CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 127

_id acadia19_346
id acadia19_346
authors Gehron, Luke; Chernick, Adam; Morse, Christopher; Naumovski, Sabrina; Ren, Zeyu
year 2019
title Sound Space
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 346-351
doi https://doi.org/10.52842/conf.acadia.2019.346
summary Sound Space, an interactive virtual reality tool, allows architects and designers to simulate and visualize the acoustic implications of their building designs. By providing designers with the ability to pause, rewind and fast forward a sound wave within a virtual built environment, we empower them to let acoustics influence their design decisions. With a focus on simulation accuracy as well as user experience, we let the user interact with, explore, and curate their own experience while gaining an intuitive understanding of the acoustic implications of their design. Sound Space explores the opportunities that a linked BIM connection may bring within game engine based experiences, and looks at some of the tools we used to try to make that connection. Sound Space focuses on evaluating the acoustic performance of a space in an interactive and visual experience. For buildings such as symphony halls or theaters, acoustic engineers are a part of the design process from the beginning, but the majority of projects such as schools, hospitals, or museums might employ acoustic specialists only near the end, if at all. At this point it is often too late to make meaningful changes to account for the important acoustic characteristics that can make such spaces work better for students, patients, and visitors. Our goal was to create an environment that was visually interesting enough to immerse and retain users in the experience, and accurate enough to give useful results to the users for them to make informed choices about their design decisions.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id lasg_whitepapers_2019_197
id lasg_whitepapers_2019_197
authors Mechtley, Brandon; Todd Ingalls, Julian Stein, Connor Rawls and Sha Xin Wei
year 2019
title SC: A Modular Software Suite for Composing Continuously-Evolving Responsive Environments
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.197 - 206
summary SC is a modular suite of software designed to allow designers to compose the behavior of a responsive media environment evolving in concert with contingent activity in a physical space. The media can be rich and fairly eccentric: projected video, spatialized audio, theatrical lighting — generally fields of structured time-varying light and sound, as well as water, mist, animated objects etc. The behavior of the responsive environment evolves according to prior design as well as contingent activity.1 A key condition is that everything happens in real-time, in concert with the activity of the inhabitants of the responsive environment. SC supports rich and thick experiences with poetic, symbolic, and scientific effects.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id lasg_whitepapers_2019_207
id lasg_whitepapers_2019_207
authors Navab, Nima; and Desiree Foerster
year 2019
title Affective Atmospheres; Ambient Feedback Ecology
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.207 - 220
summary Encompassing a series of experiments with atmospheric scenography the following paper maps out the relationships between different materials and energetic flows as part of a spatial design. These investigations emanate from the basis that poetic relationships between material and immaterial processes can induce new meaning to the ways we inhabit our environment. In diffusing the boundaries between states of matter in the environment and the perceiver, the unfolding atmospheric processes enacted here function as perceptual amplifiers for transformations on scales that are usually not sensually accessible. The focus shifts from the concrete to the in-between. The visualization and enaction of flows that make up our surroundings suggest a greater involvement of oneself with the environment.1 Through these experiments we demonstrate 1) how spatial continuity can be achieved in relating attributes of dynamic behavior of water, vapor, air, sound, and light to significances in space; 2) that the indifferent role of the human perceiver is challenged in making their impact and responsiveness to the environment part of the spatial composition itself; and 3) how the expressive qualities of atmospheric variables can be used to experience layers of meaning in spaces, that are usually not comprehensible (such as ecological dimensions of water use).
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id caadria2019_329
id caadria2019_329
authors Zhao, Yao, Zhu, Weiran and Yuan, Philip F.
year 2019
title From Acoustic Data Perception to Visualization Design
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 393-402
doi https://doi.org/10.52842/conf.caadria.2019.1.393
summary This research project is based on the research results from the "Acoustic Visualization Group" of Digital FUTURES Summer Workshop in Shanghai, 2018. In this workshop, students use sound data acquisition sound collection equipment to collect sound information in the space and transform it into digital data. After analyzing the data, they present it as a visible form and design the sound interaction device based on the results. This study combines the media art and digital technology to transform the invisible acoustics digital information into a tangibly visible experiencing space and to mix the virtual acoustics space, realistic light- and- shadow space and the three-dimension material space in multi-dimensions through the digital programming and generative art design. Acoustic visualization interaction design is a comprehensive attempt which mixed with several research fields such as architecture device design, digital media technology, human-computer interaction and architecture environment science.
keywords Acoustic Visualization; Digital FUTURES; Interaction Device
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2019_551
id caadria2019_551
authors Zheliazkova, Maia, Kummamuru, Bhargava Ram and Paoletti, Ingrid
year 2019
title A Computational Workflow for Understanding Acoustic Performance in Existing Buildings
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 443-452
doi https://doi.org/10.52842/conf.caadria.2019.1.443
summary Designing the acoustic conditions of the built environment we live in is fundamental to improving our daily life. However, architects and designers still know very little about the way buildings perform in terms of sound. In order to facilitate the comprehension, and therefore the design of acoustic solutions, it is here proposed a methodology for the investigation of existing architectural spaces. The paper discusses a low-cost setup and computational methodology to create an advanced mapping of spaces with the goal of supporting custom design solutions. A case study is used to apply and compare the sensitivity of the proposed approach with professional equipment. The results show that portable systems can be a viable way to understand how our spaces perform in terms of sound, and encourage the diffusion of performance-driven acoustics design.
keywords Performance-based design; User-space interaction; Architectural acoustics; Sound measurements and sensing
series CAADRIA
email
last changed 2022/06/07 07:57

_id lasg_whitepapers_2019_221
id lasg_whitepapers_2019_221
authors Oomen, Paul; Poul Holleman and Salvador Breed
year 2019
title Integrating Sound in Living Architecture Systems; Application of 4DSOUND in Kinetic Sculpture and Architectural Design
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.221 - 234
summary We elaborate on results of our collaborations with Philip Beesley and the Living Architecture Systems Group over the past year. Instead of additional layers of material, spatial sound interweaves meaningful fabric to sculptural form and living architecture. An architectural design now can be embedded within a sonic field (exterior), or spatial sound can form itself inside sculptural objects (interior). 4DSOUND has evolved in implementing irregular speaker setups to enhance sound projection and create applied instrumental possibilities of composing with spatial sound in the sculptural realm. We will further discuss developments regarding the integration of the 4DSOUND Engine to control other media like light, kinetics, and sensor interfaces. The paper will conclude with future research and objectives.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id ecaadesigradi2019_064
id ecaadesigradi2019_064
authors Wang, Shao-Yun, Sianoudi, Agathi, Wang, Maohua, Wu, Hongmei, Wang, Tsung-Hsien, Zhang, Zhuoqun and Peng, Chengzhi
year 2019
title Singing Cans - Prototyping an experimental wind instrument through parametric design integrated with field experiments
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 703-710
doi https://doi.org/10.52842/conf.ecaade.2019.1.703
summary We present a study of how parametric design can be linked to field experiments where ready-made plug-ins are not available for performative modelling. The study centres on prototyping 'Singing Cans' - an experimental wind instrument made with an assembly of drinking cans that can produce sounds in recognizable pitches by interacting with airflows. We describe how field experiments conducted in a fluid flow lab can generate performative resources linkable to parametric design modelling. In Singing Cans, we focus on how to get airflow through a hole made on drinking can to make sounds. The prototyping process involved a lab-based calibration process to establish the relationship between the air volume of a can, measured by water-filling, and the pitch produced, measured by the Tuner Lite by Piascore. The field experiments resulted in a dataset capturing a can's sound-making behaviour in terms of water volumes and pitches. A parametric model that can take in wind data generated by a CFD package and output a 3D frame for site-specific cans installation is presented.
keywords parametric design; field experiments; experimental wind instrument; fluid flow instrumentation; sound production
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_538
id ecaadesigradi2019_538
authors Wu, Ngai Hang, Dimopoulou, Marina, Hsieh, Han Hsun and Chatzakis, Christos
year 2019
title Rawbot - A digital system for AR fabrication of bamboo structures through the discrete digitization of bamboo
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 161-170
doi https://doi.org/10.52842/conf.ecaade.2019.2.161
summary This paper presents the developments of a method to assemble bamboo poles through mobile algorithmic instructions, based on material analysis, machine learning procedures and applied augmented reality. The methods were evaluated in a series of tests where the trained system was successfully used to propose structurally sound aggregations, according to the given resources. The results suggest potential benefits for completion of house-scale assemblies by untrained users through automated tools.
keywords Machine Learning; Object Recognition; Augmented Reality; Digital Fabrication; Discrete Digitization; Bamboo
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id caadria2019_660
id caadria2019_660
authors Aghaei Meibodi, Mania, Giesecke, Rena and Dillenburger, Benjamin
year 2019
title 3D Printing Sand Molds for Casting Bespoke Metal Connections - Digital Metal: Additive Manufacturing for Cast Metal Joints in Architecture
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 133-142
doi https://doi.org/10.52842/conf.caadria.2019.1.133
summary Metal joints play a relevant role in space frame constructions, being responsible for large amount of the overall material and fabrication cost. Space frames which are constructed with standardized metal joints are constrained to repetitive structures and topologies. For customized space frames, the fabrication of individual metal joints still remains a challenge. Traditional fabrication methods such as sand casting are labour intensive, while direct 3D metal printing is too expensive and slow for the large volumes needed in architecture.This research investigates the use of Binder Jetting technology to 3D print sand molds for casting bespoke metal joints in architecture. Using this approach, a large number of custom metal joints can be fabricated economically in short time. By automating the generation of the joint geometry and the corresponding mold system, an efficient digital process chain from design to fabrication is established. Several design studies for cast metal joints are presented. The approach is successfully tested on the example of a full scale space frame structure incorporating almost two hundred custom aluminum joints.
keywords 3D printing; binder jetting; sand casting; metal joints; metal casting; space frame; digital fabrication; computational design; lightweight; customization
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_068
id ecaadesigradi2019_068
authors Agirbas, Asli
year 2019
title The Effect of Complex Wall Forms on the Room Acoustics - An experimental case study
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 97-102
doi https://doi.org/10.52842/conf.ecaade.2019.2.097
summary The complexity of the wall form affects the acoustics of the space. In this study, the effect of the complex form walls produced by nCloth dynamic simulation on the acoustics of an office space was investigated. In this research, reverberation time and Speech Transmission Index (STI) values of the pilot office space with one wall having complex form and the office space with all of the walls as flat were measured by acoustic simulation. As a result of the comparison, it has been found that, within speech intelligibility and reverberation time, the acoustics of the space with one wall having complex form is better than the acoustics of the space with all the walls as flat.
keywords nCloth; Acoustics; Complex forms; Modeling & simulation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_413
id caadria2019_413
authors Ahrens, Chandler, Chamberlain, Roger, Mitchell, Scott, Barnstorff, Adam and Gelbard, Joshua
year 2019
title Controlling Daylight Reflectance with Cyber-physical Systems
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 433-442
doi https://doi.org/10.52842/conf.caadria.2019.1.433
summary Cyber-physical systems increasingly inform and alter the perception of atmospheric conditions within interior environments. The Catoptric Surface research project uses computation and robotics to precisely control the location of reflected daylight through a building envelope to form an image-based pattern of light on the building interior's surfaces. In an attempt to amplify or reduce spatial perception, the daylighting reflected onto architectural surfaces within a built environment generates atmospheric effects. The modification of light patterns mapped onto existing or new surfaces enables the perception of space to not rely on form alone. The mapping of a new pattern that is independent of architectural surfaces creates a visual effect of a formless atmosphere and holds the potential to affect the way people interact with the space. People need different amounts and quality of daylight depending on physiological differences due to age or the types of tasks they perform. This research argues for an informed luminous and atmospheric environment that is relative both to the user and more conceptual architectural aspirations of spatial perception controlled by a cyber-physical robotic façade system.
keywords Contextual; Computation
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia19_596
id acadia19_596
authors Anton, Ana; Yoo, Angela; Bedarf, Patrick; Reiter, Lex; Wangler, Timothy; Dillenburger, Benjamin
year 2019
title Vertical Modulations
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 596-605
doi https://doi.org/10.52842/conf.acadia.2019.596
summary The context of digital fabrication allows architects to reinvestigate material, process and the design decisions they entail to explore novel expression in architecture. This demands a new approach to design thinking, as well as the relevant tools to couple the form of artefacts with the process in which they are made. This paper presents a customised computational design tool developed for exploring the novel design space of Concrete Extrusion 3D Printing (CE3DP), enabling a reinterpretation of the concrete column building typology. This tool allows the designer to access generative engines such as trigonometric functions and mesh subdivision through an intuitive graphical user interface. Balancing process efficiency as understood by our industry with a strong design focus, we aim to articulate the unique architectural qualities inherent to CE3DP, energising much needed innovation in concrete technology.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_182
id ecaadesigradi2019_182
authors Argin, Gorsev, Pak, Burak and Turkoglu, Handan
year 2019
title Post-flâneur in Public Space - Altering walking behaviour in the era of smartphones
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 649-658
doi https://doi.org/10.52842/conf.ecaade.2019.1.649
summary Smartphones have become an ordinary accompanier of our walks and created new modes of appropriation of public space. This study aims to research these modes by observing the altering visual attention and walking behavior of people using smartphones in public space, and in this way, to reveal the emergence of different types of post-flâneurs. In order to address these aims, 346 (195 females, 151 males) smartphone users were observed in a central public square in Ghent, Belgium for seven days in 10-minute time intervals. Each person's gender, age, number of accompanies and their dominant mode of smartphone usage(s) were identified. Afterward, each person's walking timeline was organized into seconds and coded according to their focus of visual attention in 24 different modes which grouped under the three gaze types; visual attention on the environment, on the environment through the smartphone screen, and on the smartphone screen. Results of the descriptive statistics, multivariate graph, and rhythm-based in-depth analysis show that different types of smartphone activities affect visual attention and speed differently. Different types of post-flâneurs such as navigators and photo takers were identified based upon their high percentage of visual attention on the environment and slower walking speed. The study also revealed the frequent presence of phone-walkers (who walk while only holding the smartphone) and smartphone zombies (who walk slowly and without attention to their surrounding) in public space. In addition to these, our research revealed rapid smartphone zombies who walk faster than the average walking speed, a finding contrary to the former studies reviewed.
keywords visual attention; public space; smartphone; walking behaviour; post-flâneur
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id cf2019_048
id cf2019_048
authors Argota Sanchez-Vaquerizo, Javier and Daniel Cardoso Llach
year 2019
title The Social Life of Small Urban Spaces 2.0 Three Experiments in Computational Urban Studies
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 430
summary This paper introduces a novel framework for urban analysis that leverages computational techniques, along with established urban research methods, to study how people use urban public space. Through three case studies in different urban locations in Europe and the US, it demonstrates how recent machine learning and computer vision techniques may assist us in producing unprecedently detailed portraits of the relative influence of urban and environmental variables on people’s use of public space. The paper further discusses the potential of this framework to enable empirically-enriched forms of urban and social analysis with applications in urban planning, design, research, and policy.
keywords Data Analytics, Urban Design, Machine Learning, Artificial Intelligence, Big Data, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ecaadesigradi2019_290
id ecaadesigradi2019_290
authors Assem, Ayman, Abdelmohsen, Sherif and Ezzeldin, Mohamed
year 2019
title A Fuzzy-Based Approach for Evaluating Existing Spatial Layout Configurations
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
doi https://doi.org/10.52842/conf.ecaade.2019.2.035
summary This paper proposes a fuzzy-based approach for the automated evaluation of spatial layout configurations. Our objective is to evaluate soft and interdependent design qualities (such as connectedness, enclosure, spaciousness, continuity, adjacency, etc.), to satisfy multiple and mutually inclusive criteria, and to account for all potential and logical solutions without discarding preferable, likely or even less likely possible solutions. Using fuzzyTECH, a fuzzy logic software development tool, we devise all possible spatial relation inputs affecting physical and non-physical outputs for a given space using descriptive rule blocks. We implement this fuzzy logic system on an existing residential space to evaluate different layout alternatives. We define all linguistic input variables, output variables, and fuzzy sets, and present space-space relations using membership functions. We use the resulting database of fuzzy agents to evaluate the design of the existing residential spaces.
keywords Fuzzy logic; Space layout planning; Heuristic methods
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id acadia19_338
id acadia19_338
authors Aviv, Dorit; Houchois, Nicholas; Meggers, Forrest
year 2019
title Thermal Reality Capture
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 338-345
doi https://doi.org/10.52842/conf.acadia.2019.338
summary Architectural surfaces constantly emit radiant heat fluxes to their surroundings, a phenomenon that is wholly dependent on their geometry and material properties. Therefore, the capacity of 3D scanning techniques to capture the geometry of building surfaces should be extended to sense and capture the surfaces’ thermal behavior in real time. We present an innovative sensor, SMART (Spherical-Motion Average Radiant Temperature Sensor), which captures the thermal characteristics of the built environment by coupling laser geometry scanning with infrared surface temperature detection. Its novelty lies in the combination of the two sensor technologies into an analytical device for radiant temperature mapping. With a sensor-based dynamic thermal-surface model, it is possible to achieve representation and control over one of the major factors affecting human comfort. The results for a case-study of a 3D thermal scan conducted in the recently completed Lewis Center for the Arts at Princeton University are compared with simulation results based on a detailed BIM model of the same space.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id lasg_proceedings_2019_fulltext
id lasg_proceedings_2019_fulltext
authors Beesley, Philip [editor]
year 2019
title Living Architecture Systems Group Symposium 2019 Proceedings
source Living Architecture Systems Group Symposium 2019 Proceedings [ISBN 978-1-988366-19-7 (paperback)] Riverside Architectural Press: Toronto, Canada 2019.
summary Abstracts of presentations given by Living Architecture Systems Group (LASG) contributors at the LASG Symposium on March 1 – 3, 2019 in Toronto, Canada.
keywords cybernetics, tavolva, visualization, space architecture, infrastucture, bioregional, 3D scanning, 360 degree, dark, 4DSOUND, theoretical physics, chaos, ceramics, biometrics, participatory art, live matter, agency, biomatter, artificial natures, material, 4D Printing, weaving, craft, botanical fur, bio-hybrids, monarch, wild, nonhuman, synthetic cognition, artificial intelligence, interactive, interface, robotics, manufacturing, tectonic culture
email
last changed 2019/07/29 14:00

_id ijac201917103
id ijac201917103
authors Bejarano, Andres; and Christoph Hoffmann
year 2019
title A generalized framework for designing topological interlocking configurations
source International Journal of Architectural Computing vol. 17 - no. 1, 53-73
summary A topological interlocking configuration is an arrangement of pieces shaped in such a way that the motion of any piece is blocked by its neighbors. A variety of interlocking configurations have been proposed for convex pieces that are arranged in a planar space. Published algorithms for creating a topological interlocking configuration start from a tessellation of the plane (e.g. squares colored as a checkerboard). For each square S of one color, a plane P through each edge E is considered, tilted by a given angle ? against the tessellated plane. This induces a face F supported by P and limited by other such planes nearby. Note that E is interior to the face. By adjacency, the squares of the other color have similarly delimiting faces. This algorithm generates a topological interlocking configuration of tetrahedra or antiprisms. When checked for correctness (i.e. for no overlap), it rests on the tessellation to be of squares. If the tessellation consists of rectangles, then the algorithm fails. If the tessellation is irregular, then the tilting angle is not uniform for each edge and must be determined, in the worst case, by trial and error. In this article, we propose a method for generating topological interlocking configurations in one single iteration over the tessellation or mesh using a height value and a center point type for each tile as parameters. The required angles are a function of the given height and selected center; therefore, angle choices are not required as an initial input. The configurations generated using our method are compared against the configurations generated using the angle-choice approach. The results show that the proposed method maintains the alignment of the pieces and preserves the co-planarity of the equatorial sections of the pieces. Furthermore, the proposed method opens a path of geometric analysis for topological interlocking configurations based on non-planar tessellations.
keywords Topological interlocking, surface tessellation, irregular geometry, parametric design, convex assembly
series journal
email
last changed 2019/08/07 14:04

_id ecaadesigradi2019_110
id ecaadesigradi2019_110
authors Bernal, Marcelo, Marshall, Tyrone, Okhoya, Victor, Chen, Cheney and Haymaker, John
year 2019
title Parametric Analysis versus Intuition - Assessment of the effectiveness of design expertise
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 103-110
doi https://doi.org/10.52842/conf.ecaade.2019.2.103
summary This paper explores through professional case studies how design solutions produced by expert teams compares to those developed through systematic parametric analysis. While the expert intuition of either single designer or teams helps to rapidly identify relevant aspects of the design problem and produce viable solutions, it has limitation to address multi-criteria design problems with conflicting objectives and searching for design alternatives. On the other hand, parametric analysis techniques in combination with data analysis methods helps to construct and analyze large design spaces of potential design solutions. For the purpose of this study, the specifications of geometric features and material properties of the building envelopes proposed by the expert design teams define the base line to measure the extent of the performance improvements of two typically conflicting objectives: Daylight quality and energy consumption. The results show consistently significant performance improvement after systematic optimization.
keywords Performance Analysis; Parametric Analysis; Design Space; Design Expertise; Optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_425
id ecaadesigradi2019_425
authors Betti, Giovanni, Aziz, Saqib and Ron, Gili
year 2019
title Pop Up Factory : Collaborative Design in Mixed Rality - Interactive live installation for the makeCity festival, 2018 Berlin
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 115-124
doi https://doi.org/10.52842/conf.ecaade.2019.3.115
summary This paper examines a novel, integrated and collaborative approach to design and fabrication, enabled through Mixed Reality. In a bespoke fabrication process, the design is controlled and altered by users in holographic space, through a custom, multi-modal interface. Users input is live-streamed and channeled to 3D modelling environment,on-demand robotic fabrication and AR-guided assembly. The Holographic Interface is aimed at promoting man-machine collaboration. A bespoke pipeline translates hand gestures and audio into CAD and numeric fabrication. This enables non-professional participants engage with a plethora of novel technology. The feasibility of Mixed Reality for architectural workflow was tested through an interactive installation for the makeCity Berlin 2018 festival. Participants experienced with on-demand design, fabrication an AR-guided assembly. This article will discuss the technical measures taken as well as the potential in using Holographic Interfaces for collaborative design and on-site fabrication.Please write your abstract here by clicking this paragraph.
keywords Holographic Interface; Augmented Reality; Multimodal Interface; Collaborative Design; Robotic Fabrication; On-Site Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5show page 6HOMELOGIN (you are user _anon_489771 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002