CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 618

_id ecaadesigradi2019_051
id ecaadesigradi2019_051
authors Stojanovic, Vladeta, Trapp, Matthias, Richter, Rico, Hagedorn, Benjamin and Döllner, Jürgen
year 2019
title Semantic Enrichment of Indoor Point Clouds - An Overview of Progress towards Digital Twinning
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 809-818
doi https://doi.org/10.52842/conf.ecaade.2019.2.809
summary This paper presents an approach towards the development of a service-oriented platform for semantic enrichment of indoor point clouds. It mainly focuses on integrated methods for the capture of as-is 3D point clouds using commodity mobile hardware, classification of point cloud clusters using a multiview-based method, geometric reconstruction of room boundaries, interactive 3D visualization, sensor data visualization, and tracking of spatial changes and user annotations via a secure ledger. Implementing the methods in a prototypical web-based application, we demonstrate our approach for the semantic enrichment of indoor point clouds and the generation of base data for Digital Twin representation.
keywords Digital Twin; Indoor Point Cloud; Semantic Enrichment; Real Estate 4.0
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaade2023_259
id ecaade2023_259
authors Sonne-Frederiksen, Povl Filip, Larsen, Niels Martin and Buthke, Jan
year 2023
title Point Cloud Segmentation for Building Reuse - Construction of digital twins in early phase building reuse projects
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 327–336
doi https://doi.org/10.52842/conf.ecaade.2023.2.327
summary Point cloud processing has come a long way in the past years. Advances in computer vision (CV) and machine learning (ML) have enabled its automated recognition and processing. However, few of those developments have made it through to the Architecture, Engineering and Construction (AEC) industry. Here, optimizing those workflows can reduce time spent on early-phase projects, which otherwise could be spent on developing innovative design solutions. Simplifying the processing of building point cloud scans makes it more accessible and therefore, usable for design, planning and decision-making. Furthermore, automated processing can also ensure that point clouds are processed consistently and accurately, reducing the potential for human error. This work is part of a larger effort to optimize early-phase design processes to promote the reuse of vacant buildings. It focuses on technical solutions to automate the reconstruction of point clouds into a digital twin as a simplified solid 3D element model. In this paper, various ML approaches, among others KPConv Thomas et al. (2019), ShapeConv Cao et al. (2021) and Mask-RCNN He et al. (2017), are compared in their ability to apply semantic as well as instance segmentation to point clouds. Further it relies on the S3DIS Armeni et al. (2017), NYU v2 Silberman et al. (2012) and Matterport Ramakrishnan et al. (2021) data sets for training. Here, the authors aim to establish a workflow that reduces the effort for users to process their point clouds and obtain object-based models. The findings of this research show that although pure point cloud-based ML models enable a greater degree of flexibility, they incur a high computational cost. We found, that using RGB-D images for classifications and segmentation simplifies the complexity of the ML model but leads to additional requirements for the data set. These can be mitigated in the initial process of capturing the building or by extracting the depth data from the point cloud.
keywords Point Clouds, Machine Learning, Segmentation, Reuse, Digital Twins
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia19_332
id acadia19_332
authors Koerner, Andreas
year 2019
title Thermochromic Articulations
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 332- 337
doi https://doi.org/10.52842/conf.acadia.2019.332
summary The ongoing research presented in this paper lies on the threshold between computational design and digital fabrication with a strong focus on emergent techniques for environmental design. The main hypothesis is, that with an increasing granularity of thermal comfort - observing a trend towards more heterogeneous indoor microclimates – new design challenges arise. Architectural fabrics will be required to communicate indoor climate conditions to the inhabitants, to maintain high levels of thermal comfort locally but specifically. This research investigates a novel generative design methodology, which links computational fluid dynamics simulations, robotic fabrication and material-inert performances. The resulting environmentally active panels respond to climatic conditions and by this communicate parameters of thermal comfort, such as temperature, airflow, and humidity, to the inhabitants. This paper presents a digital design workflow, a prototype for a thermochromic panel, and speculates on potential development. Communicating invisible parameters of thermal comfort to users is a crucial requirement when designing large continuous indoor volumes, when blurring the dichotomous duality of inside and outside and when designing highly porous architecture.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_298
id ecaadesigradi2019_298
authors Zboinska, Malgorzata A.
year 2019
title Artistic computational design featuring imprecision - A method supporting digital and physical explorations of esthetic features in robotic single-point incremental forming of polymer sheets
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 719-728
doi https://doi.org/10.52842/conf.ecaade.2019.1.719
summary Design strategies that employ digital and material imprecision to achieve esthetic innovation exhibit high potential to transform the current precision-oriented practices of computation and digital fabrication in architecture. However, such strategies are still in their infancy. We present a design method facilitating intentionally-imprecise esthetic explorations within the framework of digital design and robotic single-point incremental forming. Our method gives access to the esthetic fine-tuning of molds from which architectural objects are cast. Semi-precise computational operations of extending, limiting, deepening and shallowing the geometrical deformations of the mold through robot toolpath fine-tuning are enabled by a digital toolkit featuring parametric modeling, surface curvature analyses, photogrammetry, digital photography and bitmap image retouching and painting. Our method demonstrates the shift of focus from geometric accuracy and control of material behaviors towards intentionally-imprecise digital explorations that yield novel esthetic features of architectural designs. By demonstrating the results of applying our method in the context of an exploration-driven design process, we argue that imprecision can be equally valid to accuracy, opening a vast, excitingly unknown territory for material-mediated esthetic explorations within digital fabrication. Such explorations can interestingly alter the esthetic canons and computational design methods of digital architecture in the nearest future.
keywords Artistic architectural design; artistic digital crafting; creative robotics; material agency; fabrication inaccuracies; robotic single-point incremental forming of polymers
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2019_332
id caadria2019_332
authors Dwivedi, Urvashi, Porcellini, Valentin, Hong, Sukjoo, Chang, Zhuming and Lee, Ji-Hyun
year 2019
title Computing Spatial Features to Allocate Collision-free Motion-paths for Tele-presence Avatars
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 245-254
doi https://doi.org/10.52842/conf.caadria.2019.1.245
summary Recently, indoor-intelligent services like "Tele-presence" have made quite an advancement. Therefore, to completely 1) understand the diverse indoor environment, 2) efficiently calculate similarity for semantic spaces and 3) for defining an efficient path movement for an augmented reality-based Avatar; we propose spatial features computation, graphical representation and Topology-based graph-similarity measure for complex domains to overcome the limited visibility of an Avatar. Thus, collision with the surrounding objects in a given indoor-space can be avoided. This study begins by securing spatial features of objects, e.g., furniture, doorways, etc., of an indoor environment from an FBSMAP (Function-Behaviour-Structure Map). Then, we establish a method for defining similarity for locations and paths.
keywords Tele-presence Avatar; Activity space; Topology; Spatial similarity; Similarity measure; Cell; Field of view.
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2019_234
id caadria2019_234
authors Bamborough, Chris
year 2019
title The Nature of Data in Early Modern Architectural Practice.
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 343-352
doi https://doi.org/10.52842/conf.caadria.2019.2.343
summary In contemporary data-driven society, forces of capital increasingly seek risk-averse decision making through data and digital calculation, aligned to this the discourse around design intelligence in architecture has begun to embrace the role of data and the technical non-human as much as the human. In parallel, the cultural understanding of data, in technologically mediated societies, has become tied to the digital representation of information experienced in everyday life, which in turn influences human practices. A problem exists in the dominance of scientific thought around data in architecture that exerts disciplinary bias towards quantity rather than quality. In contemporary digital practice, data is assumed to offer an objective characterisation of the world and have faithful representation through the mechanisms of the computer. From this shift, a macro question exists concerning the influence of data's conceptualisation on the physical products of architecture. To contribute to this overall question this paper considers the register of data in early modernism identified as a moment when scientific abstraction and the mapping capacity of the machine combine to afford recognisable data practices and infrastructures.
keywords Data; Design Practice; Infrastructure; History; Theory
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia19_642
id acadia19_642
authors Chua, Pamela Dychengbeng; Hui, Lee Fu
year 2019
title Compliant Laminar Assemblies
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 642-653
doi https://doi.org/10.52842/conf.acadia.2019.642
summary This paper presents an innovative approach to the design and fabrication of three-dimensional objects from single-piece flat sheets, inspired by the origami technique of twist-closing. While in origami twist-closing is merely used to stabilize a cylindrical or spherical structure, ensuring it maintains its shape, this research investigates the potential of twist-closing as a multi-functional mechanism that also activates and controls the transformation of a planar surface into a predesigned three-dimensional form. This exploration is directed towards an intended application to stiff and brittle sheet materials that are difficult to shape through other processes. The methods we have developed draw mainly upon principles of lattice kirigami and laminar reciprocal structures. These are reflected in a workflow that integrates digital form-generation and fabrication-rationalization techniques to reference and apply these principles at every stage. Significant capabilities of the developed methodology include: (1) achievement of pseudo-double-curvature with brittle, stiff sheet materials; (2) stabilization in a 3D end-state as a frameless self-contained single-element laminar reciprocal structure—essentially a compliant mechanism; and (3) an ability to pre-encode 3D assembly constraints in a 2D cutout pattern, which guides a moldless fabrication process. The paper reviews the precedent geometric techniques and principles that comprise this method of 3D surface fabrication and describes a sample deployment of the method as applied to the design of laminar modules made of high-pressure laminate (HPL).
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_309
id ecaadesigradi2019_309
authors Dokonal, Wolfgang and Medeiros, Marina Lima
year 2019
title I Want To Ride My Bicycle – I Want To Ride My Bike - Using low cost interfaces for Virtual reality
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 465-472
doi https://doi.org/10.52842/conf.ecaade.2019.2.465
summary The paper will give an overview of our experiments in the past years in developing different interfaces and workflows for the use of low cost Head Mounted Displays (HMD) for Virtual Reality solution. We are mainly interested in using VR tools for designers in the early phases of their design. In our opinion VR tools can help to bring back a better understanding of space and scale which have been lost a little bit in the last century with the change from analogue to digital tools. After teaching architectural and urban design for many years we can clearly say that this effect is still ongoing and it is time that we develop digital tools that try to reverses thi effect. We will then concentrate within this paper on discussing some aspects of data reduction that are important to be able to use these tools in the design process. We are also showing how we use our interfaces presenting some results of student projects for a design in Hong Kong and the strategies and methods for using VR for a ongoing work on a project about the establishment of a so called "bicycle highway" in the city of Graz in Austria.
keywords Virtual Reality; Head Mounted Displays; Low Cost Interfaces; EeZee click
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_398
id ecaadesigradi2019_398
authors Fink, Theresa and Koenig, Reinhard
year 2019
title Integrated Parametric Urban Design in Grasshopper / Rhinoceros 3D - Demonstrated on a Master Plan in Vienna
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 313-322
doi https://doi.org/10.52842/conf.ecaade.2019.3.313
summary By 2050 an estimated 70 percent of the world's population will live in megacities with more than 10 million citizens (Renner 2018). This growth calls for new target-oriented, interdisciplinary methods in urban planning and design in cities to meet sustainable development targets. In response, this paper exemplifies an integrated urban design process on a master plan project in Vienna. The objective is to investigate the potential towards a holistic, digital, urban design process aimed at the development of a practical methodology for future designs. The presented urban design process includes analyses and simulation tools within Rhinoceros 3D and its plug-in Grasshopper as quality-enhancing mediums that facilitate the creative approaches in the course of the project. The increase in efficiency and variety of design variants shows a promising future for the practical suitability of this approach.
keywords urban design; parametric modeling; urban simulation; design evaluation; environmental performance
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id caadria2019_663
id caadria2019_663
authors Gaudilliere, Nadja
year 2019
title Towards an History of Computational Tools in Automated Architectural Design - The Seroussi Pavilion Competition as a Case Study
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 581-590
doi https://doi.org/10.52842/conf.caadria.2019.2.581
summary The present research proposes a method to analyse computational tools at the architect's disposal and the potential technical bias they induce in architectural design. Six case studies will be used as a demonstration of the method's ability to highlight those biases and how architects and designers manipulate those tools to translate their architectural expertise into algorithmic design. Those case studies are the six answers to the Seroussi Pavilion competition, organized in 2007 by Natalie Seroussi, a Parisian gallery owner. Having a keen interest into computational design, she invited six architectural practices specializing in this field. As the six case studies answer the same design brief, it represents a particularly suitable opportunity to analyse the intricate relationship between architectural constraints, their translation into computational data and instructions and the programming tools used to do so. Through the analysis of four different aspects of the project - algorithmic tools/method, computational set-up, organizational chart and architectural design - several issues of the computational turn in architecture are discussed.
keywords digital heritage; computational design tools; architectural constraints; programming-based spatial design; Seroussi pavilion competition
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_510
id ecaadesigradi2019_510
authors Giannopoulou, Effima, Baquero, Pablo, Warang, Angad, Orciuoli, Affonso and T. Estévez, Alberto
year 2019
title Stripe Segmentation for Branching Shell Structures - A Data Set Development as a Learning Process for Fabrication Efficiency and Structural Performance
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 63-70
doi https://doi.org/10.52842/conf.ecaade.2019.3.063
summary This article explains the evolution towards the subject of digital fabrication of thin shell structures, searching for the computational design techniques which allow to implement biological pattern mechanisms for efficient fabrication procedures. The method produces data sets in order to analyse and evaluate parallel alternatives of branching topologies, segmentation patterns, material usage, weight and deflection values as a user learning process. The importance here is given to the selection of the appropriate attributes, referring to which specific geometric characteristics of the parametric model are affecting each other and with what impact. The outcomes are utilized to train an Artificial Neural Network to predict new building information based on new combinations of desired parameters so that the user can decide and adjust the design based on the new information.
keywords Digital Fabrication; Shell Structures; Segmentation; Machine Learning; Branching Topologies; Bio-inspired
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2020_426
id caadria2020_426
authors Goepel, Garvin and Crolla, Kristof
year 2020
title Augmented Reality-based Collaboration - ARgan, a bamboo art installation case study
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 313-322
doi https://doi.org/10.52842/conf.caadria.2020.2.313
summary ARgan is a geometrically complex bamboo sculpture that relied on Mixed Reality (MR) for its joint creation by multiple sculptors and used latest Augmented Reality (AR) technology to guide manual fabrication actions. It was built at the Chinese University of Hong Kong in the fall of 2019 by thirty participants of a design-and-build workshop on the integration of AR in construction. As part of its construction workflow, holographic setups were created on multiple devices, including a series of Microsoft HoloLenses and several handheld Smartphones, all linked simultaneously to a single digital base model to interactively guide the manufacturing process. This paper critically evaluates the experience of extending recent AR and MR tool developments towards applications that centre on creative collaborative production. Using ARgan as a demonstrator project, its developed workflow is assessed on its ability to transform a geometrically complex digitally drafted design to its final physically built form, highlighting the necessary strategic integration of variability as an opportunity to relax notions on design precision and exact control. The paper concludes with a plea for digital technology's ability to stimulate dialogue and collaboration in creative production and augment craftsmanship, thus providing greater agency and more diverse design output.
keywords Augmented-Reality; Mixed-Reality; Post-digital; High-tech vs low-tech; Bamboo
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_319
id ecaadesigradi2019_319
authors Hemmerling, Marco
year 2019
title TransDigital - A cooperative educational project between architecture and crafts
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 341-348
doi https://doi.org/10.52842/conf.ecaade.2019.1.341
summary Even though the computer acts as an effective interface for the cooperation of various actors involved in the construction, the success of a project depends crucially on the socio-cultural characteristics and disciplinary boundary conditions of the people involved. In addition to the technological challenges of digitisation, different working methods, requirements and objectives often represent an obstacle to the successful cooperation and execution of architectural projects. This is where we as a university are challenged to point out new ways that are geared to the future requirements of our professions and, as it were, integrate individual professional profiles. Against this background, the cooperative education project brought together architecture students and trainees in the carpentry trade in order to help them gain an understanding for their respective differing approaches and for their own expertise at an early stage in training, and thus experience the added value of a cooperative working method. The teaching of digital design and planning methods as well as the use of computer-aided production technologies were the vehicles for networked cooperation and integrative learning.
keywords cooperative learning; interdisciplinary collaboration; architecture curriculum; digital design and fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:49

_id ecaadesigradi2019_506
id ecaadesigradi2019_506
authors Kontovourkis, Odysseas, Georgiou, Christos, Stroumpoulis, Andreas, Kounnis, Constantinos, Dionyses, Christos and Bagdati, Styliana
year 2019
title Implementing Augmented Reality for the Holographic Assembly of a Modular Shading Device
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 149-158
doi https://doi.org/10.52842/conf.ecaade.2019.3.149
summary The development of innovative digital design and fabrication tools for material processing and manufacturing of complex and non-standard forms, apart from their advantages, have brought a number of challenges. These might be related to the effectiveness and sustainable potential of implementation associated with environmental, cost and time-related parameters, particularly in cases of large number of elements construction and complex assembly. Augmented Reality (AR) is an emerging technology with great potential for implementation in the construction industry, since it can enhance the real world with additional digital information, and thus, can assist towards manufacture and assemble of these particular systems. This study presents an AR methodology for assembling a modular shading device and discusses the advantages and disadvantages that this application can bring to the Architecture, Engineering and Construction (AEC) industry by taking into account precision and construction time issues based on the handling of the process by skilled and unskilled users/workers. Our aim is to investigate the potential implementation of AR in the assembly, and consequently, in the construction process as a whole. Also, this study aims at exploring existing constraints of the technology and suggests ways of improvement.
keywords Augmented Reality; Holographic assembly; Modular system; Shading device
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id acadia19_298
id acadia19_298
authors Leach, Neil
year 2019
title Do Robots Dream of Digital Sleep?
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 298-309
doi https://doi.org/10.52842/conf.acadia.2019.298
summary AI is playing an increasingly important role in everyday life. But can AI actually design? This paper takes its point of departure from Philip K Dick’s novel, Do Androids Dream of Electric Sheep? and refers to Google’s DeepDream software, and other AI techniques such as GANs, Progressive GANs, CANs and StyleGAN, that can generate increasingly convincing images, a process often described as ‘dreaming’. It notes that although generative AI does not possess consciousness, and therefore cannot literally dream, it can still be a powerful design tool that becomes a prosthetic extension to the human imagination. Although the use of GANs and other deep learning AI tools is still in its infancy, we are at the dawn of an exciting – but also potentially terrifying – new era for architectural design. Most importantly, the paper concludes, the development of AI is also helping us to understand human intelligence and 'creativity'.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_412
id ecaadesigradi2019_412
authors Leit?o de Souza, Thiago, Fialho, Valéria, Bicalho, Giovany, Schelk, Vinicius and Mendes, Isabella
year 2019
title An Immersive 360° Experience in Rio de Janeiro in the Late 19th Century - The panorama of Victor Meirelles and Henri Langerock
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 107-114
doi https://doi.org/10.52842/conf.ecaade.2019.3.107
summary This essay is related to the research project "The immersive experience in 360°: investigation, representation and digital immersion in the city of Rio de Janeiro in the 19th and 20th centuries", developed at PROURB in FAU-UFRJ, Rio de Janeiro/Brazil. This work will investigate the Panorama of Rio de Janeiro looking for memories and historical truths in its context: Which part represents a historical point of view? Which part is invention? How were the city and its landscape represented on the canvas? As the most well-known Rio de Janeiro's panorama, which project was idealized by the Brazilian painter Victor Meirelles de Lima (1832-1903) and the Belgian photo-painter Henri Charles Langerock (1830-1915), it was exhibited in Brussels 1888, Paris 1889, and Rio de Janeiro 1891-1896, with great recognition in all these cities. This paper will explore this Panorama, its initial studies, its landscape and the architecture depicted, newspapers descriptions of its exhibitions, and mainly, distinguishing among memories, historical truths and verisimilitudes. In order to achieve these objectives, digital and analogical systems of representations, sketches and computer graphics techniques, specially, tridimensional models will be developed and applied.
keywords Panorama of Rio de Janeiro; Immersive experience in 360°; Geolocation; Virtual Reality; Digital Technologies; Cultural Heritage
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_473
id caadria2019_473
authors Leung, Emily, Butler, Andrew, Asher, Rob, Gardner, Nicole and Haeusler, M. Hank
year 2019
title Redback BIM - Developing a Browser-based Modeling Application Software Taxonomy
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 775-784
doi https://doi.org/10.52842/conf.caadria.2019.1.775
summary Browser-based platforms (Google Docs or Minecraft) have instigated the value of collaborative environments. Browser-based modelling point out a future for the AEC industry. Yet at present no literature review nor a taxonomy of browser-based modelling platforms exist. A key outcome of a unique taxonomy framework of existing BMA characteristics reveals that current BMAs do not take full advantage of the web's unique capabilities such as centralising data across multiple tools within an 'ecosystem'. Consequently, this taxonomy has productively guided the development of Redback BIM, a proof-of-concept BMA that enables the coordination of BIM data in a collaborative online context. Redback BIM further demonstrates how, through establishing a universal data-type, a diverse range of scripts can be consolidated together in an online platform to enable greater accessibility for a range of AEC professionals towards improved project communication and efficiency.
keywords Web 2.0; browser-based modelling; taxonomy; software development; standardisation of processes
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_152
id ecaadesigradi2019_152
authors Liotta, Salvator-John A.
year 2019
title Contemporary Architecture between Research and Practice - Experimentations in Digital Wood
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 595-604
doi https://doi.org/10.52842/conf.ecaade.2019.1.595
summary This paper is a take on contemporary works in wood designed with parametric softwares and seen from an academic and professional point of view. The knowledge about digital wood developed through Digital Fabrication Laboratories has proved to be effective but with certain limitations when used for real constructions. In fact, translating the freedom of building temporary architectures -which is usually one of the "learn by doing" activities of design studio or workshops- into wood architecture that respect all the constraints of real construction is a challenge. This paper shows several experiences where innovative ideas developed through research have been applied to temporary pavilions and real constructions in Japan, Italy and France.
keywords Parametric design and fabrication strategies; Pedagogy and Practice; CNC and Woodworking Technology; Wood complex surface
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id caadria2019_407
id caadria2019_407
authors Loh, Paul, Leggett, David and Prohasky, Daniel
year 2019
title Robotic Fabrication of Doubly Curved Façade System - Constructing intelligence in the digital fabrication workflow
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 521-530
doi https://doi.org/10.52842/conf.caadria.2019.2.521
summary This paper presents a novel advance digital fabrication method to produce doubly curved concrete panel with no immediate waste as a facade system. Using a bespoke CNC adjustable mould frame system coupled with robotic trimming techniques, the research examines the streamlining of data within a cohesive fabrication workflow. The paper concludes by reviewing an integrated workflow that points towards a multifaceted system of design, engineering and advanced manufacturing that propel research to design application.
keywords Digital Fabrication; Design workflow; Robotic
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_456305 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002