CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id sigradi2020_549
id sigradi2020_549
authors Rodríguez-Velásquez, Maribel
year 2020
title Socio-technical interactions in the relationship between social movements and internet: a review of the state of the art and the theoretical framework
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 549-554
summary The paper recognizes the relationship between social movements and internet how new practices of resistance through technological appropriation (Castells, 2012). This social interaction mediated by technology, understood as socio-technical interaction, establish new dynamics between human-technology-human and other heterogeneous actants (Latour, 2008), such as power and counter-power institutions that also connect to the socio-technical network. Therefore, the studies about digital interaction of the instrumental line are expanded, towards an understanding of socio-technical interactions, from the dynamics of design/use interconnected with cultural, political and economic contexts (Scolari, 2004, 2019), because the technology must satisfy social needs.
keywords Socio-technical interaction, Social movements, Internet, Human-Computer Interaction, Socio- technical network
series SIGraDi
email
last changed 2021/07/16 11:52

_id caadria2019_081
id caadria2019_081
authors Sheldon, Aron, Dobbs, Tiara, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank, Ramos, Cristina and Zavoleas, Yannis
year 2019
title Putting the AR in (AR)chitecture - Integrating voice recognition and gesture control for Augmented Reality interaction to enhance design practice
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 475-484
doi https://doi.org/10.52842/conf.caadria.2019.1.475
summary The architectural design process involves the development of spatial explorable 3D models, but the computer screen is main medium to communicate information to clients. Yet, Augmented Reality (AR) and Virtual Reality (VR) are the closest way to replicate our world, create new ones and interact within them. AR and VR headsets offer different ways to allow multiple stakeholders to effectively immerse themselves in 3D representations of design projects. But, to interact within these spaces and to perform design modifications, the development of new workflows is required. This research presents a new method where AR is used to visualize and edit project models using both voice recognition and hand-gestures software. While numerous projects are addressing software interoperability issues, user-interaction in an AR space remains a developing area of crucial relevance in research. Although hand-gestures are the usual form of model-state control employed in such systems, voice-control is emerging as a highly desirable and everyday form of human-computer interaction. This paper presents a plugin for the Hololens that allows the user to use voice and hand gestures to enhance the ability to work with 3D models and discusses and evaluates the project.
keywords Augmented Reality; Design Workflows; Interaction Design; Voice Recogition; Gesture Recognition
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia19_258
id acadia19_258
authors Bar-Sinai, Karen Lee; Shaked, Tom; Sprecher, Aaron
year 2019
title Informing Grounds
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 258-265
doi https://doi.org/10.52842/conf.acadia.2019.258
summary Advancements in robotic fabrication are enabling on-site construction in increasingly larger scales. In this paper, we argue that as autonomous tools encounter the territorial scale, they open new ways to embed information into it. To define the new practice, this paper introduces a protocol combining a theoretical framework and an iterative process titled Informing Grounds. This protocol mediates and supports the exchange of knowledge between a digital and a physical environment and is applicable to a variety of materials with uncertain characteristics in a robotic manufacturing scenario. The process is applied on soil and demonstrated through a recent design-to-fabrication workshop that focused on simulating digital groundscaping of distant lunar grounds employing robotic sand-forming. The first stage is ‘sampling’—observing the physical domain both as an initial step as well as a step between the forming cycles to update the virtual model. The second stage is ‘streaming’—the generation of information derived from the digital model and its projection onto the physical realm. The third stage is ‘transforming’—the shaping of the sand medium through a physical gesture. The workshop outcomes serve as the basis for discussion regarding the challenges posed by applying autonomous robotic tools on materials with uncertain behavior at a large-scale.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia19_674
id acadia19_674
authors Farahi, Benhaz
year 2019
title IRIDESCENCE: Bio-Inspired Emotive Matter
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.674-683
doi https://doi.org/10.52842/conf.acadia.2019.674
summary The Hummingbird is an amazing creature. The male Anna’s Hummingbird changes color from dark green to iridescence pink in his spectacular courtship. Can we exploit this phenomenon to produce color and shape changing material systems for the future of design? This paper describes the design process behind the interactive installation, Iridescence, through the logic of two interconnected themes, ‘morphology’ and ‘behavior’. Inspired by the gorget of the Anna’s hummingbird, this 3D printed collar is equipped with a facial tracking camera and an array of 200 rotating quills. The custom-made actuators flip their colors and start to make patterns, in response to the movement of onlookers and their facial expressions. The paper addresses how wearables can become a vehicle for self-expression, capable of influencing social interaction and enhancing one’s sensory experience of the world. Through the lens of this project, the paper proposes ‘bio-inspired emotive matter’ as an interdisciplinary design approach at the intersection of Affective Computing, Artificial Intelligence and Ethology, which can be applied in many design fields. The paper argues that bio-inspired material systems should be used not just for formal or performative reasons, but also as an interface for human emotions to address psycho-social issues.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id cf2019_022
id cf2019_022
authors Koh, Immanuel and Jeffrey Huang
year 2019
title Citizen Visual Search Engine:Detection and Curation of Urban Objects
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 170
summary Increasingly, the ubiquity of satellite imagery has made the data analysis and machine learning of large geographical datasets one of the building blocks of visuospatial intelligence. It is the key to discover current (and predict future) cultural, social, financial and political realities. How can we, as designers and researchers, empower citizens to understand and participate in the design of our cities amid this technological shift? As an initial step towards this broader ambition, a series of creative web applications, in the form of visual search engines, has been developed and implemented to data mine large datasets. Using open sourced deep learning and computer vision libraries, these applications facilitate the searching, detecting and curating of urban objects. In turn, the paper proposes and formulates a framework to design truly citizen-centric creative visual search engines -- a contribution to citizen science and citizen journalism in spatial terms.
keywords Deep Learning, Computer Vision, Satellite Imagery, Citizen Science, Artificial Intelligence
series CAAD Futures
email
last changed 2019/07/29 14:08

_id caadria2019_256
id caadria2019_256
authors Lertsithichai, Surapong
year 2019
title Augemented Architecture - Interplay between Digital and Physical Environments
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 353-362
doi https://doi.org/10.52842/conf.caadria.2019.2.353
summary In an increasingly connected world where computers are everywhere, surrounding us in embedded small portable devices, appliances and inside buildings, implementing these interconnected and embedded computers have now become common practice in the design of smart spaces and intelligent environments of today. Digital information is constantly being collected and distributed by a network of digital devices communicating with users and vice versa. New behaviors and activities that may have not been considered before in the design of architectural building types are now commonly found in public and private spaces throughout the world. In an attempt to explore and experiment with the concept of interplay between digital and physical environments, an option studio was proposed to 4th year architecture students to develop a new type of augmented architecture that corresponds to changes in human social behavior due to digital technologies. Five pilot projects are presented with experiments conducted to question three social activities commonly found in everyday lives using Arduino prototypes installed in real physical locations. The prototypes were then used as a basis for the development of large-scale projects proposed as augmented architecture.
keywords Human-Computer Interaction; Ubiquitous Computing; Virtual / Augmented Reality; Computational Design Research; IoT for Built Environments
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_307
id caadria2019_307
authors Nguyen, Binh Vinh Duc, Peng, Chengzhi and Wang, Tsung-Hsien
year 2019
title KOALA - Developing a generative house design system with agent-based modelling of social spatial processes
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 235-244
doi https://doi.org/10.52842/conf.caadria.2019.1.235
summary The paper presents the development of an agent-based approach to modelling the interaction of human emotion and behaviour with built spaces. The study addresses how human behaviour and social relation can be represented and modelled to interact with a virtual built environment composed in parametric architectural geometry. KOALA, a prototype of agent-based modelling of social spatial dynamics at the core of a parametric architectural design environment is proposed. In building KOALA's system architecture, we adapted the PECS (Physical, Emotional, Cognitive, Social) reference model of human behaviour (Schmidt 2002) and introduced the concept of Social Spatial Comfort as a measurement of three key factors influencing human spatial experiences. KOALA was evaluated by a comparative modelling of two contrasting Vietnamese dwellings known to us. As expected, KOALA returns very different temporal characteristics of spatial modifications of the two dwellings over a simulated timeframe of one year. We discuss the lessons learned and further research required.
keywords Parametricism; generative house design system; architectural parametric geometry; human behaviour; social-spatial dynamics
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2020_138
id ecaade2020_138
authors Patel, Sayjel Vijay, Tchakerian, Raffi, Lemos Morais, Renata, Zhang, Jie and Cropper, Simon
year 2020
title The Emoting City - Designing feeling and artificial empathy in mediated environments
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 261-270
doi https://doi.org/10.52842/conf.ecaade.2020.2.261
summary This paper presents a theoretical blueprint for implementing artificial empathy into the built environment. Transdisciplinary design principles have oriented the creation of a new model for autonomous environments integrating psychology, architecture, digital media, affective computing and interactive UX design. 'The Emoting City', an interactive installation presented at the 2019 Shenzhen Bi-City Biennale of Urbanism/Architecture, is presented as a first step to explore how to engage AI-driven sensing by integrating human perception, cognition and behaviour in a real-world scenario. The approach described encompasses two main elements: embedded cyberception and responsive surfaces. Its human-AI interface enables new modes of blended interaction that are conducive to self-empathy and insight. It brings forth a new proposition for the development of sensing systems that go beyond social robotics into the field of artificial empathy. The installation innovates in the design of seamless affective computing that combines 'alloplastic' and 'autoplastic' architectures. We believe that our research signals the emergence of a potential revolution in responsive environments, offering a glimpse into the possibility of designing intelligent spaces with the ability to sense, inform and respond to human emotional states in ways that promote personal, cultural and social evolution.
keywords Artificial Intelligence; Responsive Architecture; Affective Computation; Human-AI Interfaces; Artificial Empathy
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_088
id ecaadesigradi2019_088
authors Sardenberg, Victor, Burger, Theron and Becker, Mirco
year 2019
title Aesthetic Quantification as Search Criteria in Architectural Design - Archinder
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 17-24
doi https://doi.org/10.52842/conf.ecaade.2019.1.017
summary The paper describes a research experiment of incorporating quantitative aesthetic evaluation and feeding the metric back into a parametric model to steer the search within the design space for a high-ranking design solution. The experiment is part of a longer-standing interest and research in quantitative aesthetics. A web platform inspired by dating apps was developed to retrieve an aesthetic score of images (drawings and photographs of architectural projects). The app and scoring system was tested for functionality against an existing dataset of aesthetic measure (triangles, polygon nets). In the actual experiment, an evolutionary algorithm generated images of design candidates (phenotypes) and used the aesthetic score retrieved by the "crowd" of app users as a fitness function for the next generation/population. The research is in the tradition of empirical aesthetics of G. T. Fechner (Fechner, 1876), using a web app to crowdsource aesthetic scores and using these to evolve design candidates. The paper describes how the system is set up and presents its results in four distinct exercises.
keywords Quantitative Aesthetics; Social Media; Crowdsourcing; Collaborative Design; Human-Computer interaction
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id acadia19_30
id acadia19_30
authors Varshney, Ishaan; Doherty, Ben
year 2019
title A Plane of Thrones
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 30-39
doi https://doi.org/10.52842/conf.acadia.2019.030
summary Creating workplace seating plans is currently a laborious task carried out based on intuition with potentially suboptimal outcomes. A data informed seating plan generator could see an increase in organizational success metrics. In this paper, we present a modular framework for using a social network, a spatial network, and an organization objective to generate data-informed seating plans for a design firm. In addition, an open-source tool was created to allow individuals in an organization to evaluate prospective arrangements. This implementation gave employees more agency by informing their seating decisions as well as the ability to better inform their intuitions about seating arrangements.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ijac201917404
id ijac201917404
authors Erdolu, Emek
year 2019
title Lines, triangles, and nets: A framework for designing input technologies and interaction techniques for computer-aided design
source International Journal of Architectural Computing vol. 17 - no. 4, 357-381
summary This article serves to the larger quest for increasing our capacities as designers, researchers, and scholars in understanding and developing human-computer interaction in computer-aided design. The central question is on how to ground the related research work in input technologies and interaction techniques for computer-aided design applications, which primarily focus on technology and implementation, within the actual territories of computer-aided design processes. To discuss that, the article first reviews a collection of research studies and projects that present input technologies and interaction techniques developed as alternative or complimentary to the mouse as used in computer-aided design applications. Based on the mode of interaction, these studies and projects are traced in four categories: hand-mediated systems that involve gesture- and touch-based techniques, multimodal systems that combine various ways of interaction including speech-based techniques, experimental systems such as brain-computer interaction and emotive-based techniques, and explorations in virtual reality- and augmented reality-based systems. The article then critically examines the limitations of these alternative systems related to the ways they have been envisioned, designed, and situated in studies as well as of the two existing research bases in human-computer interaction in which these studies could potentially be grounded and improved. The substance of examination is what is conceptualized as “frameworks of thought”—on variables and interrelations as elements of consideration within these efforts. Building upon the existing frameworks of thought, the final part discusses an alternative as a vehicle for incorporating layers of the material cultures of computer-aided design in designing, analyzing, and evaluating computer-aided design-geared input technologies and interaction techniques. The alternative framework offers the potential to help generate richer questions, considerations, and avenues of investigation.
keywords Computer-aided design (CAD), human-computer interaction (HCI), input technologies and interaction techniques, material culture of computer-aided design (CAD), architectural design, engineering design, computational design
series journal
email
last changed 2020/11/02 13:34

_id acadia19_40
id acadia19_40
authors Garcia del Castillo y López, Jose Luis
year 2019
title Robot Ex Machina
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 40-49
doi https://doi.org/10.52842/conf.acadia.2019.040
summary Industrial robotic arms are increasingly present in digital fabrication workflows due to their robustness, degrees of freedom, and potentially large scale. However, the range of possibilities they provide is limited by their typical software control paradigms, specifically offline programming. This model requires all the robotic instructions to be pre-defined before execution, a possibility only affordable in highly predictable environments. But in the context of architecture, design and art, it can hardly accommodate more complex forms of control, such as responding to material feedback, adapting to changing conditions on a construction site, or on-the-fly decision-making. We present Robot Ex Machina, an open-source computational framework of software tools for real-time robot programming and control. The contribution of this framework is a paradigm shift in robot programming models, systematically providing a platform to enable real-time interaction and control of mechanical actuators. Furthermore, it fosters programming styles that are reactive to, rather than prescriptive about, the state of the robot. We argue that this model is, compared to traditional offline programming, beneficial for creative individuals, as its concurrent nature and immediate feedback provide a deeper and richer set of possibilities, facilitates experimentation, flow of thought, and creative inquiry. In this paper, we introduce the framework, and discuss the unifying model around which all its tools are designed. Three case studies are presented, showcasing how the framework provides richer interaction models and novel outcomes in digital making. We conclude by discussing current limitations of the model and future work.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_502
id ecaadesigradi2019_502
authors Gozen, Efe
year 2019
title A Framework for a Five-Axis Stylus for Design Fabrication
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 215-220
doi https://doi.org/10.52842/conf.ecaade.2019.1.215
summary This paper proposes a new workflow between design and fabrication phases through the introduction of a novel framework centered around a stylus that is tracked in real-time for five-axis by a single RGB-D camera. Often misconceived as a linear process, urgent reinterpretation of design and fabrication tools is discussed briefly. Similar to how industrial robots have become an enabler for fabrication process in the field of architecture and construction, the necessity for providing a similar tool that would reform the "design" process is underlined. A generic stylus is proposed with interchangeable operations which allows for intuitive, non-obstructive grasp of the user serves as the physical avatar that transform into a virtual representation of a fabrication tool mounted on a six-axis industrial robot arm. User interaction with the apparatus is simulated for the user, and the user is notified of any errors as the interaction is translated for motion planning of a KUKA KR20-3 industrial robot.
keywords Human-Computer Interaction; CAD / CAM; Robotic Motion Control
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_403
id caadria2019_403
authors Lin, Xuhui and Muslimin, Rizal
year 2019
title RESHAPE - Rapid forming and simulation system using unmanned aerial vehicles for architectural representation
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 413-422
doi https://doi.org/10.52842/conf.caadria.2019.1.413
summary As digital technology advances, multiple ways of repre-senting objects interactively in space, architects and designers begin to use Virtual Reality (VR) and Immersive Digital Environ-ments (IDE) to communicate their ideas. However, these technolo-gies are bounded with their spatial limitations. In responding to this issue, our paper introduces ReShape, a digital-physical spatial representation system supported by Unmanned Aerial Vehicle (UAV) swarm technology that allows a user to project their unbuilt design and interact with them in real space, unattached by headset, fixed cameras or screen. ReShape can be controlled by user orien-tation and gesture as an input, where the real-time feedback is provided by UAV spatial arrangement in space, augmented by computational simulation. Spatial data is transmitted between the UAV agents for the user to experience the digital model, creating a versatile and computationally efficient platform to edit and en-hance the design in real-space. This paper outlines four systems in ReShape, i.e., (1) detection system to identify and locate the user position and orientation; (2) task-arrangement system to provide spatial information to the UAV agents; (3) UAV's communicating system to control the UAV position and task in space; and (4) Physical-Digital forming system, to project digital simulation by the UAV agents.
keywords UAV system; Spatial representation; a detecting sys-tem; human-computation interaction
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_439
id caadria2019_439
authors Lo, Tian Tian, Xiao, ZuoPeng and Yu, Henry
year 2019
title Designing 'Action Trigger' for Architecture Modelling Design within Immersive Virtual Reality
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 545-552
doi https://doi.org/10.52842/conf.caadria.2019.1.545
summary Architectural modelling is radically evolving with time. The introduction of VR into gaming and education has also encouraged architecture to integrate VR into its course of the design process. However, the current integration of Augmented Reality (AR) and Virtual Reality (VR) components is mostly limited to enhancing visualisation, especially towards the corresponding design tasks. This opportunity lead to an increase in attempts to bring the modelling process into the immersive environment. This paper aims to challenge the current design capabilities within the immersive environment and introduce a new interaction method between the human and the virtual reality. The research in human-computer interaction (HCI) has been ongoing for years till present day to observe how humans interact with computers and design technologies. The appearance of the smartphone has extended this HCI research towards hand-carried devices. With VR, although the hardware is still considered 'computer', the interaction is very much different. Since the human is immersed in the virtual environment, the interaction is already beyond the traditional keyboard and mouse. This paper responds to the conference theme by capitalising the power of VR technology to bring new methods of HVRI to the architecture design process.
keywords VR; HVRI; Interaction; Action Trigger; Immersive
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id ecaadesigradi2019_643
id ecaadesigradi2019_643
authors Stein?, Nicolai
year 2019
title Parametric Urban Design from Concept to Practice
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 817-826
doi https://doi.org/10.52842/conf.ecaade.2019.1.817
summary Little research has been made into the application of parametric urban design approaches to urban design in practice. On the part of urban design practitioners, lack of knowledge of parametric design, time constraints and a focus on day-to-day operations contribute to this situation. And on the part of parametric design researchers, lack of understanding of practice workflows, project types and media output types also contribute. The limited interaction between academia and practice in itself constitutes a barrier to changing the situation. This paper presents some first results from a research project aiming to overcome this barrier. The research design involves a theoretical framework for parameterising site design on the level of site layout, building forms and facade schemas. It also involves an analysis of typical workflows from urban design practice, as well as of the types of media which are typically used to present urban design projects.
keywords parametric design; urban design; urban design practice; methodology; workflow
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia19_16
id acadia19_16
authors Hosmer, Tyson; Tigas, Panagiotis
year 2019
title Deep Reinforcement Learning for Autonomous Robotic Tensegrity (ART)
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 16-29
doi https://doi.org/10.52842/conf.acadia.2019.016
summary The research presented in this paper is part of a larger body of emerging research into embedding autonomy in the built environment. We develop a framework for designing and implementing effective autonomous architecture defined by three key properties: situated and embodied agency, facilitated variation, and intelligence.We present a novel application of Deep Reinforcement Learning to learn adaptable behaviours related to autonomous mobility, self-structuring, self-balancing, and spatial reconfiguration. Architectural robotic prototypes are physically developed with principles of embodied agency and facilitated variation. Physical properties and degrees of freedom are applied as constraints in a simulated physics-based environment where our simulation models are trained to achieve multiple objectives in changing environments. This holistic and generalizable approach to aligning deep reinforcement learning with physically reconfigurable robotic assembly systems takes into account both computational design and physical fabrication. Autonomous Robotic Tensegrity (ART) is presented as an extended case study project for developing our methodology. Our computational design system is developed in Unity3D with simulated multi-physics and deep reinforcement learning using Unity’s ML-agents framework. Topological rules of tensegrity are applied to develop assemblies with actuated tensile members. Single units and assemblies are trained for a series of policies using reinforcement learning in single-agent and multi-agent setups. Physical robotic prototypes are built and actuated to test simulated results.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id cf2019_007
id cf2019_007
authors Kim, Jong Bum and Bimal Balakrishnan
year 2019
title Visualize Smart Growth Development with Parametric BIM: A Case Study of Columbia Unified Development Plan
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 26
summary Smart Growth is a multifaceted urban planning approach that has embraced planning regulation reforms across the municipalities in the United States. Urban planning regulations undoubtedly have formed built environment, but their impact on sustainability is often unforeseen in the early stage of community development. This research investigates an urban modeling framework that can envision Smart Growth development with parametric modeling, Building Information Modeling (BIM), Virtual Reality (VR), and software prototyping. As a pilot test, the paper presents a case study of Downtown Columbia Unified Development Code.
keywords Smart Growth, Parametric Building Information Modeling, Immersive Visualization, Community Design/ Development
series CAAD Futures
email
last changed 2019/07/29 14:08

_id ecaadesigradi2019_663
id ecaadesigradi2019_663
authors Sha, Yin
year 2019
title The Emerging of Spontaneous Materiality under Limited Digital Control
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 553-558
doi https://doi.org/10.52842/conf.ecaade.2019.2.553
summary This paper focuses on a new form making method of spontaneous materiality under limited digital control, as a supplement to the trending method of digital materiality. A specific emphasis is placed on the connection between material selection and sensational expression in the contemporary information and digital technologies era. Spontaneous materiality refers to the alteration of material attributes by natural forces. The current techniques of digital materiality rely on accurate digital control and inhibit from the intervention of any unpredictable material variable, which shows excessive scientific calculations and a loss of artistic articulation in design. In the new form making method proposed here, intentional yet limited digital control sets the material framework where the combination of soft and hard materials takes place. With the influence of gravity and spatiotemporal accumulation of selected materials, the fusion of softness and hardness brings a coexistence of different material states and qualities in one object. Thus an integration of shape and matter produces a blurring boundary between physical material and digital form, and more importantly, a sensational experience with expectational slippages of vision and touch. Additional to the ongoing discussion of computation, this design research expands the potential of computation by restricting its influence.
keywords Spontaneous materiality; limited digital control; sensational expression; sensuous quality; illusion
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_354132 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002