CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 549

_id ecaadesigradi2019_467
id ecaadesigradi2019_467
authors Petrš, Jan, Dahy, Hanaa and Florián, Miloš
year 2019
title From MoleMOD to MoleSTRING - Design of self-assembly structures actuated by shareable soft robots
doi https://doi.org/10.52842/conf.ecaade.2019.3.179
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 179-188
summary This paper proposes a self-assembling system for architectural application. It is a reaction to current building crisis and high energy consumption by building industry. This Unique system is based on a reconfiguration of passive elements by low-cost soft robots able to move inside as well as configure them into 2D/3D structures similar to recent Modular robots. A goal is to significantly reduce the high price and complexity of state of the art modular robots by minimization of mechatronic parts and using soft materials. The concept focuses on life-cycle management when one system can achieve assembly, reconfiguration, and disassembly with a minimum of waste. The paper compares three different versions of a self-assembly system called MoleMOD: MoleCUBE, MoleCHAIN, and MoleSTRING.
keywords Self-assembly; Soft robotics; Modular robotics; Reconfigurable string; Adaptive architecture
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id ecaadesigradi2019_081
id ecaadesigradi2019_081
authors Costa, Phillipe
year 2019
title Grey Box City - Building cybernetic urban systems for smarter simulations
doi https://doi.org/10.52842/conf.ecaade.2019.1.767
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 767-774
summary In this paper we approach the concept of grey box model to understand the subjectivity and objectivity of urban design. From the beginning of the insertion of computational systems in the systems management, we understand that some simulations and the understanding of the city itself were partial: we do not understand the city and its spatial complexity and we have the pretension to do urban design thinking that we understand the urban life . Here we will address some categories of how we can simulate and create our urban systems using a more tactile cybernetics.
keywords Grey Box; Cybernetics; Smart City; Information Technology
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_619
id ecaadesigradi2019_619
authors Beyer, Bastian, Suárez, Daniel and Palz, Norbert
year 2019
title Microbiologically Activated Knitted Composites - Reimagining a column for the 21st century
doi https://doi.org/10.52842/conf.ecaade.2019.2.541
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 541-552
summary A column is an archetypal constituent of architecture which historically underwent constant reiteration in accordance with the prevalent architectural style, material culture or technical and structural possibilities. The project reimagined this architectural element through harnessing the synergies of digital design, textile logic, and contemporary biotechnology. Textile materiality and aesthetic are deeply rooted in architectural history as a soft and ephemeral antipode to rigid building materials. An investigation in historic mechanical hand-knitting techniques allowed to extract their underlying structural and geometric logic to develop a structural optimisation pipeline with a graded yarn as a base material and a geometric optimization based on local distribution of knitting patterns. Bacterially driven biocalcification was applied to transform the soft textile structure into a rigid material. Hereby an active textile microbiome was established through colonizing of the yarn with the bacterium S. pasteurii which successively precipitated calcite on microscale within the textile substrate hence ultimately influencing the global structural behaviour of the column.
keywords textile microbiome; material customization; knitting; yarn augmentation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ijac201917104
id ijac201917104
authors Matthews, Linda and Gavin Perin
year 2019
title Exploiting ambiguity: The diffraction artefact and the architectural surface
source International Journal of Architectural Computing vol. 17 - no. 1, 103-115
summary In the contemporary ‘envisioned’ environment, Internet webcams, low- and high-altitude unmanned aerial vehicles and satellites are the new vantage points from which to construct the image of the city. Armed with hi-resolution digital optical technologies, these vantage points effectively constitute a ubiquitous visioning apparatus serving either the politics of promotion or surveillance. Given the political dimensions of this apparatus, it is important to note that this digital imaging of public urban space refers to the human visual system model. In order to mimic human vision, a set of algorithm patterns are used to direct numerous ‘soft’ and ‘hard’ technologies. Mimicry thus has a cost because this insistence on the human visual system model necessitates multiple transformative moments in the production and transmission pipeline. If each transformative moment opens a potential vulnerability within the visioning apparatus, then every glitch testifies to the artificiality of the image. Moreover, every glitch potentially interrupts the political narratives be communicated in contemporary image production and transmission. Paradoxically, the current use of scripting to create glitch-like images has reimagined glitches as a discrete aesthetic category. This article counters this aestheticisation by asserting glitching as a disruption in communication. The argument will rely on scaled tests produced by one of the authors who show how duplicating the digital algorithmic patterns used within the digital imaging pipeline on any exterior building surface glitches the visual data captured within that image. Referencing image-based techniques drawn from the Baroque and contemporary modes of camouflage, it will be argued that the visual aberrations created by these algorithm-based patterned facades can modify strategically the ‘emission signature’ of selected parts of the urban fabric. In this way, the glitch becomes a way to intercede in the digital portrayal of city.
keywords Surveillance, algorithms, diffraction, pattern, disruptive, optics
series journal
email
last changed 2019/08/07 14:04

_id ecaadesigradi2019_555
id ecaadesigradi2019_555
authors Bomfim, Kyane and Tavares, Felipe
year 2019
title Building facade optimization for maximizing the incident solar radiation
doi https://doi.org/10.52842/conf.ecaade.2019.2.171
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 171-180
summary The technological breakthrough on photovoltaic facades and the high potential for installing photovoltaic (PV) systems in the city of Salvador are the motivation for this article. This case study explores the feasibility of implementing solar energy technology on a building facade, proposing a design method for optimizing insolation performance by the form-finding process in a parameterized shape. The goal was to generate a parametric design workflow, in which it could be found some facade shapes, generating triangle and quadrilateral supporting grids, leading to better results in the total amount of radiation in comparison to the basic flat facade. In these supporting grids were evaluated also the fitting in the distribution of quadrilateral commercial PV cells, measuring its geometric compatibility. By the results, it could be verified the gains and losses in PV potential in several instances obtained by the form-finding process, as the potentials to consider this in the design of every building.
keywords Radiation skydome; Shape parameterization; Form-finding; Genetic Algorithm; PV facade
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_396
id caadria2019_396
authors Cao, Rui, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Quantifying Visual Environment by Semantic Segmentation Using Deep Learning - A Prototype for Sky View Factor
doi https://doi.org/10.52842/conf.caadria.2019.2.623
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 623-632
summary Sky view factor (SVF) is the ratio of radiation received by a planar surface from the sky to that received from the entire hemispheric radiating environment, in the past 20 years, it was more applied to urban-climatic areas such as urban air temperature analysis. With the urbanization and the development of cities, SVF has been paid more and more attention on as the important parameter in urban construction and city planning area because of increasing building coverage ratio to promote urban forms and help creating a more comfortable and sustainable urban residential building environment to citizens. Therefore, efficient, low cost, high precision, easy to operate, rapid building-wide SVF estimation method is necessary. In the field of image processing, semantic segmentation based on deep learning have attracted considerable research attention. This study presents a new method to estimate the SVF of residential environment by constructing a deep learning network for segmenting the sky areas from 360-degree camera images. As the result of this research, an easy-to-operate estimation system for SVF based on high efficiency sky label mask images database was developed.
keywords Visual environment; Sky view factor; Semantic segmentation; Deep learning; Landscape simulation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_250
id ecaadesigradi2019_250
authors Czyñska, Klara
year 2019
title Visual Impact Analysis of Large Urban Investments on the Cityscape
doi https://doi.org/10.52842/conf.ecaade.2019.3.297
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 297-304
summary The article presents the assessment method for large (horizontally spread) urban investment and its visual impact on the cityscape using digital analyses. The visual impact assessment is often used in relation to facilities which dominate in the cityscape, mainly tall buildings. Various studies, however, examine the impact of wide but relatively low-rising buildings and their impact on the cityscape. The article presents a methodology for the assessment of the visual impact and a case study for a building facility comprising several tightly developed and medium height blocks of buildings in a city center of a significant historical value in Gdañsk, Poland. The research has been based on the Visual Impact Size method (VIS) and a city model consisting of a regular cloud of points (Digital Surface Model). The simulation has been developed using a dedicated C++ software (developed by author). The study aimed at assessing the following: a) to what degree such an urban investment can influence the cityscape; b) how the impact can be analyzed using digital techniques, and c) what input parameters of the analysis are crucial for satisfactory accuracy of its results.
keywords digital cityscape analysis; urban skyline; large urban investments; visual impact; VIS method
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_285
id caadria2019_285
authors Holth, James, Meekings, Scott, Schnabel, Marc Aurel and Moleta, Tane Jacob
year 2019
title Influences of a New Digital Cultural Layer on Design at Varying Scales
doi https://doi.org/10.52842/conf.caadria.2019.2.373
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 373-380
summary Architects work with data daily. Spatial metrics, building codes and client requirements form the main considerations for many designers, yet new layers of data are impacting the way cities and inhabitants interact with each. This data can be used to more effectively analyse and predict patterns and behaviors to produce environments better suited to users.This paper reviews a selection of ideas from across digital architectural discourse by discussing tangible outcomes from a practitioner point of view and advocates for a greater integration of this digital cultural context into the design process. This paper considers a city-wide digital logic, rather than a new-age technological zeitgeist, that is as much a part of a city as its buildings are and through this provides a lens into our environment and devices that can be used to influence design at multiple scales.
keywords Big Data; Digital Identity; Built Environment; Authenticity
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
doi https://doi.org/10.52842/conf.caadria.2020.1.873
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_362
id caadria2019_362
authors Lee, Jaejong, Ikeda, Yasushi and Hotta, Kensuke
year 2019
title Comparative Evaluation of Viewing Elements by Visibility Heat Map of 3D Isovist - Urban planning experiment for Shinkiba in Tokyo Bay
doi https://doi.org/10.52842/conf.caadria.2019.1.341
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 341-350
summary This paper presents a visibility analysis for 3D urban environments and its possible applications for urban design. This multi-view visibility analysis tool was generated by 3D isovist in Grasshopper, Rhino. The advantage of this analysis tool is that it can be compared within the measurement area. In addition, setting a visual object different from the existing isovist. The visual object is a landmark of a city space, such as landscape or object. First, the application experimented on the relevance between the calculation time and precision by this analysis tool. Based on the results of this experiment, it applied it to an actual part of an urban space. The multi-view visibility includes confirming the possibility of a comprehensive evaluation on the urban redevelopment and change of the view caused by the building layout plan - by numerical analysis showing the visual characteristics of the area while using 3D isovist theory. The practically applied area is Shinkiba, which is a part of Tokyo's landfill site; and while using the calculated data, multi-view visibility of each plan in the simulation of the visibility map is compared and evaluated.
keywords 3D isovist; Multi-view visibility; Comprehensive integration visibility evaluation; Urban redevelopment; Algorithmic urban design
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia20_136p
id acadia20_136p
authors López Lobato, Déborah; Charbel, Hadin
year 2020
title Foll(i)cle
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 136-141
summary In the early months of 2019, air pollution in Bangkok reached a record high, bringing national and international attention to the air quality in the South East Asian cosmopolitan. Although applications such as real-time pollution maps provide an environmental reading from the exterior, such information reveals the ‘here and now,’ where its record is inevitably lost through the ‘refreshing’ process of the live update and does not take increment and accumulation as factors to consider. The project was conceived around understanding the human body as precisely that medium that resists classification as either an interior or exterior environment that inherently performs as an impressionable record of its surroundings. Can a city’s toxicity be read through its living constituents? Can the living bodies that dwell, navigate, breathe, and process habitable environments be accessed? Can architecture retain a degree of independence while also performing as a beacon for the collective? Along this line of questioning, it was found that human hair can be transformed from a material that is effortlessly and continuously grown, cut, stylized, and discarded, and instead be intercepted and used in the production of public information gathering. Foll(i)cle is a collective being made of discarded human hair. Performing as a parliament for collectivity embedded with a protocol; the hairy pavilion invites the public in and presents them with a device at the center that hosts all the necessary equipment and information for anonymously and voluntarily providing hair samples for heavy metal analysis, the data of which is used in making a publically accessible toxi-cartography. Although humans are the primary subject for this study, the results suggest that extending the methodology to non-humans could prove useful in reading urban toxicity through various life forms.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id ecaadesigradi2019_550
id ecaadesigradi2019_550
authors Rhee, Jinmo, Cardoso Llach, Daniel and Krishnamurti, Ramesh
year 2019
title Context-rich Urban Analysis Using Machine Learning - A case study in Pittsburgh, PA
doi https://doi.org/10.52842/conf.ecaade.2019.3.343
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 343-352
summary This paper reports on the analytical potential of machine learning methods for urban analysis. It documents a new method for data-driven urban analysis based on diagrammatic images describing each building in a city in relation to its immediate urban context. By statistically analyzing architectural and contextual features in this new dataset, the method can identify clusters of similar urban conditions and produce a detailed picture of a city's morphological structure. Remapping the clusters from data to 2D space, our method enables a new kind of urban plan that displays gradients of urban similarity. Taking Pittsburgh as a case study we demonstrate this method, and propose "morphological types" as a new category of urban analysis describing a given city's specific set of distinct morphological conditions. The paper concludes with a discussion of the implications of this method and its limitations, as well as its potentials for architecture, urban studies, and computation.
keywords Urban Morphology; Machine Learning; Architectural Contexts; Urban Analysis; GIS
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia19_392
id acadia19_392
authors Steinfeld, Kyle
year 2019
title GAN Loci
doi https://doi.org/10.52842/conf.acadia.2019.392
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 392-403
summary This project applies techniques in machine learning, specifically generative adversarial networks (or GANs), to produce synthetic images intended to capture the predominant visual properties of urban places. We propose that imaging cities in this manner represents the first computational approach to documenting the Genius Loci of a city (Norberg-Schulz, 1980), which is understood to include those forms, textures, colors, and qualities of light that exemplify a particular urban location and that set it apart from similar places. Presented here are methods for the collection of urban image data, for the necessary processing and formatting of this data, and for the training of two known computational statistical models (StyleGAN (Karras et al., 2018) and Pix2Pix (Isola et al., 2016)) that identify visual patterns distinct to a given site and that reproduce these patterns to generate new images. These methods have been applied to image nine distinct urban contexts across six cities in the US and Europe, the results of which are presented here. While the product of this work is not a tool for the design of cities or building forms, but rather a method for the synthetic imaging of existing places, we nevertheless seek to situate the work in terms of computer-assisted design (CAD). In this regard, the project is demonstrative of a new approach to CAD tools. In contrast with existing tools that seek to capture the explicit intention of their user (Aish, Glynn, Sheil 2017), in applying computational statistical methods to the production of images that speak to the implicit qualities that constitute a place, this project demonstrates the unique advantages offered by such methods in capturing and expressing the tacit.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia20_148p
id acadia20_148p
authors Vansice, Kyle; Attraya, Rahul; Culligan, Ryan; Johnson, Benton; Sondergaard, Asbjorn; Peters, Nate
year 2020
title Stereoform Slab
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 148-153
summary Stereoform Slab is both a pavilion and a prototype - an exhibition for the 2019 Chicago Architectural Biennial. It is an experiment in how digital form-finding and robotics can be leveraged to rethink the future of concrete construction. Stereoform Slab examines the role of one of the most ubiquitous horizontal elements in the city - the concrete slab, also the most common element in contemporary construction. Using smarter forming systems - in this case, a ruled-surface-derived, robotic hotwire process - the Stereoform Slab prototype proved that the amount of material used and waste generated could be minimized without increasing construction complexity, by about 20% over a conventional system. Stereoform also extends the conventional concrete span (column spacing), specifically in Chicago, from 30’ to 45’. In developing a concrete forming system that affords added flexibility without increasing construction costs, it is possible to reduce embodied carbon significantly. The method allows reducing carbon in buildings that aren’t typically the subject of advanced architectural design or rigorous optimization – conventional buildings that compose a majority of our built environment, and its respective contributions to global carbon emissions. Stereoform is the result of a multi-objective design optimization process. Optimal materialization, according to the compressive/tensile physics present in beam design, was balanced against the fabrication constraints of a singularly ruled-surface, which enables fast form-making using robotic hotwire cutting. SOM and Autodesk collaborated to mirror the approach developed to optimize Stereoform slab as a pavilion, to the building scale, using the multi-objective optimization platform Refinery. Project Refinery allowed the team to create a hyper-responsive system design that could adapt to any number of varying programmatic conditions and loading patterns. The development of this approach is a crucial step in making optimization techniques flexible enough to balance the number of competing parameters in the design process available and accessible to a broader design audience within architecture and engineering.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id caadria2019_202
id caadria2019_202
authors Yang, Chunxia, Gu, Zhuoxing and Yao, Ziying
year 2019
title Adaptive Urban Design Research based on Multi-Agent System - Taking The Urban Renewal Design Of Shanghai Hongkou Port Area As An Example
doi https://doi.org/10.52842/conf.caadria.2019.1.225
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 225-234
summary Utilizing digital method to establish a multi-agent simulation platform and establish an interactive simulation between site elements and agents particles behavior. In this study, urban space could not have the absolute frozen state, it is always evolving and self-renewing. We hope to integrate such unstable relationships into urban design methods and programs. By constructing various type of agent particles and the interaction behaviors, we not only directly simulate the flow of people or traffic, but also simulate the public space relationship such as line of sight space, waterfront space accessibility, commercial supporting function layout, and historical and cultural block attraction from a more abstract level. From macro to micro, the result of spatial simulation has an intrinsic close causal relationship with the site's landform, building status, site function, and planning pattern, can be the basis for space generation.
keywords Self-organization; Multi-agent System; Cluster City; Particle Personality; Site Elements
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_262
id ecaadesigradi2019_262
authors Globa, Anastasia, Costin, Glenn, Wang, Rui, Khoo, Chin Koi and Moloney, Jules
year 2019
title Hybrid Environmental-Media Facade - Full-Scale Prototype Panel Fabrication
doi https://doi.org/10.52842/conf.ecaade.2019.2.685
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 685-694
summary This paper reports the design, fabrication and evaluation strategies of full-scale aluminium panel prototypes developed for a kinetic hybrid facade system. The concept of a hybrid facade system was proposed as a solution to maximise the value of kinetic intelligent building systems by repurposing the animation sunscreening as a low-resolution media display. The overarching research project investigates the potential, feasibility and real-life applications of a hybrid facade that integrates the: environmental, media and individual micro-control functions in one compound system that operates through autonomous wirelessly controlled hexagonal rotating panels. The study explores new ways of communication and connectivity in architectural and urban context, utilising and fusing together a wide range of technologies including: artificial intelligence, robotics, wireless control technologies, calibration of physical and digital simulations, development of fully autonomous self-organised and powered units and the use of additive digital manufacturing. This article reports the third research stage of the hybrid facade project development - the manufacture of full scale panel prototypes.
keywords kinetic facade; digital fabrication; full-scale prototype; intelligent building systems; hybrid facade
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id lasg_whitepapers_2019_111
id lasg_whitepapers_2019_111
authors Gruber, Petra
year 2019
title Living Wall System (LIWAS)
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.111 - 122
summary This proposal is about the design and prototyping of a Living Wall System (LIWAS) as a test bed for integrating concepts from biology into architectural design. The "Living Wall” is a new way of interpreting a wall system that we use in architecture and building. We try to integrate characteristics of living organisms into the wall design to harness some of the intriguing qualities of life into our built surroundings. Living Walls may include flows of water; they may move, adapt geometry and change appearance; they may be inhabited by algae, plants and other organisms and in general be “alive.” The framework of the proposal is the overlap between architectural design and biological research, using biomimicry as a methodology for information transfer between the fields (Image 1).
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id ecaade2022_247
id ecaade2022_247
authors Güntepe, Rahma
year 2022
title Building with Expanded Cork - A novel monolithic building structure
doi https://doi.org/10.52842/conf.ecaade.2022.1.029
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 29–36
summary This research presents the development of a construction system for a solid expanded cork building envelope. The inspiration for this research is the “Cork House” built in 2019 by Matthew Barnett Howland and Oliver Wilton, who developed a Cork Construction Kit for a monolithic dry-jointed cork structure. The goal of this research is to analyze and develop different varieties of construction methods for a dry-joined cork building by combining and applying traditional masonry techniques. The objective is to generate a material-based design for cork construction elements trough prototyping and using a selection of digital tools such as 3D modeling and 3D printing. Expanded cork is a 100% plant-based material which, if applied correctly, has the capacity to be used as a load bearing, insulating and protective structure all at once. It has almost no environmental impact and is completely compostable. To maintain the material's compostable property, this construction system has to be developed without any kind of binders or mortar. Additionally, this more reduced and simplified form of construction will not only make it possible to build without any specific expertise, but at the same time ensure resources to be reused or composted at the end of building life.
keywords Expanded Cork, Cork, Material-Based Design, Masonry, Stereotomy, 3D Modeling, 3D Printing, Sustainable Material, Dry-Joint Construction
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2019_256
id caadria2019_256
authors Lertsithichai, Surapong
year 2019
title Augemented Architecture - Interplay between Digital and Physical Environments
doi https://doi.org/10.52842/conf.caadria.2019.2.353
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 353-362
summary In an increasingly connected world where computers are everywhere, surrounding us in embedded small portable devices, appliances and inside buildings, implementing these interconnected and embedded computers have now become common practice in the design of smart spaces and intelligent environments of today. Digital information is constantly being collected and distributed by a network of digital devices communicating with users and vice versa. New behaviors and activities that may have not been considered before in the design of architectural building types are now commonly found in public and private spaces throughout the world. In an attempt to explore and experiment with the concept of interplay between digital and physical environments, an option studio was proposed to 4th year architecture students to develop a new type of augmented architecture that corresponds to changes in human social behavior due to digital technologies. Five pilot projects are presented with experiments conducted to question three social activities commonly found in everyday lives using Arduino prototypes installed in real physical locations. The prototypes were then used as a basis for the development of large-scale projects proposed as augmented architecture.
keywords Human-Computer Interaction; Ubiquitous Computing; Virtual / Augmented Reality; Computational Design Research; IoT for Built Environments
series CAADRIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_436290 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002