CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 83

_id ecaadesigradi2019_177
id ecaadesigradi2019_177
authors Ostrowska-Wawryniuk, Karolina
year 2019
title BIM-Aided Prefabrication for Minimum Waste DIY Timber Houses
doi https://doi.org/10.52842/conf.ecaade.2019.1.251
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 251-258
summary The continuous housing shortage demands efficient ways of design and construction. In the context of rising construction standards and shrinking manpower, one of the possible answers to the problem is prefabrication oriented towards do-it-yourself (DIY) construction methods, which could contribute to the low and middle income housing supply in the market. The article covers the process of developing an experimental tool for aiding single-family housing design with the use of small-element solid timber prefabrication, suitable for DIY assembly. The presented tool uses the potential of BIM technology adapting a traditionally-designed house to the needs of prefabrication and optimizing it in terms of waste generated in the assembly process. The presented experiment was realized in the Autodesk Revit environment and incorporates custom generative scripts developed in Dynamo-for-Revit. The prototype analyzed an input model and converted it into a prefabricated alternative based on the user- and technology-specified boundary conditions. The prototype was tested on the example design of a two-story single-family house. The results compare the automated optimized model conversion with manual adaptation approach. The implemented algorithm allowed for reducing the construction waste by more than 50%.
keywords do-it-yourself construction; do-it-yourself house; generative BIM; BIM-aided prefabrication; small-panel timber prefabrication; self-help housing
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id cf2019_053
id cf2019_053
authors Diarte, Julio ; Elena Vazquez and Marcus Shaffer
year 2019
title Tooling Cardboard for Smart Reuse: A Digital and Analog Workflow for Upcycling Waste Corrugated Cardboard as a Building Material
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 436
summary This paper is a description of a hybridized digital and analog workflow for reusing waste corrugated cardboard as a building material. The work explores a combination of digital design and analog fabrication tools to create a workflow that would help designers/builders to negotiate with the material variability of waste cardboard. The workflow discussed here was implemented for designing and fabricating a prototypical modular floor panel using different sheets of waste cardboard combined with repurposed wood. The implementation shows that combining digital and analog tools can create a novel approach to material reuse, and facilitate a design/fabrication culture of smart reuse that supports informal building and making at recycling collection centers in developing countries for housing alternatives
keywords Smart Reuse, Waste Cardboard Architecture, Digital Analog Workflow, Parametric Design
series CAAD Futures
email
last changed 2019/07/29 14:18

_id acadia23_v1_34
id acadia23_v1_34
authors Gascon Alvarez, Eduardo; Curth, Alexander (Sandy); Feickert, Kiley; Martinez Schulte, Dinorah; Mueller, Caitlin; Ismail, Mohamed
year 2023
title Algorithmic Design for Low-Carbon, Low-Cost Housing Construction in Mexico
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 34-38.
summary Mexico is one of the most urbanized countries in the Global South, and simultaneously faces a rapidly increasing population and a deluge of inadequate housing (URBANET 2019). In 2016, it was estimated that 40 percent of all private residences in Mexico were considered inadequate by UN-Habitat (UN-Habitat 2018). As informal housing constitutes over half of all Mexican housing construction, the most vulnerable groups of the population are particularly impacted. Therefore, there is a serious need to innovate in the area of low-cost building construction for housing in Mexico. This research explores how shape-optimized concrete and earth construction could help provide adequate housing without jeopardizing the country’s commitment to sustainability.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ijac201917105
id ijac201917105
authors Agkathidis, Asterios; Yorgos Berdos and André Brown
year 2019
title Active membranes: 3D printing of elastic fibre patterns on pre-stretched textiles
source International Journal of Architectural Computing vol. 17 - no. 1, 74-87
summary There has been a steady growth, over several decades, in the deployment of fabrics in architectural applications; both in terms of quantity and variety of application. More recently, three-dimensional printing and additive manufacturing have added to the palette of technologies that designers in architecture and related disciplines can call upon. Here, we report on research that brings those two technologies together – the development of active membrane elements and structures. We show how these active membranes have been achieved by laminating three-dimensional printed elasto-plastic fibres onto pre-stretched textile membranes. We report on a set of experimentations involving one-, two- and multi-directional geometric arrangements that take TPU 95 and polypropylene filaments and apply them to Lycra textile sheets, to form active composite panels. The process involves a parameterised design, actualised through a fabrication process including stress-line simulation, fibre pattern three-dimensional printing and the lamination of embossed patterns onto a pre-stretched membrane; followed by the release of tension afterwards in order to allow controlled, self-generation of the final geometry. Our findings document the investigation into mapping between the initial two-dimensional geometries and their resulting three-dimensional doubly curved forms. We also reflect on the products of the resulting, partly serendipitous, design process.
keywords Digital fabrication, three-dimensional printing, parametric design, material computation, fabrics
series journal
email
last changed 2019/08/07 14:04

_id acadia19_630
id acadia19_630
authors Ahlquist, Sean
year 2019
title Expanding the Systematic Agencyof a Material System
doi https://doi.org/10.52842/conf.acadia.2019.630
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 630-641
summary Computational design and fabrication have reached an accomplished level of ubiquity and proficiency in the field of architecture, in both academia and practice. Materiality driving structure, responsiveness, and spatial organization can be seen to evolve, in kind, with the capabilities to fabricate deeper material hierarchies. Such maturity of a procedural material-driven approach spurs a need to shift from the dictations of how to explorations of why material efficiencies, bespoke aesthetics, and performativity are critical to a particular architecture, requiring an examination of linkages between approach, techniques, and process. The material system defines a branch of architectural research utilizing bespoke computational techniques to generate performative material capacities that are inextricably linked to both internal and external forces and energies. This paper examines such a self-referential view to define an expanded ecological approach that integrates new modes of design agency and shift the material system from closed-loop relationship with site to open-ended reciprocation with human behavior. The critical need for this capacity is shown in applications of novel textile hybrid material systems—as sensorially-responsive environments for children with the neurological autism spectrum disorder—in ongoing research titled Social Sensory Architectures. Through engaging fabrication across all material scales, manners of elastic responsivity are shown, through a series of feasibility studies, to exhibit a capacity for children to become design agents in exploring the beneficial interrelationship of sensorimotor agency and social behavior. The paper intends to contribute a theoretical approach by which novel structural capacities of a material system can support a larger ecology of social and behavioral agency.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_605
id ecaadesigradi2019_605
authors Andrade Zandavali, Bárbara and Jiménez García, Manuel
year 2019
title Automated Brick Pattern Generator for Robotic Assembly using Machine Learning and Images
doi https://doi.org/10.52842/conf.ecaade.2019.3.217
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 217-226
summary Brickwork is the oldest construction method still in use. Digital technologies, in turn, enabled new methods of representation and automation for bricklaying. While automation explored different approaches, representation was limited to declarative methods, as parametric filling algorithms. Alternatively, this work proposes a framework for automated brickwork using a machine learning model based on image-to-image translation (Conditional Generative Adversarial Networks). The framework consists of creating a dataset, training a model for each bond, and converting the output images into vectorial data for robotic assembly. Criteria such as: reaching wall boundary accuracy, avoidance of unsupported bricks, and brick's position accuracy were individually evaluated for each bond. The results demonstrate that the proposed framework fulfils boundary filling and respects overall bonding structural rules. Size accuracy demonstrated inferior performance for the scale tested. The association of this method with 'self-calibrating' robots could overcome this problem and be easily implemented for on-site.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaadesigradi2019_592
id ecaadesigradi2019_592
authors Carvalho, Jo?o, Figueiredo, Bruno and Cruz, Paulo
year 2019
title Free-form Ceramic Vault System - Taking ceramic additive manufacturing to real scale
doi https://doi.org/10.52842/conf.ecaade.2019.1.485
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 485-492
summary The use of Additive Manufacturing (AM) for the production of architectural components has more and more examples attesting the possibilities and the advantages of its application. At the same time we seen a fast grow of the usage of ceramic materials to produce fully customised architectural components using Layer Deposition Modelling (LDM) [1] techniques. However, the use of this material, as paste, leads to a series of constraints relative to its behaviour when in the viscous state, but also in the drying and firing stages. Thus, when ceramic dries, the retraction effects may be a barrier to the regular use of this material to build future architectural systems. In this sense, it is important to study the material behaviour and know how to control and use it as a primary construction material. To do that we present the challenges and outcomes of project Hexashade, a ceramic vault shading system prototype whose geometry and internal structure is defined according to the solar incidence. This paper explain how we expect to build a real scale self-supporting prototype.
keywords Ceramic 3D printing; Additive Manufacturing; Vaulting Systems; Parametric Design; Performative Design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id acadia19_642
id acadia19_642
authors Chua, Pamela Dychengbeng; Hui, Lee Fu
year 2019
title Compliant Laminar Assemblies
doi https://doi.org/10.52842/conf.acadia.2019.642
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 642-653
summary This paper presents an innovative approach to the design and fabrication of three-dimensional objects from single-piece flat sheets, inspired by the origami technique of twist-closing. While in origami twist-closing is merely used to stabilize a cylindrical or spherical structure, ensuring it maintains its shape, this research investigates the potential of twist-closing as a multi-functional mechanism that also activates and controls the transformation of a planar surface into a predesigned three-dimensional form. This exploration is directed towards an intended application to stiff and brittle sheet materials that are difficult to shape through other processes. The methods we have developed draw mainly upon principles of lattice kirigami and laminar reciprocal structures. These are reflected in a workflow that integrates digital form-generation and fabrication-rationalization techniques to reference and apply these principles at every stage. Significant capabilities of the developed methodology include: (1) achievement of pseudo-double-curvature with brittle, stiff sheet materials; (2) stabilization in a 3D end-state as a frameless self-contained single-element laminar reciprocal structure—essentially a compliant mechanism; and (3) an ability to pre-encode 3D assembly constraints in a 2D cutout pattern, which guides a moldless fabrication process. The paper reviews the precedent geometric techniques and principles that comprise this method of 3D surface fabrication and describes a sample deployment of the method as applied to the design of laminar modules made of high-pressure laminate (HPL).
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2019_242
id caadria2019_242
authors Davidova, Marie
year 2019
title Intelligent Informed Landscapes - The Eco-Systemic Prototypical Interventions' Generative and Iterative Co-Designing Co-Performances, Agencies and Processes
doi https://doi.org/10.52842/conf.caadria.2019.2.151
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 151-160
summary The work fights for a shift from Anthropocene in urban environment through both, analogue and digital eco-systemic prototypical urban interventions, mixing biological as well as digital performances of post-digital landscape. It directly engages with the local human and non-human communities as well as it offers its online recipes and codes for DIY local iterations tagged in public space. Such intelligent and informed cultural landscape therefore covers several multi-layered generative and iterative agencies for its self-development.
keywords Systemic Approach to Architectural Performance; Intelligent Informed Landscapes; Post-Anthropocene; Eco-Systemic Prototypical Urban Interventions ; DIY
series CAADRIA
type normal paper
email
last changed 2024/01/09 06:23

_id cf2019_050
id cf2019_050
authors Erdine, Elif ; Giulio Gianni, Angel Fernando Lara Moreira, Alvaro Lopez Rodriguez, Yutao Song and Alican Sungur
year 2019
title Robot-Aided Fabrication of Light-Weight Structures with Sheet Metal Expansion
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 433
summary This paper presents a novel approach for the creation of metal lightweight self-supporting structures through the employment of metal kerfing and robotic sheet panel expansion. Research objectives focus on the synthesis of material behavior on a local scale and the structural performance on a global scale via advanced computational and robotic methods. There are inherent structural properties to expanded metal sheets which can be employed to achieve an integrated building system without the need for a secondary supporting structure. A computational workflow that integrates Finite Element Analysis, geometrical optimization, and robotic toolpath planning has been developed. This workflow is informed by the parameters of material experimentation on sheet metal kerfing and robotic sheet metal expansion on the local panel scale. The proposed methodology is applied on a range of panels with a custom-built robotic fabrication setup for the design, fabrication, and assembly of a one-to-one scale working prototype.
keywords Robotic fabrication, Robotic sheet metal expansion, Light-weight structure, Metal kerfing, Metal expansion
series CAAD Futures
email
last changed 2019/07/29 14:18

_id acadia19_674
id acadia19_674
authors Farahi, Benhaz
year 2019
title IRIDESCENCE: Bio-Inspired Emotive Matter
doi https://doi.org/10.52842/conf.acadia.2019.674
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.674-683
summary The Hummingbird is an amazing creature. The male Anna’s Hummingbird changes color from dark green to iridescence pink in his spectacular courtship. Can we exploit this phenomenon to produce color and shape changing material systems for the future of design? This paper describes the design process behind the interactive installation, Iridescence, through the logic of two interconnected themes, ‘morphology’ and ‘behavior’. Inspired by the gorget of the Anna’s hummingbird, this 3D printed collar is equipped with a facial tracking camera and an array of 200 rotating quills. The custom-made actuators flip their colors and start to make patterns, in response to the movement of onlookers and their facial expressions. The paper addresses how wearables can become a vehicle for self-expression, capable of influencing social interaction and enhancing one’s sensory experience of the world. Through the lens of this project, the paper proposes ‘bio-inspired emotive matter’ as an interdisciplinary design approach at the intersection of Affective Computing, Artificial Intelligence and Ethology, which can be applied in many design fields. The paper argues that bio-inspired material systems should be used not just for formal or performative reasons, but also as an interface for human emotions to address psycho-social issues.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_116
id ecaadesigradi2019_116
authors Fernando, Shayani
year 2019
title Collaborative Crafting of Interlocking Structures in Stereotomic Practice
doi https://doi.org/10.52842/conf.ecaade.2019.2.183
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 183-190
summary Situated within the art of cutting solids (stereotomy) and the evolution of machine tools; this research will investigate subtractive fabrication in relation to robotic carving of stone structures. The advancement of the industrial revolutions in the mid to late 19th century saw the rise of new building techniques and materials which were primarily based on structural steel construction. The modern aesthetic of the time further diminished the place of traditional stonework and ornamentation in modern structures within the building arts. This paper will focus on the design and fabrication of three sculptural dry-stone modular prototypes investigating interlocking self-supporting structures in stone. Examining the value of robotic technologies in the design and construction process in relation to collaborative crafting of the hand and machine. Accommodating for material tolerances which are a major factor in this research. Interrogating the value of robotic crafting with material implications and exploring the role of the artisan in machine crafted architectural components.
keywords Collaborative; Crafting; Interlocking; Structures; Robotic Fabrication; Digital Stone
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_200
id ecaadesigradi2019_200
authors Ghandi, Mona
year 2019
title Cyber-Physical Emotive Spaces: Human Cyborg, Data, and Biofeedback Emotive Interaction with Compassionate Spaces
doi https://doi.org/10.52842/conf.ecaade.2019.2.655
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 655-664
summary This paper aims to link human's emotions and cognition to the built environment to improve the user's mental health and well-being. It focuses on cyber-physical adaptive spaces that can respond to the user's physiological and psychological needs based on their biological and neurological data. Through artificial intelligence and affective computing, this paper seeks to create user-oriented spaces that can learn from occupant's behavioral patterns in real-time, reduce user's anxiety and depression, enhance environmental quality, and promote more flexible human-centered designs for people with mental/physical disabilities. To achieve its objectives, this research integrates tangible computing devices/interfaces, robotic self-adjusting structures, interactive systems of control, programmable materials, human behavior, and a sensory network. Through embedded responsiveness and material intelligence, the goal is to blur the lines between the physical, digital, and biological spheres and create cyber-physical spaces that can "feel" and be controlled by the user's mind and feelings.
keywords AI for Design and Built Environment; Cyber-Physical Spaces; Artificial Emotional Intelligence; Human-Computer Interaction; Affective Computing; Mental Health and Well-Being; Interactive and Responsive Built Environments;
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_262
id ecaadesigradi2019_262
authors Globa, Anastasia, Costin, Glenn, Wang, Rui, Khoo, Chin Koi and Moloney, Jules
year 2019
title Hybrid Environmental-Media Facade - Full-Scale Prototype Panel Fabrication
doi https://doi.org/10.52842/conf.ecaade.2019.2.685
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 685-694
summary This paper reports the design, fabrication and evaluation strategies of full-scale aluminium panel prototypes developed for a kinetic hybrid facade system. The concept of a hybrid facade system was proposed as a solution to maximise the value of kinetic intelligent building systems by repurposing the animation sunscreening as a low-resolution media display. The overarching research project investigates the potential, feasibility and real-life applications of a hybrid facade that integrates the: environmental, media and individual micro-control functions in one compound system that operates through autonomous wirelessly controlled hexagonal rotating panels. The study explores new ways of communication and connectivity in architectural and urban context, utilising and fusing together a wide range of technologies including: artificial intelligence, robotics, wireless control technologies, calibration of physical and digital simulations, development of fully autonomous self-organised and powered units and the use of additive digital manufacturing. This article reports the third research stage of the hybrid facade project development - the manufacture of full scale panel prototypes.
keywords kinetic facade; digital fabrication; full-scale prototype; intelligent building systems; hybrid facade
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id acadia19_234
id acadia19_234
authors Grewal, Neil; Escallon, Miguel; Chaudhary, Abhinav; Hramyka, Alina
year 2019
title INFRASONIC
doi https://doi.org/10.52842/conf.acadia.2019.234
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 234-245
summary In 2015, an earthquake of 7.8 magnitude displaced over 6.6 million people in Kathmandu, Nepal. Three years later, the country continues in its struggle to rebuild its capital. The aim of this study is to investigate a construction system, produced from locally sourced materials, that can aggregate and deploy as self-built, habitable infrastructure. The study focused on the relationship between material resonance, earthquake resistant structures, and fabrication strategies. An agent-based form-finding algorithm was developed using knowledge acquired through physical prototyping of mycelium-based composites to generate earthquake resistant geometries, optimize material usage, and enhance spatial performance. The results show compelling evidence for a construction methodology to design and construct a 3-4 story building that holds a higher degree of resistance to earthquakes. The scope of work contributes to advancements in bioengineering, confirming easy-to-grow, light-weight mycelium-composites as viable structural materials for construction.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia19_16
id acadia19_16
authors Hosmer, Tyson; Tigas, Panagiotis
year 2019
title Deep Reinforcement Learning for Autonomous Robotic Tensegrity (ART)
doi https://doi.org/10.52842/conf.acadia.2019.016
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 16-29
summary The research presented in this paper is part of a larger body of emerging research into embedding autonomy in the built environment. We develop a framework for designing and implementing effective autonomous architecture defined by three key properties: situated and embodied agency, facilitated variation, and intelligence.We present a novel application of Deep Reinforcement Learning to learn adaptable behaviours related to autonomous mobility, self-structuring, self-balancing, and spatial reconfiguration. Architectural robotic prototypes are physically developed with principles of embodied agency and facilitated variation. Physical properties and degrees of freedom are applied as constraints in a simulated physics-based environment where our simulation models are trained to achieve multiple objectives in changing environments. This holistic and generalizable approach to aligning deep reinforcement learning with physically reconfigurable robotic assembly systems takes into account both computational design and physical fabrication. Autonomous Robotic Tensegrity (ART) is presented as an extended case study project for developing our methodology. Our computational design system is developed in Unity3D with simulated multi-physics and deep reinforcement learning using Unity’s ML-agents framework. Topological rules of tensegrity are applied to develop assemblies with actuated tensile members. Single units and assemblies are trained for a series of policies using reinforcement learning in single-agent and multi-agent setups. Physical robotic prototypes are built and actuated to test simulated results.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
doi https://doi.org/10.52842/conf.acadia.2020.1.382
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia23_v1_180
id acadia23_v1_180
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title InterLoop
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 180-187.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2019_658
id caadria2019_658
authors Lange, Christian and Holohan, Donn
year 2019
title CeramicINformation Pavilion - Rethinking structural brick specials through an indexical 3D printing method
doi https://doi.org/10.52842/conf.caadria.2019.1.103
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 103-112
summary Complex brick construction is defined by its relationship to labor; it requires skilled workers in planning, manufacturing and assembly. In the modern era, this has been perceived as a significant drawback, and as such has resulted in brick construction being partially superseded by more rapid methods of fabrication, despite its inherent robustness and longevity. This paper describes the second stage of an ongoing research project which attempts to revitalize the material system of the brick special through the development of an intelligent 3d printing method that works in conjunction with a layman assembly procedure for a new class of self-supporting nonstandard brick structures. In this project, an indexed and geometrically informed jointing system, together with a parametric and digital workflow, enables rapid assembly on site without a requirement for complex site setup or skilled labor.
keywords Digital Fabrication; 3D clay printing; Brick Specials; Computational Design
series CAADRIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4HOMELOGIN (you are user _anon_723918 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002