CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 615

_id acadia19_40
id acadia19_40
authors Garcia del Castillo y López, Jose Luis
year 2019
title Robot Ex Machina
doi https://doi.org/10.52842/conf.acadia.2019.040
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 40-49
summary Industrial robotic arms are increasingly present in digital fabrication workflows due to their robustness, degrees of freedom, and potentially large scale. However, the range of possibilities they provide is limited by their typical software control paradigms, specifically offline programming. This model requires all the robotic instructions to be pre-defined before execution, a possibility only affordable in highly predictable environments. But in the context of architecture, design and art, it can hardly accommodate more complex forms of control, such as responding to material feedback, adapting to changing conditions on a construction site, or on-the-fly decision-making. We present Robot Ex Machina, an open-source computational framework of software tools for real-time robot programming and control. The contribution of this framework is a paradigm shift in robot programming models, systematically providing a platform to enable real-time interaction and control of mechanical actuators. Furthermore, it fosters programming styles that are reactive to, rather than prescriptive about, the state of the robot. We argue that this model is, compared to traditional offline programming, beneficial for creative individuals, as its concurrent nature and immediate feedback provide a deeper and richer set of possibilities, facilitates experimentation, flow of thought, and creative inquiry. In this paper, we introduce the framework, and discuss the unifying model around which all its tools are designed. Three case studies are presented, showcasing how the framework provides richer interaction models and novel outcomes in digital making. We conclude by discussing current limitations of the model and future work.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_671
id ecaadesigradi2019_671
authors Jabi, Wassim, Chatzivasileiadi, Aikaterini, Wardhana, Nicholas Mario, Lannon, Simon and Aish, Robert
year 2019
title The synergy of non-manifold topology and reinforcement learning for fire egress
doi https://doi.org/10.52842/conf.ecaade.2019.2.085
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 85-94
summary This paper illustrates the synergy of non-manifold topology (NMT) and a branch of artificial intelligence and machine learning (ML) called reinforcement learning (RL) in the context of evaluating fire egress in the early design stages. One of the important tasks in building design is to provide a reliable system for the evacuation of the users in emergency situations. Therefore, one of the motivations of this research is to provide a framework for architects and engineers to better design buildings at the conceptual design stage, regarding the necessary provisions in emergency situations. This paper presents two experiments using different state models within a simplified game-like environment for fire egress with each experiment investigating using one vs. three fire exits. The experiments provide a proof-of-concept of the effectiveness of integrating RL, graphs, and non-manifold topology within a visual data flow programming environment. The results indicate that artificial intelligence, machine learning, and RL show promise in simulating dynamic situations as in fire evacuations without the need for advanced and time-consuming simulations.
keywords Non-manifold topology; Topologic; Reinforcement Learning; Fire egress
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_368
id ecaadesigradi2019_368
authors Sheng, Yu-Ting, Wang, Shih-Yuan, Li, Mofei, Chiu, Yu-Hung, Lu, Yi-Heng, Tu, Chun-Man and Shih, Yi-Chu
year 2019
title Spatial Glass Bonds - Computation and fabrication system of complex glass structure
doi https://doi.org/10.52842/conf.ecaade.2019.2.251
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 251-258
summary This paper introduces an adaptive robotic spatial aggregation system for the development of an intricate self-supporting glass structure. Rather than using discrete and standardized building elements in the design and fabrication process, this research focuses on utilizing a non-arbitrary shape as an aggregated material for autonomous robotic assembly. More specifically, this paper presents an adaptive robotic fabrication pipeline that measures the size of hollow glass balls (inaccurate materials) as fabrication units to aggregate the entire glass structure. Ultraviolet (UV) curing adhesive is used as the bond between each glass element. Thus, through the live robotic programming as well as various combinations of spherical glass objects and UV curing adhesives/devices, the entire glass structure is self-supported. The project is aimed not only at the development of algorithms and a robotic fabrication system, but also the exploration of the aesthetics of glass materials. In other words, this project investigates a flexible and adaptable framework in response to live sensor data for the design and fabrication of nonstandard spatial structures aggregated out of discrete spherical glass elements, and it further explores glass material aesthetic and perception of architecture.
keywords Robotic Fabrication; Computational Design; Digital Craft
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_329
id caadria2019_329
authors Zhao, Yao, Zhu, Weiran and Yuan, Philip F.
year 2019
title From Acoustic Data Perception to Visualization Design
doi https://doi.org/10.52842/conf.caadria.2019.1.393
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 393-402
summary This research project is based on the research results from the "Acoustic Visualization Group" of Digital FUTURES Summer Workshop in Shanghai, 2018. In this workshop, students use sound data acquisition sound collection equipment to collect sound information in the space and transform it into digital data. After analyzing the data, they present it as a visible form and design the sound interaction device based on the results. This study combines the media art and digital technology to transform the invisible acoustics digital information into a tangibly visible experiencing space and to mix the virtual acoustics space, realistic light- and- shadow space and the three-dimension material space in multi-dimensions through the digital programming and generative art design. Acoustic visualization interaction design is a comprehensive attempt which mixed with several research fields such as architecture device design, digital media technology, human-computer interaction and architecture environment science.
keywords Acoustic Visualization; Digital FUTURES; Interaction Device
series CAADRIA
email
last changed 2022/06/07 07:57

_id lasg_proceedings_2019_fulltext
id lasg_proceedings_2019_fulltext
authors Beesley, Philip [editor]
year 2019
title Living Architecture Systems Group Symposium 2019 Proceedings
source Living Architecture Systems Group Symposium 2019 Proceedings [ISBN 978-1-988366-19-7 (paperback)] Riverside Architectural Press: Toronto, Canada 2019.
summary Abstracts of presentations given by Living Architecture Systems Group (LASG) contributors at the LASG Symposium on March 1 – 3, 2019 in Toronto, Canada.
keywords cybernetics, tavolva, visualization, space architecture, infrastucture, bioregional, 3D scanning, 360 degree, dark, 4DSOUND, theoretical physics, chaos, ceramics, biometrics, participatory art, live matter, agency, biomatter, artificial natures, material, 4D Printing, weaving, craft, botanical fur, bio-hybrids, monarch, wild, nonhuman, synthetic cognition, artificial intelligence, interactive, interface, robotics, manufacturing, tectonic culture
email
last changed 2019/07/29 14:00

_id ecaadesigradi2019_034
id ecaadesigradi2019_034
authors Chen, Dechen, Luo, Dan, Xu, Weiguo, Luo, Chen, Shen, Liren, Yan, Xia and Wang, Tianjun
year 2019
title Re-perceive 3D printing with Artificial Intelligence
doi https://doi.org/10.52842/conf.ecaade.2019.1.443
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 443-450
summary How can machine learning be combined with intelligent construction, material testing and other related topics to develop a new method of fabrication? This paper presents a set of experiments on the dynamic control of the heat deflection of thermoplastics in searching for a new 3D printing method with the dynamic behaviour of PLA and with a comprehensive workflow utilizing mechanic automation, computer vision, and artificial intelligence. Additionally, this paper will discuss in-depth the performance of different types of neural networks used in the research and conclude with solid data on the potential connection between the structure of neural networks and the dynamic, complex material performance we are attempting to capture.
keywords 3D printing; AI; automation; material; fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id caadria2019_106
id caadria2019_106
authors Dritsas, Stylianos, Vijay, Yadunund, Teo, Ryan, Halim, Samuel, Sanandiya, Naresh and Fernandez, Javier G.
year 2019
title Additive Manufacturing with Natural Composites - From material intelligence to informed digital fabrication
doi https://doi.org/10.52842/conf.caadria.2019.2.263
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 263-272
summary We present results on the development of a sustainable digital manufacturing technology, discuss the challenges associated with additive manufacturing with natural materials, how statistical modelling techniques enabled understanding the intricate relationship between material and fabrication and allowed to control material extrusion. We present a prototype created to assess the ability of the process to create large-scale artifacts. We believe steps towards advancing methods for environmentally-aware digital fabrication may pave the way in transforming the industry and society towards more sustainable production and consumption paradigms.
keywords Digital Fabrication; Bioinspired Materials
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2019_636
id caadria2019_636
authors Engholt, Jon and Pigram, Dave
year 2019
title Tailored Flexibility - Reinforcing concrete fabric formwork with 3D printed plastics
doi https://doi.org/10.52842/conf.caadria.2019.1.053
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 53-62
summary The tailored flexibility project seeks to develop a construction system that combines flexible formwork with robotic 3D plastic printing resulting in novel approaches that expand the ranges of both techniques. Combining 3D printing and flexible formwork does not necessarily suggest a unified design space and the development depends on thorough interrogation and critical assessment of the physical intelligence that emerges between digital design, manufacturing processes and structural integrity. This paper describes the initial prototyping of compound material behaviour in formwork and concrete, following the implicit rationales revealed through iterations and variations of physical experimentation. Such iterative feedback from physical prototyping informs and facilitates a discussion of the relationship between the manufacturing process and the design tool: How does the ultimate function as concrete shuttering transform the 3D printing process and how does this transformation conversely affect the shuttering design? How does a hierarchy of involved processes emerge and which composite opportunities do the initial results suggest as a further development into a coherent construction system?
keywords concrete; flexible formwork; 3D printing; robotic fabrication
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia19_674
id acadia19_674
authors Farahi, Benhaz
year 2019
title IRIDESCENCE: Bio-Inspired Emotive Matter
doi https://doi.org/10.52842/conf.acadia.2019.674
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.674-683
summary The Hummingbird is an amazing creature. The male Anna’s Hummingbird changes color from dark green to iridescence pink in his spectacular courtship. Can we exploit this phenomenon to produce color and shape changing material systems for the future of design? This paper describes the design process behind the interactive installation, Iridescence, through the logic of two interconnected themes, ‘morphology’ and ‘behavior’. Inspired by the gorget of the Anna’s hummingbird, this 3D printed collar is equipped with a facial tracking camera and an array of 200 rotating quills. The custom-made actuators flip their colors and start to make patterns, in response to the movement of onlookers and their facial expressions. The paper addresses how wearables can become a vehicle for self-expression, capable of influencing social interaction and enhancing one’s sensory experience of the world. Through the lens of this project, the paper proposes ‘bio-inspired emotive matter’ as an interdisciplinary design approach at the intersection of Affective Computing, Artificial Intelligence and Ethology, which can be applied in many design fields. The paper argues that bio-inspired material systems should be used not just for formal or performative reasons, but also as an interface for human emotions to address psycho-social issues.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id caadria2019_367
id caadria2019_367
authors Forren, James
year 2019
title Intelligent Systems and Mass Production of Form - Tacit and Explicit Information in Dynamic Concrete Molds
doi https://doi.org/10.52842/conf.caadria.2019.2.705
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 705-714
summary This paper constructs a lexicon of tacit intentionalities around tools and materials in computational design and fabrication contexts through a close study of dynamic molds. Drawing on historical, theoretical, and practice-based research we develop methods for reading, teaching, and designing with intelligence in computational design contexts in concert with the tacit information provided by tools and materials.
keywords Material computation; Dynamic mold; Human-technology interaction; Precast concrete technology
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_200
id ecaadesigradi2019_200
authors Ghandi, Mona
year 2019
title Cyber-Physical Emotive Spaces: Human Cyborg, Data, and Biofeedback Emotive Interaction with Compassionate Spaces
doi https://doi.org/10.52842/conf.ecaade.2019.2.655
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 655-664
summary This paper aims to link human's emotions and cognition to the built environment to improve the user's mental health and well-being. It focuses on cyber-physical adaptive spaces that can respond to the user's physiological and psychological needs based on their biological and neurological data. Through artificial intelligence and affective computing, this paper seeks to create user-oriented spaces that can learn from occupant's behavioral patterns in real-time, reduce user's anxiety and depression, enhance environmental quality, and promote more flexible human-centered designs for people with mental/physical disabilities. To achieve its objectives, this research integrates tangible computing devices/interfaces, robotic self-adjusting structures, interactive systems of control, programmable materials, human behavior, and a sensory network. Through embedded responsiveness and material intelligence, the goal is to blur the lines between the physical, digital, and biological spheres and create cyber-physical spaces that can "feel" and be controlled by the user's mind and feelings.
keywords AI for Design and Built Environment; Cyber-Physical Spaces; Artificial Emotional Intelligence; Human-Computer Interaction; Affective Computing; Mental Health and Well-Being; Interactive and Responsive Built Environments;
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_104
id caadria2019_104
authors Johan, Ryan, Chernyavsky, Michael, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Building Intelligence Through Generative Design - Structural analysis and optimisation informed by material performance
doi https://doi.org/10.52842/conf.caadria.2019.1.371
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 371-380
summary Generative design (GD) is the process of defining high-level goals and constraints and then using computation to automatically explore a range of solutions that meet the desired requirements. Generative processes are intelligent ways to fast-track early design stages. The outcomes are analyzed simultaneously to inform decisions for architects and engineers. Whilst material properties have been defined as a driving agent within generative systems to calculate structure, material performance or structural capacity are not linked with early decision-making. In response, this paper sets a constrained approach upon traditional and non-traditional materials to validate the feasibility of structures. A GD tool is developed within Grasshopper using C-sharp, Karamaba3D, Galapagos and various engineering formulas. The result is a script, which prioritizes the structural qualities of material as a driving factor within generative systems and facilitates communication across different expertise.
keywords Intelligent systems; generative design; material properties; structural analysis; evolutionary algorithms
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia19_664
id acadia19_664
authors Koshelyuk, Daniil; Talaei, Ardeshir; Garivani, Soroush; Markopoulou, Areti; Chronis, Angelo; Leon, David Andres; Krenmuller, Raimund
year 2019
title Alive
doi https://doi.org/10.52842/conf.acadia.2019.664
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 664-673
summary In the context of data-driven culture, built space still maintains low responsiveness and adaptability. Part of this reality lies in the low resolution of live information we have about the behavior and condition of surfaces and materials. This research addresses this issue by exploring the development of a deformation-sensing composite membrane material system following a bottom-up approach and combining various technologies toward solving related technical issues—exploring conductivity properties of graphene and maximizing utilization within an architecture-related proof-of-concept scenario and a workflow including design, fabrication, and application methodology. Introduced simulation of intended deformation helps optimize the pattern of graphene nanoplatelets (GNP) to maximize membrane sensitivity to a specific deformation type while minimizing material usage. Research explores various substrate materials and graphene incorporation methods with initial geometric exploration. Finally, research introduces data collection and machine learning techniques to train recognition of certain types of deformation (single point touch) on resistance changes. The final prototype demonstrates stable and symmetric readings of resistance in a static state and, after training, exhibits an 88% prediction accuracy of membrane shape on a labeled sample data-set through a pre-trained neural network. The proposed framework consisting of a simulation based, graphene-capturing fabrication method on stretchable surfaces, and includes initial exploration in neural network training shape detection, which combined, demonstrate an advanced approach to embedding intelligence.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia19_298
id acadia19_298
authors Leach, Neil
year 2019
title Do Robots Dream of Digital Sleep?
doi https://doi.org/10.52842/conf.acadia.2019.298
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 298-309
summary AI is playing an increasingly important role in everyday life. But can AI actually design? This paper takes its point of departure from Philip K Dick’s novel, Do Androids Dream of Electric Sheep? and refers to Google’s DeepDream software, and other AI techniques such as GANs, Progressive GANs, CANs and StyleGAN, that can generate increasingly convincing images, a process often described as ‘dreaming’. It notes that although generative AI does not possess consciousness, and therefore cannot literally dream, it can still be a powerful design tool that becomes a prosthetic extension to the human imagination. Although the use of GANs and other deep learning AI tools is still in its infancy, we are at the dawn of an exciting – but also potentially terrifying – new era for architectural design. Most importantly, the paper concludes, the development of AI is also helping us to understand human intelligence and 'creativity'.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ecaade2024_92
id ecaade2024_92
authors Mayor Luque, Ricardo; Beguin, Nestor; Rizvi Riaz, Sheikh; Dias, Jessica; Pandey, Sneham
year 2024
title Multi-material Gradient Additive Manufacturing: A data-driven performative design approach to multi-materiality through robotic fabrication
doi https://doi.org/10.52842/conf.ecaade.2024.1.381
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 381–390
summary Buildings are responsible for 39% of global energy-related carbon emissions, with operational activities contributing 28% and materials and construction accounting for 11%(World Green Building Council, 2019) It is therefore vital to reconsider our reliance on fossil fuels for building materials and to develop new advanced manufacturing techniques that enable an integrated approach to material-controlled conception and production. The emergence of Multi-material Additive Manufacturing (MM-AM) technology represents a paradigm shift in producing elements with hybrid properties derived from novel and optimized solutions. Through robotic fabrication, MM-AM offers streamlined operations, reduced material usage, and innovative fabrication methods. It encompasses a plethora of methods to address diverse construction needs and integrates material gradients through data-driven analyses, challenging traditional prefabrication practices and emphasizing the current growth of machine learning algorithms in design processes. The research outlined in this paper presents an innovative approach to MM-AM gradient 3D printing through robotic fabrication, employing data-driven performative analyses enabling control over print paths for sustainable applications in both the AM industry and our built environment. The article highlights several designed prototypes from two distinct phases, demonstrating the framework's viability, implications, and constraints: a workshop dedicated to data-driven analyses in facade systems for MM-AM 3D-printed brick components, and a 3D-printed brick facade system utilizing two renewable and bio-materials—Cork sourced from recycled stoppers and Charcoal, with the potential for carbon sequestration.
keywords Data-driven Performative design, Multi-material 3d Printing, Material Research, Fabrication-informed Material Design, Robotic Fabrication
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaadesigradi2019_302
id ecaadesigradi2019_302
authors Mrosla, Laura, Koch, Volker and von Both, Petra
year 2019
title Quo vadis AI in Architecture? - Survey of the current possibilities of AI in the architectural practice
doi https://doi.org/10.52842/conf.ecaade.2019.2.045
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-54
summary The permeation of various fields by the applications of artificial intelligence (AI) has arrived in the collective consciousness and is increasingly present in the physical world. Current results of AI research in the field of architecture illustrate that already today within every step of the architectural conception and fabrication approaches towards their automation are being made. Even the very human features of motivation and creativity aren't left untouched anymore. This paper discusses, on the basis of different concepts and examples, up to what extent the contemporary possible implementations of AI and their underlying algorithms are able to conquer the architectural profession. Furthermore, it presents a summary of an automation-concept for the whole profession.
keywords Artificial Neural Networks; Artificial Intelligence; Creativity; Architecture; Automatisation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_308
id ecaadesigradi2019_308
authors Yetkin, Ozan and Gönenç Sorguç, Arzu
year 2019
title Design Space Exploration of Initial Structural Design Alternatives via Artificial Neural Networks
doi https://doi.org/10.52842/conf.ecaade.2019.1.055
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 55-60
summary Increasing implementation of digital tools within a design process generates exponentially growing data in each phase, and inevitably, decision making within a design space with increasing complexity will be a great challenge for the designers in the future. Hence, this research aimed to seek potentials of captured data within a design space and solution space of a truss design problem for proposing an initial novel approach to augment capabilities of digital tools by artificial intelligence where designers are allowed to make a wise guess within the initial design space via performance feedbacks from the objective space. Initial structural design and modelling phase of a truss section was selected as a material of this study since decisions within this stage affect the whole process and performance of the end product. As a method, a generic framework was proposed that can help designers to understand the trade-offs between initial structural design alternatives to make informed decisions and optimizations during the initial stage. Finally, the proposed framework was presented in a case study, and future potentials of the research were discussed.
keywords design space; objective space; structural design; artificial intelligence; machine learning; optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id cf2019_055
id cf2019_055
authors Agirbas, Asli
year 2019
title A proposal for the use of fractal geometry algorithmically in tiling design
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 438-453
summary The design inspired by nature is an ongoing issue from the past to the present. There are many design examples inspired from nature. Fractal geometry formation, which is focused on this study, is a system seen in nature. A model based on fractal growth principle was proposed for tile design. In this proposal made with using Visual Programming Language, a tiling design experiment placed in a hexagonal grid system was carried out. Thus, a base was created for tile designs to be made using the fractal principle. The results of the case study were evaluated and potential future studies were discussed.
keywords Fractals, Tile design, Biomimetic design, Algorithmic design
series CAAD Futures
email
last changed 2019/07/29 14:18

_id cf2019_069
id cf2019_069
authors Caetano, Inês ;and António Leitão
year 2019
title Weaving Architectural Façades: Exploring algorithmic stripe-based design patterns
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 565-584
summary With the recent technological developments, particularly, the integration of computational design approaches in architecture, the traditional art techniques became increasingly important in the field. This includes weaving techniques, which have a promising application in architectural screens and façade designs. Nevertheless, the adoption of weaving as a design strategy still has many unexplored areas, particularly those related to Algorithmic Design (AD). This paper addresses the creation of weave-based façade patterns by presenting a Generative System (GS) that aids architects that intend to use AD in the design of façades inspired on traditional weaving techniques. This GS proves to reduce the time and effort spent with the programming task, while supporting the exploration of a wider solution space. Moreover, in addition to enabling the integration of user-generated weaving patterns, the GS also provides rationalization algorithms to assess the construction feasibility of the obtained solutions.
keywords Algorithmic Design, Façade Design, Weaving Patterns, Algorithmic Framework, Rationalization Processes
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:19

_id ecaadesigradi2019_179
id ecaadesigradi2019_179
authors Castelo-Branco, Renata, Leit?o, António and Santos, Guilherme
year 2019
title Immersive Algorithmic Design - Live Coding in Virtual Reality
doi https://doi.org/10.52842/conf.ecaade.2019.2.455
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 455-464
summary As many other areas of human activity, the architectural design process has been recently shaken by Virtual Reality (VR), as it offers new ways to experience and communicate architectural space. In this paper we propose Live Coding in Virtual Reality (LCVR), a design approach that allows architects to benefit from the advantages of VR within an algorithmic design workflow. LCVR integrates a live coding solution, where the architect programs his design intent and immediately receives feedback on the changes applied to the program; and VR, which means this workflow takes place inside the virtual environment, where the architect is immersed in the model that results from the program he is concurrently updating from inside VR. In this paper we discuss the possible impacts of such an approach, as well as the most pressing implementation issues. We offer a critical analysis and comparison of the various solutions available in the context of two different programming paradigms: visual and textual.
keywords Virtual Reality; Algorithmic Design; Live Coding
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_162925 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002