from reinforced concrete. For design and fabrication, a digital workflow is presented, which includes the rationalization of a freeform geometry into adaptive spatial modules made up entirely of planar components. For fast and precise fabrication, these components are 3D printed using a novel 3D concrete printing technology called "Shotcrete 3D Printing". The ongoing research is demonstrated by an initial real-scale prototype of one exemplary spatial module. Lastly, the paper provides an outlook into future research, which is necessary to make this digital construction system applicable to the real-scale construction of large, wide-spanning structures.
keywords Robotic Fabrication; Digital Construction Systems; Shotcrete 3D Printing; Modular Structures
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia19_448
id acadia19_448
authors Hahm, Soomeen
year 2019
title Augmented Craftsmanship
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 448-457
doi https://doi.org/10.52842/conf.acadia.2019.448
summary Over the past decade, we have witnessed rapid advancements on both practical and theoretical levels in regard to automated construction as a consequence of increasing sophistication of digital fabrication technologies such as robotics, 3D printing, etc. However, digital fabrication technology is often very limited when it comes to dealing with delicate and complex crafting processes. Although digital fabrication processes have become widely accessible and utilized across industries in recent times, there are still a number of fabrication techniques—which heavily rely on human labour—due to the complex nature of procedures and delicacy of materials. With this in mind, we need to ask ourselves if full automation is truly an ultimate goal, or if we need to (re)consider the role of humans in the architectural construction chain, as automation becomes more prevalent. We propose rethinking the role which human, machine, and computer have in construction— occupying the territory between purely automated, exclusively robotically-driven fabrication and highly crafted processes requiring human labour. This is to propose an alternative to reducing construction to fully automated assembly of simplified/discretized building parts, by appreciating physical properties of materials and nature of crafting processes. The research proposes a design-to-construction workflow pursued and enabled by augmented humans using AR devices. As a result, proposed workflows are tested on three prototypical inhabitable structure, aiming to be applicable to other projects in the near future, and to bridge the gap between purely automated construction processes on one hand, and craft-based, material-driven but labour-intensive processes on the other.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id caadria2019_404
id caadria2019_404
authors Hyejin, Park, Hyeongmo, Gu, Woojun, Lee, Inhan, Kim and Seungyeon, Choo
year 2019
title A Development of KBIMS-based Building Design Quality Evaluation and Performance Review Interface
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 747-756
doi https://doi.org/10.52842/conf.caadria.2019.1.747
summary Recently, The South Korean national government and local governments in Korea are pursuing national R & D tasks that can be used in the design stage to expand the BIM technology to the public environment of the future city, such as the construction of the IT integrated architecture design environment and the convenient construction administrative system environment. Among these R & D researches, various studies are continuing to provide more convenient and accurate architectural services at the licensing stage in order to promote the introduction and practical use of BIM in the Korean construction industry. Typical examples are BIM-based building design quality evaluation and building performance review technology development. Therefore, the goal of this study is to introduce the case of developing the performance review interface according to the regulation and required performance criterion of BIM model using KBIMS and analyze the possibility of evaluating building design quality by applying this to a practical project.
keywords OpenBIM; Design Automation; Performance Review; Design Quality; Legal Review
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2019_022
id cf2019_022
authors Koh, Immanuel and Jeffrey Huang
year 2019
title Citizen Visual Search Engine:Detection and Curation of Urban Objects
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 170
summary Increasingly, the ubiquity of satellite imagery has made the data analysis and machine learning of large geographical datasets one of the building blocks of visuospatial intelligence. It is the key to discover current (and predict future) cultural, social, financial and political realities. How can we, as designers and researchers, empower citizens to understand and participate in the design of our cities amid this technological shift? As an initial step towards this broader ambition, a series of creative web applications, in the form of visual search engines, has been developed and implemented to data mine large datasets. Using open sourced deep learning and computer vision libraries, these applications facilitate the searching, detecting and curating of urban objects. In turn, the paper proposes and formulates a framework to design truly citizen-centric creative visual search engines -- a contribution to citizen science and citizen journalism in spatial terms.
keywords Deep Learning, Computer Vision, Satellite Imagery, Citizen Science, Artificial Intelligence
series CAAD Futures
email
last changed 2019/07/29 14:08

_id ijac201917203
id ijac201917203
authors Krietemeyer, Bess; Amber Bartosh and Lorne Covington
year 2019
title A shared realities workflow for interactive design using virtual reality and three-dimensional depth sensing
source International Journal of Architectural Computing vol. 17 - no. 2, 220-235
summary This article presents the ongoing development and testing of a “shared realities” computational workflow to support iterative user-centered design with an interactive system. The broader aim is to address the challenges associated with observing and recording user interactions within the context of use for improving the performance of an interactive system. A museum installation is used as an initial test bed to validate the following hypothesis: by integrating three- dimensional depth sensing and virtual reality for interaction design and user behavior observations, the shared realities workflow provides an iterative feedback loop that allows for remote observations and recordings for faster and effective decision-making. The methods presented focus on the software development for gestural interaction and user point cloud observations, as well as the integration of virtual reality tools for iterative design of the interface and system performance assessment. Experimental testing demonstrates viability of the shared realities workflow for observing and recording user interaction behaviors and evaluating system performance. Contributions to computational design, technical challenges, and ethical considerations are discussed, as well as directions for future work.
keywords Interactive architecture, user-centered design, virtual reality, three-dimensional depth sensing, user interactions
series journal
email
last changed 2019/08/07 14:04

_id caadria2019_183
id caadria2019_183
authors Macken, Marian, Mulla, Sarosh and Paterson, Aaron
year 2019
title Inhabiting the Drawing - 1:1 in time and space
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 505-514
doi https://doi.org/10.52842/conf.caadria.2019.1.505
summary One of the fundamental characteristics of architectural drawing is its use of scale. Since the Renaissance - during which architectural production shifted from the construction site to paper - this scalar understanding began by using bodily measurements. In developing designs, the architect projects future occupation of the drawing with their eyes and hands moving over both its physical surface and represented space. The different relationship established between the digital drawer and the body has been criticised; Paul Emmons argues that CAD's full scale - or rather scale-less - capabilities omit this bodily presence of the drawer (Emmons, 2005). Due to the use of full scale data recording, the drawer zooms in and out to consider aspects, severing the drawing's relation to the operator's body. This paper explores ways in which the body and drawings intersect, beyond Emmons definition, and hence considers the influence of the method of drawing on perceptions of scale and the inhabitation of digital drawings. It uses ongoing collaborative research projects and exhibitions to explore the inhabitation of digital drawing at full scale. These works highlight the fundamental importance of the line within architecture, not as demarcation, divider or indexical reference, but as a traces of bodily projections.
keywords architectural drawing; architectural scale; full scale drawing; post factum documentation
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 13HOMELOGIN (you are user _anon_128069 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002