CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id ecaadesigradi2019_658
id ecaadesigradi2019_658
authors Stouffs, Rudi
year 2019
title Predicates and Directives for a Parametric-associative Matching Mechanism for Shapes and Shape Grammars
doi https://doi.org/10.52842/conf.ecaade.2019.2.403
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 403-412
summary Predicates and directives are proposed to extend the versatility and expressivity of a shape rule specification 'language'. Specifically, a predicate serves to express a condition on the application of a parametric-associative shape rule that cannot simply be explicated within the left-hand side shape. A directive, on the other hand, is a value specification that is required when applying a parametric-associative shape rule, where this value specification cannot be derived from or expressed within the right-hand-side shape. We discuss the benefits of a set of predicates and directives to address seemingly simple requests that might actually be hard to express otherwise. Specifically, we elaborate on the motivation for introducing predicates and directives, and demonstrate the various predicates and directives in more detail, including their implementation.
keywords shape rule; shape grammar; predicate; directive; parametric-associative rule
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_136
id caadria2019_136
authors Dounas, Theodoros and Lombardi, Davide
year 2019
title Blockchain Grammars - Designing with DAOs - The blockchain as a design platform for shape grammarists' decentralised collaboration
doi https://doi.org/10.52842/conf.caadria.2019.2.293
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 293-302
summary This paper presents an application of Decentralised Autonomous Organisation (DAO) in the field of design and AEC industry. The model is applied in the realm of shape grammar proposing the possibility of allowing multiple grammarists to collaborate in the definition of a new grammar within a Blockchain environment that acts as a distributed ledger. DAOs systems and Blockchain are introduced as well as shape grammar and its fundamental rules. The collaborative nature of a DAO with the inner logic of shape grammar, which bases its principle and rules in multiple variations and combinations of simple initial shapes, brings to the problem of recording and validating changes and improvements in the design chain. For this reason, a voting system to govern the process is introduced, based on both quantitative values, i.e. number of votes, and qualitative power, i.e. the reputation of who votes, applying a factor that scales the vote according to the expertise of the voter. An example is provided showing a possible scenario in a design environment along with validation criteria, and predicting future stages applied in an always more BIM-oriented practice.
keywords Decentralised Autonomous Organisation; Shape Grammar; Intelligent organisms; Distributed Ledger; Blockchain;
series CAADRIA
email
last changed 2022/06/07 07:55

_id cf2019_061
id cf2019_061
authors Harrison, Laura ; Iestyn Jowers and Chris Earl
year 2019
title Defining Rules for Kinematic Shapes with Variable Spatial Relations
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 502
summary Designing mechanisms can be a challenging problem, because the underlying kinematics involved are typically not intuitively incorporated into common techniques for design representation. Kinematic shapes and kinematic grammars build on the shape grammar and making grammar formalisms to enable a visually intuitive approach to model and explore mechanisms. With reference to the lower kinematic pairs this paper introduces kinematic shapes. These are connected shapes with parts which have variable spatial relations that account for the relative motion of the parts. The paper considers how such shapes can be defined, the role of elements shared by connected parts, and the motions that result. It also considers how kinematic shape rules can be employed to generate and explore the motion of mechanisms.
keywords Shape grammars, kinematic design, making grammars, boundaries
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ecaade2024_4
id ecaade2024_4
authors Irodotou, Louiza; Gkatzogiannis, Stefanos; Phocas, Marios C.; Tryfonos, George; Christoforou, Eftychios G.
year 2024
title Application of a Vertical Effective Crank–Slider Approach in Reconfigurable Buildings through Computer-Aided Algorithmic Modelling
doi https://doi.org/10.52842/conf.ecaade.2024.1.421
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 421–430
summary Elementary robotics mechanisms based on the effective crank–slider and four–bar kinematics methods have been applied in the past to develop architectural concepts of reconfigurable structures of planar rigid-bar linkages (Phocas et al., 2020; Phocas et al., 2019). The applications referred to planar structural systems interconnected in parallel to provide reconfigurable buildings with rectangular plan section. In enabling structural reconfigurability attributes within the spatial circular section buildings domain, a vertical setup of the basic crank–slider mechanism is proposed in the current paper. The kinematics mechanism is integrated on a column placed at the middle of an axisymmetric circular shaped spatial linkage structure. The definition of target case shapes of the structure is based on a series of numerical geometric analyses that consider certain architectural and construction criteria (i.e., number of structural members, length, system height, span, erectability etc.), as well as structural objectives (i.e., structural behavior improvement against predominant environmental actions) aiming to meet diverse operational requirements and lightweight construction. Computer-aided algorithmic modelling is used to analyze the system's kinematics, in order to provide a solid foundation and enable rapid adaptation for mechanisms that exhibit controlled reconfigurations. The analysis demonstrates the implementation of digital parametric design tools for the investigation of the kinematics of the system at a preliminary design stage, in avoiding thus time-demanding numerical analysis processes. The design process may further provide enhanced interdisciplinary performance-based design outcomes.
keywords Reconfigurable Structures, Spatial Linkage Structures, Kinematics, Parametric Associative Design
series eCAADe
email
last changed 2024/11/17 22:05

_id cf2019_059
id cf2019_059
authors Ma, Lisha ; Xiaofang Yuan, Yu Wu and Wuzhen Zhu
year 2019
title A National Pattern Generation Method Based on Cultural Design Genetic Derivation
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 500
summary It is a great challenge to digitally generate emotionally satisfying patterns with national style characteristics to meet diversified consumer demands for national patterns. As the core of national culture’s gestation, growth and development, cultural genes can realize cultural inheritance and maintain national identity . From the view of design, the basic feature elements of cultural genes are extracted by original national pattern deconstruction and semantically summarized to form specific cultural design genes suitable for the rapid design of national pattern. Further, the topology principle and ComputerAided design is introduced to simultaneously generate pattern shapes using Self-Crossing and Cross-Crossing transformation by shape grammar. Then, the pattern elements are arranged according to the initial ethnic pattern composition rules to generate new series of ethnic patterns. Finally, Chinese Tibetan pattern is patterned as an example to demonstrate that this research can creates patterns faster and in line with the user's intent.
keywords National pattern, Cultural design gene, Pattern deconstruction, Shape grammar, Computer-Aided design
series CAAD Futures
email
last changed 2019/07/29 14:18

_id cf2019_063
id cf2019_063
authors Stouffs, Rudi
year 2019
title Shape rule types and spatial search
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 504
summary Searching for spatial objects in CAD tools is mostly based on the ability to compare properties of different objects. Instead, the matching mechanism(s) underlying a shape grammar interpreter offers a much wider potential for search, including the emergence of shapes that were unanticipated at the point of specification. This paper provides an overview of different rule types that can be discerned in the context of shape grammars, and explores the impact these have on the ability for search. It specifically considers two alternative matching algorithms, either determining a transformation matrix or an association of graphical elements, the latter complemented with constraining predicates, applying over different data types, e.g., shapes, shapes augmented with attributes, and descriptions, to provide for a wide range of spatial search variations.
keywords Spatial Search, Shape Rules, Description Rules, Rule Types
series CAAD Futures
email
last changed 2019/07/29 14:18

_id cf2019_062
id cf2019_062
authors Yousif, Shermeen ;and Wei Yan
year 2019
title Shape Clustering Using K-Medoids in Architectural Form Finding
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 503
summary As the number of design candidates in generative systems is often high, there is a need for an articulation mechanism that assists designers in exploring the generated design set. This research aims to condense the solution set yet enhance heterogeneity in generative design systems. Specifically, this work accomplishes the following: (1) introduces a new design articulation approach, a KMedoids Shape Clustering (KM-SC) method that is capable of grouping a dataset of shapes with similitude in one cluster and retrieving a representative for each cluster, and (2) incorporate the developed clustering method in architectural form finding. The articulated (condensed) set of shapes can be presented to designers to assist in their decision making. The research methods include formulating an algorithmic set with the implementation of K-Medoids and other algorithms. The results, visualized and discussed in the paper, show accurate clustering in comparison with the expected reference clustering sets.
keywords Generative design systems, clustering, form finding, K-Medoids
series CAAD Futures
email
last changed 2019/07/29 14:18

_id acadia19_60
id acadia19_60
authors Yousif, Shermeen; Yan, Wei
year 2019
title Application of an Automatic Shape Clustering Method
doi https://doi.org/10.52842/conf.acadia.2019.060
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 60-69
summary Despite their prevalence and extensive applications, generative and design optimization systems lack effective organizational methods of the excessive number of design options they produce, which is problematic for designers’ interaction. Ideally, a diverse and organized set of designs can mediate successful designers’ evaluation and exploration of the design space. Cluster analysis, a big-data management strategy, offers a solution. Yet, there is a need for investigating appropriate methods for applying cluster-analysis to a dataset of geometric shapes. Therefore, we have recently developed and published a new approach, the Shape Clustering using K-Medoids (SC-KM) method as an articulation mechanism in generative systems. The method involves shape description, shape difference measure calculation, and implementation of the K-Medoids clustering algorithm. The focus of this work is on incorporating the method into a generative system with parametric building shape generation and design optimization. The method organizes a dataset of shapes into clusters where shapes within the cluster share similarities yet differ from other clusters, and each cluster is signified by one representative shape. The SC-KM method contributes to an organized design presentation and facilitates designers’ examination of their designs’ geometric qualities.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id acadia19_510
id acadia19_510
authors Leder, Samuel; Weber, Ramon; Wood, Dylan; Bucklin, Oliver; Menges, Achim
year 2019
title Distributed Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2019.510
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 510-519
summary Advances in computational design and robotic building methods have the potential to enable architects to author more sustainable, efficient, and geometrically varied systems that shape our built environment. To fully harness this potential, the inherent relationship of design and building processes requires a fundamental shift in the way we design and how we build. High degree of customization in architectural projects and constantly changing conditions of construction environments pose significant challenges for the implementation of automated construction machines. Beyond traditional, human-inspired, industrial robotic building methods, we present a distributed robotic system where the robotic builders are designed in direct relationship with the material and architecture they assemble. Modular, collaborative, single axis robots are designed to utilize standardized timber struts as a basic building material, and as a part of their locomotion system, to create large-scale timber structures with high degrees of differentiation. The decentralized, multi-robot system uses a larger number of simple machines that collaborate in teams to work in parallel on varying tasks such as material transport, placement, and fixing. The research explores related architectural and robotic typologies to create timber structures with novel aesthetics and performances.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_146
id ecaadesigradi2019_146
authors Castro e Costa, Eduardo, Verniz, Debora, Varasteh, Siavash, Miller, Marc and Duarte, José
year 2019
title Implementing the Santa Marta Urban Grammar - a pedagogical tool for design computing in architecture
doi https://doi.org/10.52842/conf.ecaade.2019.2.349
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 349-358
summary We present a tool intended to enable non-expert users to apply and manipulate a shape grammar, SMUG, which encodes the urban design of informal settlements such as favelas. Such tool, the Interpreter, was developed considering that students would be its main users, and therefore we consider this grammar implementation to potentially be a multipurpose pedagogical tool since it supports conveying knowledge about urban design, shape grammars and parametric modeling using Grasshopper. This paper focuses on the development of the Interpreter and discusses the results of its use in a design studio, which can better inform subsequent iteration as well as other courses and schools.
keywords Shape grammars; Urban design; Design studio; Parametric modelling;
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_511
id ecaadesigradi2019_511
authors Guimar?es Sampaio, Hugo, Luna de Melo Jorge, Leonardo, Mour?o Fiuza, Rafael and Ribeiro Cardoso, Daniel
year 2019
title A New Approach to the Cultural Heritage Documentation Process
doi https://doi.org/10.52842/conf.ecaade.2019.1.569
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 569-576
summary Looking at the existing tools for preservation in patrimony, we perceive an over-appreciation in material heritage conservation over intangibles. Through the implementation of algorithmic documentation methodology, to obtain information that composes a certain cultural expression, this paper aims to present an attempt to expand the tools of documentation and registration of cultural heritage and also the applications of this approach for a language implementation with a propositional aspect.
keywords Cultural Heritage; Parametric Modeling; Process Documentation; Shape Grammar; Brazilian Design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id cf2019_039
id cf2019_039
authors Guo, Fei ; Eduardo Castro e Costa, Jose Duarte and Shadi Nazarian
year 2019
title Computational Implementation of a Tool for Generative Design of High-rise Residential Building Facades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 301-316
summary We propose a computational design tool that aims to provide more variety to the design of high-rise residential building facades. In contemporary cities, the pressure to build many high-rise residential buildings leaves little time to focus on facade design, resulting in repetitive facades that impart a monotonous appearance to cities. We propose a computational tool that can help to improve facade variety, based on shape grammars and parametric modeling. Shape grammars are used to analyze facade composition and to structure design knowledge. Subsequently, the grammars are converted into parametric models, which are implemented using the Python programming language that can be used to generate designs in CAD software. The resulting tool encodes a general parametric model that manipulates the rules of formal composition of building facades. Without limitations from software, the program takes advantage of the high-processing power of the computer to provide many design solutions from which architects can choose.
keywords Variety, Facades, Computational Design, Parametric Modeling, Shape Grammar
series CAAD Futures
email
last changed 2019/07/29 14:15

_id caadria2019_176
id caadria2019_176
authors Sandstrom, Alice and Park, Hyoung-June
year 2019
title Reflection in Action - An educational indie video game with design schema
doi https://doi.org/10.52842/conf.caadria.2019.2.303
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 303-312
summary This paper outlines the development of an educational indie video game in which a set of design rules are generated as a schema from player actions with the spatial components of architectural precedents in a given library. Each player's outcome is scored with its comparison to the functional sequences of the original precedent and its formal arrangement. The implementation of the proposed game within UNITY is introduced.
keywords Shape Grammar; Indie Game; Schema; Design Rules; Scoring
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_555
id ecaadesigradi2019_555
authors Bomfim, Kyane and Tavares, Felipe
year 2019
title Building facade optimization for maximizing the incident solar radiation
doi https://doi.org/10.52842/conf.ecaade.2019.2.171
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 171-180
summary The technological breakthrough on photovoltaic facades and the high potential for installing photovoltaic (PV) systems in the city of Salvador are the motivation for this article. This case study explores the feasibility of implementing solar energy technology on a building facade, proposing a design method for optimizing insolation performance by the form-finding process in a parameterized shape. The goal was to generate a parametric design workflow, in which it could be found some facade shapes, generating triangle and quadrilateral supporting grids, leading to better results in the total amount of radiation in comparison to the basic flat facade. In these supporting grids were evaluated also the fitting in the distribution of quadrilateral commercial PV cells, measuring its geometric compatibility. By the results, it could be verified the gains and losses in PV potential in several instances obtained by the form-finding process, as the potentials to consider this in the design of every building.
keywords Radiation skydome; Shape parameterization; Form-finding; Genetic Algorithm; PV facade
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_249
id ecaadesigradi2019_249
authors Chiarella, Mauro, Gronda, Luciana and Veizaga, Martín
year 2019
title RILAB - architectural envelopes - From spatial representation (generative algorithm) to geometric physical optimization (scientific modeling)
doi https://doi.org/10.52842/conf.ecaade.2019.3.017
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 17-24
summary Augmented graphical thinking operates by integrating algorithmic, heuristic, and manufacturing processes. The Representation and Ideation Laboratory (RILAB-2018) exercise begins with the application of a parametric definition developed by the team of teachers, allowing for the construction of structural systems by the means of the combination of segmental shells and bending-active. The main objetive is the construction of a scientific model of simulation for bending-active laminar structures has brought into reality trustworthy previews for architectural envelopes through the interaction of parametrized relational variables. This way we put designers in a strategic role for the building of the pre-analysis models, allowing more preciseness at the time of picking and defining materials, shapes, spaces and technologies and thus minimizing the decisions based solely in the definition of structural typological categories, local tradition or direct experience. The results verify that the strategic integration of models of geometric physical optimization and spatial representation greatly expand the capabilities in the construction of the complex system that operates in the act of projecting architecture.
keywords architectural envelopes; augmented graphic thinking; geometric optimization; bending-active
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id acadia19_500
id acadia19_500
authors Larsen, Niels Martin; Anders Kruse Aagaard
year 2019
title Exploring Natural Wood
doi https://doi.org/10.52842/conf.acadia.2019.500
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 500-509
summary By investigating methods for using computation and digital manufacturing technologies to integrate material properties with architectural design tools, the research in this paper aims at revealing new potentials for the use of wood in architecture. Through an explorative approach, material particularities and fabrication methods are explored and combined into new workflows and architectural expressions. The research looks into different properties and capacities of wood, but the main part of the experimentation revolves around crooked oak logs. Due to their irregularities, these logs are normally discarded. However, through the methods suggested in this research, they are instead matched with unique processing informed by their divergence. The research presents a workflow for handling the discrete shapes of sawlogs in a system that both involve the collecting of material, scanning/digitization, handling of a stockpile, computer analysis, design, and robotic manufacturing. The workflow includes multiple custom-made solutions for handling the complex and different shapes and data of wood logs in a highly digitized machining and fabrication environment. The suggested method is established through investigations of wood as a natural material, studies of the production lines in the current wood industry, and experimentation in our in-house laboratory facilities. This up-cycling of discarded wood supply establishes a non-standard workflow that utilizes non-standard material stock and leads to a critical articulation of today’s linear material economy. The research thereby gives an example of how the natural forms and properties of sawlogs can be directly used to generate new structures and spatial conditions.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia19_586
id acadia19_586
authors Mitterberger, Daniela; Derme, Tiziano
year 2019
title Soil 3D Printing
doi https://doi.org/10.52842/conf.acadia.2019.586
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 586-595
summary Despite, the innovation of additive manufacturing (AM) technology, and in spite of the existence of natural bio-materials offering notable mechanical properties, materials used for AM are not necessarily more sustainable than materials used in traditional manufacturing. Furthermore, potential material savings may be partially overshadowed by the relative toxicity of the material and binders used for AM during fabrication and post-fabrication processes, as well as the energy usage necessary for the production and processing workflow. Soil as a building material offers a cheap, sustainable alternative to non-biodegradable material systems, and new developments in earth construction show how earthen buildings can create light, progressive, and sustainable structures. Nevertheless, existing large-scale earthen construction methods can only produce highly simplified shapes with rough detailing. This research proposes to use robotic additive manufacturing processes to overcome current limitations of constructing with earth, supporting complex three-dimensional geometries, and the creation of novel organic composites. More specifically the research focuses on robotic binder-jetting with granular bio-composites and non-toxic binding agents such as hydrogels. This paper is divided into two main sections: (1) biodegradable material system, and (2) multi-move robotic process, and describes the most crucial fabrication parameters such as compaction pressure, density of binders, deposition strategies and toolpath planning as well as identifying the architectural implications of using this novel biodegradable fabrication process. The combination of soil and hydrogel as building material shows the potential of a fully reversible construction process for architectural components and foresees its potential full-scale architectural implementations.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_126
id ecaadesigradi2019_126
authors Szabo, Anna, Lloret-Fritschi, Ena, Reiter, Lex, Gramazio, Fabio, Kohler, Matthias and J. Flatt, Robert
year 2019
title Revisiting Folded Forms with Digital Fabrication
doi https://doi.org/10.52842/conf.ecaade.2019.2.191
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 191-200
summary This paper discusses the potential of emerging digital fabrication techniques to produce material-efficient thin folded concrete structures. Although in the 50s and 60s folded structures provided a common optimal solution for spanning large distances without additional vertical supports, today, the number of these projects decreased significantly due to their complicated formworks and labour-intensive realization. Digital fabrication methods for concrete hold the promise to efficiently produce intricate folded mass-customized shapes with enhanced load-bearing capacity. This paper focuses on a robotic slip-forming process, Smart Dynamic Casting (SDC), to produce various thin-walled folded concrete elements with the same formwork providing smooth surface finish and gradual variations along the height. An empirical research methodology was applied to evaluate the fabrication feasibility of digitally designed thin folded geometries with one-to-one scale prototypes. Despite the discovered design limitations due to fabrication and material constraints, the exploration led to a new promising research direction, termed 'Digital Casting'.
keywords folded structures; digital concrete; Smart Dynamic Casting; set on demand; Digital Casting
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_407
id ecaadesigradi2019_407
authors Capone, Mara, Lanzara, Emanuela, Marsillo, Laura and Nome Silva, Carlos Alejandro
year 2019
title Responsive complex surfaces manufacturing using origami
doi https://doi.org/10.52842/conf.ecaade.2019.2.715
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 715-724
summary Contemporary architecture is considered a dynamic system, capable of adapting to different needs, from environmental to functional ones. The term 'Adaptable Architecture' describes an architecture from which specific components can be changed in relation to external stimuli. This change could be executed by the building system itself, transformed manually or it could be any other ability to be transformed by external forces (Leliveld et al.2017). Adaptability concept is therefore linked to motion and to recent advances in kinetic architecture. In our research we are studying the rules that we can use to design a kinetic architecture using origami. Parametric design allows us to digitally simulate the movement of origami structures, we are testing algorithmic modeling to generate doubly curvature surfaces starting from a designed surface and not from the process. Our main goal is to study the relationship between geometry, motion and shape. We are interested, in particular, in complex surface manufacture using origami technique to design a kinetic and reactive ceiling.
keywords Origami; complex surface manufacture; responsive architecture; Applied Geometry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id acadia19_642
id acadia19_642
authors Chua, Pamela Dychengbeng; Hui, Lee Fu
year 2019
title Compliant Laminar Assemblies
doi https://doi.org/10.52842/conf.acadia.2019.642
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 642-653
summary This paper presents an innovative approach to the design and fabrication of three-dimensional objects from single-piece flat sheets, inspired by the origami technique of twist-closing. While in origami twist-closing is merely used to stabilize a cylindrical or spherical structure, ensuring it maintains its shape, this research investigates the potential of twist-closing as a multi-functional mechanism that also activates and controls the transformation of a planar surface into a predesigned three-dimensional form. This exploration is directed towards an intended application to stiff and brittle sheet materials that are difficult to shape through other processes. The methods we have developed draw mainly upon principles of lattice kirigami and laminar reciprocal structures. These are reflected in a workflow that integrates digital form-generation and fabrication-rationalization techniques to reference and apply these principles at every stage. Significant capabilities of the developed methodology include: (1) achievement of pseudo-double-curvature with brittle, stiff sheet materials; (2) stabilization in a 3D end-state as a frameless self-contained single-element laminar reciprocal structure—essentially a compliant mechanism; and (3) an ability to pre-encode 3D assembly constraints in a 2D cutout pattern, which guides a moldless fabrication process. The paper reviews the precedent geometric techniques and principles that comprise this method of 3D surface fabrication and describes a sample deployment of the method as applied to the design of laminar modules made of high-pressure laminate (HPL).
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_411208 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002