CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 614

_id acadia19_470
id acadia19_470
authors Meyboom, AnnaLisa; Correa, David; Krieg, Oliver David
year 2019
title Stressed Skin Wood Surface Structure
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 470-477
doi https://doi.org/10.52842/conf.acadia.2019.470
summary Innovation in parametric design and robotic fabrication is in reciprocal relationship with the investigation of new structural types that facilitated by this technology. The stressed skin structure has historically been used to create lightweight curved structures, mainly in engineering applications such as naval vessels, aircraft, and space shuttles. Stressed skin structures were first referred to by Fairbairn in 1849. In England, the first use of the structure was in the Mosquito night bomber of World War II. In the United States, stressed skin structures were used at the same time, when the Wright Patterson Air Force Base designed and fabricated the Vultee BT-15 fuselage using fiberglass-reinforced polyester as the face material and both glass-fabric honeycomb and balsa wood core. With the renewed interest in wood as a structural building material, due to its sustainable characteristics, new potentials for the use of stressed skin structures made from wood on building scales are emerging. The authors present a material informed system that is characterized by its adaptability to freeform curvature on exterior surfaces. A stressed skin system can employ thinner materials that can be bent in their elastic bending range and then fixed into place, leading to the ability to be architecturally malleable, structurally highly efficient, as well as easily buildable. The interstitial space can also be used for services. Advanced digital fabrication and robotic manufacturing methods further enhance this capability by enabling precisely fabricated tolerances and embedded assembly instructions; these are essential to fabricate complex, multi-component forms. Through a prototypical installation, the authors demonstrate and discuss the technology of the stressed skin structure in wood considering current digital design and fabrication technologies.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_521
id ecaadesigradi2019_521
authors Millentrup, Viktoria, Ramsgaard Thomsen, Mette and Nicholas, Paul
year 2019
title Actuated Textile Hybrids - Textile smocking for designing dynamic force equilibria in membrane structures
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 521-530
doi https://doi.org/10.52842/conf.ecaade.2019.2.521
summary This paper introduces Actuated Textile Hybrids, and describes the steps needed to steer the form finding processes necessary for their production. The method presented employs an integration of an "activated" instead of a pre-stressed textile membrane to design different stages of force equilibrium within the Hybrid Structure, and to investigate the potentials of ever flexible shaping of tensile elements. The set-up for the Textile Hybrid consists of three main elements which are digitally and physically analysed in their inextricable interdependence in force, form and material. Together, the bending active beam (rod), the textile membrane and an applied pattern which actively shrinks surface areas of the membrane (activation), create the base for the form finding process.With advanced Finite Element Modelling software and the architects resulting ability to engineer responsive building-systems for a dynamic environment, it is essential to rethink the construction methods and the building-material of the classic building envelope. This is to not only develop a smartly engineered sustainable skin but also a boundary object which, due to its adaptation, develops the potential to interconnect with its surrounding to re-establish the relationships between nature, home and inhabitant.
keywords Textile Hybrid; Kiwi3D; Form-Finding; Material Studies; Structural System; Membrane Structure
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaadesigradi2019_346
id ecaadesigradi2019_346
authors Kaftan, Martin, Sautter, Sebastian and Kubicek, Bernhard
year 2019
title Integrating BIPV during Early Stages of Building Design
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 139-144
doi https://doi.org/10.52842/conf.ecaade.2019.2.139
summary In the quest to achieve the ambitious climate and clean energy targets the broad implementation of Integrated Photovoltaics (BIPV) is one of the keys. Photovoltaic (PV) modules can be installed above or on current roofing or traditional wall structures. In addition, BIPV devices substitute the skin of the exterior construction frame, i.e. the weather screen, thus simultaneously acting as both a climate screen and an energy producing source. However, while the integral planning strategy to building projects promotes the effective execution of BIPV, the limitation lies in the absence of both instruments and easy-to-use planning aid guidelines, particularly by non-PV experts in the early design stage. This study presents computational methods that help to quickly analyze the BIPV potential for a given building project and to suggest the optimal economical amount and location of the panels based on the building's energy demand profile.
keywords building integrated photovoltaic (BIPV); integral planning; design rules; simplified models; machine learning
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id lasg_whitepapers_2019_235
id lasg_whitepapers_2019_235
authors Parlac, Vera
year 2019
title Soft Kinetics; Integrating Soft Robotics into Architectural Assemblies
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.235 - 250
summary The project described in this paper explores the integration of custom-made soft robotic muscles into a component-based surface. This project is part of a broader research that focuses on new material behaviors and their capacity to produce adaptive and dynamic material systems. The paper discusses the use of a pneumatic system as a form of material-based actuation. It presents the ongoing research into the capacity of integrated [pneu] structures to generate kinetic movement within a component-based assembly to produce a responsive and “programmable” architectural skin. This is a prototype-based exploration that demonstrates different kinds of movement achieved by different silicone muscle types and proposes a light modular construct, its components, and patterns of aggregation that work in unison with the silicone muscles to produce a dynamic architectural skin. The project is informed by a history of pneumatic structures, the technology of soft robotics, and a kit-of-parts design strategy.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id ecaadesigradi2019_024
id ecaadesigradi2019_024
authors Wit, Andrew John and Ng, Rashida
year 2019
title cloudMAGNET - A prototype for climatically active light-weight skins
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 627-636
doi https://doi.org/10.52842/conf.ecaade.2019.2.627
summary This paper describes a potential for the integration of micro-encapsulated phase change material (mircoPCM) into lightweight skins as a means of regulating internal climatic conditions of volumetric objects. Viewed through the lens of the recently completed series of quarter-scale cloudMAGNET prototypes tested in the cloud forests of Monteverde, Costa Rica, this research utilized a wound, flexible carbon fiber framework and a lightweight fabric skin coated with varying densities of microPCM. The prototypes were monitored using real-time collection of climate data throughout the testing. In this paper we will demonstrate how climatic variables such as temperature, humidity, and pressure can be passively manipulated by varying the form and energy storage properties of materials without the use of active mechanical systems. Produced to bring awareness to the rising cloud levels within the Monteverde cloud forest, this research is intended to explore the fundamental relationships of material, energy and form. Beyond these objectives, the paper will also illustrate how these methods can be more broadly applied to the development of thermal-regulating lightweight tensile structures. Such innovations could be utilized as a method for the reimagining the architectural design and production processes allowing for the emergence of new typologies of environmentally self-mediating architecture.
keywords material performance; phase change material; carbon fiber reinforced polymers; computation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id acadia19_510
id acadia19_510
authors Leder, Samuel; Weber, Ramon; Wood, Dylan; Bucklin, Oliver; Menges, Achim
year 2019
title Distributed Robotic Timber Construction
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 510-519
doi https://doi.org/10.52842/conf.acadia.2019.510
summary Advances in computational design and robotic building methods have the potential to enable architects to author more sustainable, efficient, and geometrically varied systems that shape our built environment. To fully harness this potential, the inherent relationship of design and building processes requires a fundamental shift in the way we design and how we build. High degree of customization in architectural projects and constantly changing conditions of construction environments pose significant challenges for the implementation of automated construction machines. Beyond traditional, human-inspired, industrial robotic building methods, we present a distributed robotic system where the robotic builders are designed in direct relationship with the material and architecture they assemble. Modular, collaborative, single axis robots are designed to utilize standardized timber struts as a basic building material, and as a part of their locomotion system, to create large-scale timber structures with high degrees of differentiation. The decentralized, multi-robot system uses a larger number of simple machines that collaborate in teams to work in parallel on varying tasks such as material transport, placement, and fixing. The research explores related architectural and robotic typologies to create timber structures with novel aesthetics and performances.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia19_150
id acadia19_150
authors Wong, Nichol Long Hin; Crolla, Kristo
year 2019
title Simplifying Catenary Wood Structures
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 150-155
doi https://doi.org/10.52842/conf.acadia.2019.150
summary This work-in-progress action research paper describes the development of a novel computation-driven design method for low-tech producible, structurally optimized, suspended wooden roofs based on near catenary-shaped glue-laminated beams. The paper positions itself in a post-digital architectural context with as goal to introduce recent technological advances into developing construction contexts characterized by limited production means. The paper starts by evaluating the pre-existing practical, procedural, and economic drivers behind the design and fabrication of curved glue-laminated beams—one of the most ecologically sustainable structural elements commonly available. A method is proposed that employs genetic algorithms to simplify the fabrication of a suspended roof structure’s range of weight-saving, catenary shaped beams. To minimize the number of costly high-strength steel pressure vise setups required for their individual production, idealized curve geometries are minimally tweaked until a single, reusable jig setup becomes possible. When combined with a wooden roof underfloor, tectonic systems that employ such beams have the potential to dramatically reduce structure material requirements while producing architecturally engaging and spatially complex nonstandard space. The method’s validity, applicability, and architectural design opportunity space is tested, evaluated, and discussed through a conceptual architectural design project proposal that operates as demonstrator. The paper concludes by addressing future research directions and architectural advantages that the proposed design and fabrication methodology brings, especially for developing construction contexts with limited access to digital fabrication technology.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id acadia19_642
id acadia19_642
authors Chua, Pamela Dychengbeng; Hui, Lee Fu
year 2019
title Compliant Laminar Assemblies
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 642-653
doi https://doi.org/10.52842/conf.acadia.2019.642
summary This paper presents an innovative approach to the design and fabrication of three-dimensional objects from single-piece flat sheets, inspired by the origami technique of twist-closing. While in origami twist-closing is merely used to stabilize a cylindrical or spherical structure, ensuring it maintains its shape, this research investigates the potential of twist-closing as a multi-functional mechanism that also activates and controls the transformation of a planar surface into a predesigned three-dimensional form. This exploration is directed towards an intended application to stiff and brittle sheet materials that are difficult to shape through other processes. The methods we have developed draw mainly upon principles of lattice kirigami and laminar reciprocal structures. These are reflected in a workflow that integrates digital form-generation and fabrication-rationalization techniques to reference and apply these principles at every stage. Significant capabilities of the developed methodology include: (1) achievement of pseudo-double-curvature with brittle, stiff sheet materials; (2) stabilization in a 3D end-state as a frameless self-contained single-element laminar reciprocal structure—essentially a compliant mechanism; and (3) an ability to pre-encode 3D assembly constraints in a 2D cutout pattern, which guides a moldless fabrication process. The paper reviews the precedent geometric techniques and principles that comprise this method of 3D surface fabrication and describes a sample deployment of the method as applied to the design of laminar modules made of high-pressure laminate (HPL).
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id caadria2019_648
id caadria2019_648
authors Schumann, Kyle and Johns, Ryan Luke
year 2019
title Airforming - Adaptive Robotic Molding of Freeform Surfaces through Incremental Heat and Variable Pressure
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 33-42
doi https://doi.org/10.52842/conf.caadria.2019.1.033
summary Advances in computational modelling and digital fabrication have created both the need and ability for novel strategies of bringing digitally modeled doubly curved surfaces into reality. In this paper, we introduce airforming as a non-contact and formwork-free method for fabricating digitally designed surfaces through the iterative robotic application of heat and air pressure, coupled with sensory feedback. The process lies somewhere between incremental metal fabrication and traditional vacuum forming of plastics. Airforming does not add or subtract material or use any mold or formwork materials that would typically be discarded as waste. Instead, airforming shapes a plastic sheet through the controlled spatial application of heat and the control of pressure and vacuum within an airtight chamber beneath the material. Through our research, we develop and test a method for airforming through 3D scanning and point cloud analysis, evolutionary physics simulation solvers, and robotic-aided actuation and control of heating and pressure systems. Different variations and analysis and workflow methods are explored. We demonstrate and posit potential future applications for the airforming method.
keywords Robotic Production; Digital Fabrication; Incremental Forming; Thermoforming; Freeform Surface
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_126
id ecaadesigradi2019_126
authors Szabo, Anna, Lloret-Fritschi, Ena, Reiter, Lex, Gramazio, Fabio, Kohler, Matthias and J. Flatt, Robert
year 2019
title Revisiting Folded Forms with Digital Fabrication
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 191-200
doi https://doi.org/10.52842/conf.ecaade.2019.2.191
summary This paper discusses the potential of emerging digital fabrication techniques to produce material-efficient thin folded concrete structures. Although in the 50s and 60s folded structures provided a common optimal solution for spanning large distances without additional vertical supports, today, the number of these projects decreased significantly due to their complicated formworks and labour-intensive realization. Digital fabrication methods for concrete hold the promise to efficiently produce intricate folded mass-customized shapes with enhanced load-bearing capacity. This paper focuses on a robotic slip-forming process, Smart Dynamic Casting (SDC), to produce various thin-walled folded concrete elements with the same formwork providing smooth surface finish and gradual variations along the height. An empirical research methodology was applied to evaluate the fabrication feasibility of digitally designed thin folded geometries with one-to-one scale prototypes. Despite the discovered design limitations due to fabrication and material constraints, the exploration led to a new promising research direction, termed 'Digital Casting'.
keywords folded structures; digital concrete; Smart Dynamic Casting; set on demand; Digital Casting
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia19_246
id acadia19_246
authors Zhang, Viola; Qian, William; Sabin, Jenny
year 2019
title PolyBrickH2.0
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 246-257
doi https://doi.org/10.52842/conf.acadia.2019.246
summary This project emerged from collaborative trans-disciplinary research between architecture, engineering, biology, and materials science to generate novel applications in micro-scale 3D printed ceramics. Specifically, PolyBrick H2.0 adapts internal bone-based hydraulic networks through controlled water flow from 3D printed micro-textures and surface chemistry. Engagement across disciplines produced the PolyBrick series at the Sabin Lab (Sabin, Miller, and Cassab 2014) . The series is a manifestation of novel digital fabrication techniques, bioinspired design, materials inquiry, and contemporary evolutions of building materials. A new purpose for the brick is explored that is not solely focused on the mechanical constraints necessary for built masonry structures. PolyBrick H2.0 interweaves the intricacies of living systems (beings and environments combined) to create a more responsive and interactive material system. The PolyBrick 2.0 series looks at human bone as a design model for foundational research. PolyBrick H2.0 merges the cortical bone hydraulic network with new functionalities as a water filtration and collection system for self-preservation and conservation as well as passive cooling solutions. It also pushes the ability of 3D printing techniques to the microscale. These functionalities are investigated under context for a better construction material, but its use may extend further.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id caadria2019_379
id caadria2019_379
authors Vazquez, Elena, Gursoy, Benay and Duarte, Jose
year 2019
title Designing for Shape Change - A Case study on 3D Printing Composite Materials for Responsive Architectures
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 391-400
doi https://doi.org/10.52842/conf.caadria.2019.2.391
summary This paper presents the initial stages of a research that aims to develop hydroactive architectural skin systems that respond to environmental humidity. As part of this study, we have developed wood-based bio-composite materials that are 3D printed with wood filament. Shape-changing behavior is not predictable in advance. We developed customized 3D printing protocols to systematically study shape-changing behavior. The paper presents this systematic material study and the prototypes that we have developed.
keywords smart materials; responsive architecture; 3D printing; material computation
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia19_564
id acadia19_564
authors Chai, Hua; Marino, Dario; So, ChunPong; Yuan, Philip F.
year 2019
title Design for Mass-Customization
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 564-572
doi https://doi.org/10.52842/conf.acadia.2019.564
summary Tradition wood tectonics, like interlocking joints, have regained focus against the background of digital design and fabrication technologies. While research on interlocking joints is quite focused on joint geometries, especially for timber plates, there has been less attention on the design and mass customization of interlocking joints for linear timber elements. In this context, this research addresses the challenges of mass customization of interlocking joints for linear elements through the design and realization of a 9-meterhigh timber structure with fully interlocking joints, without the use of any nails or glue. A customized code generation program was developed for the fabrication process, allowing the rapid programming and fabrication for all the 840 elements and 2592 notches. The project demonstrates how innovative structures are allowed through the synthesis of joint geometry, assembly process, and cutting-edge fabrication technology.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia19_500
id acadia19_500
authors Larsen, Niels Martin; Anders Kruse Aagaard
year 2019
title Exploring Natural Wood
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 500-509
doi https://doi.org/10.52842/conf.acadia.2019.500
summary By investigating methods for using computation and digital manufacturing technologies to integrate material properties with architectural design tools, the research in this paper aims at revealing new potentials for the use of wood in architecture. Through an explorative approach, material particularities and fabrication methods are explored and combined into new workflows and architectural expressions. The research looks into different properties and capacities of wood, but the main part of the experimentation revolves around crooked oak logs. Due to their irregularities, these logs are normally discarded. However, through the methods suggested in this research, they are instead matched with unique processing informed by their divergence. The research presents a workflow for handling the discrete shapes of sawlogs in a system that both involve the collecting of material, scanning/digitization, handling of a stockpile, computer analysis, design, and robotic manufacturing. The workflow includes multiple custom-made solutions for handling the complex and different shapes and data of wood logs in a highly digitized machining and fabrication environment. The suggested method is established through investigations of wood as a natural material, studies of the production lines in the current wood industry, and experimentation in our in-house laboratory facilities. This up-cycling of discarded wood supply establishes a non-standard workflow that utilizes non-standard material stock and leads to a critical articulation of today’s linear material economy. The research thereby gives an example of how the natural forms and properties of sawlogs can be directly used to generate new structures and spatial conditions.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_152
id ecaadesigradi2019_152
authors Liotta, Salvator-John A.
year 2019
title Contemporary Architecture between Research and Practice - Experimentations in Digital Wood
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 595-604
doi https://doi.org/10.52842/conf.ecaade.2019.1.595
summary This paper is a take on contemporary works in wood designed with parametric softwares and seen from an academic and professional point of view. The knowledge about digital wood developed through Digital Fabrication Laboratories has proved to be effective but with certain limitations when used for real constructions. In fact, translating the freedom of building temporary architectures -which is usually one of the "learn by doing" activities of design studio or workshops- into wood architecture that respect all the constraints of real construction is a challenge. This paper shows several experiences where innovative ideas developed through research have been applied to temporary pavilions and real constructions in Japan, Italy and France.
keywords Parametric design and fabrication strategies; Pedagogy and Practice; CNC and Woodworking Technology; Wood complex surface
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_488
id ecaadesigradi2019_488
authors Naboni, Roberto and Kunic, Anja
year 2019
title A computational framework for the design and robotic manufacturing of complex wood structures
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 189-196
doi https://doi.org/10.52842/conf.ecaade.2019.3.189
summary The emerging paradigm of Industry 4.0 is rapidly expanding in the AEC sector, where emergent technologies are offering new possibilities. The use of collaborative robots is enabling processes of advanced fabrication, where humans and robots coexist and collaborate towards the co-creation of new building processes. This paper focuses on setting a conceptual framework and a computational workflow for the design and assembly of a novel type of engineered wood structures. The aim is advancing timber construction through complex tectonic configurations, which are informed by logics of robotic assembly, topology and material optimization, and combinatorial design. Starting from the conceptualization of robotic layered manufacturing for timber structures, this work presents the development of a digital twin applied to the voxel-based design of complex timber structures.
keywords Digital Materials; Robotic Assembly; Wood structures; Voxel-based design; Topology Optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id acadia23_v3_77
id acadia23_v3_77
authors Zahiri, Nima
year 2023
title Heigh-active Wood: Elasticity, Anisotropicity, and Hygroscopicity in Timber High-Rises
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The term ‘height-active’ coined by Heino Engel refers to “structure systems, of which the main task is to collect loads from horizontal planes . . . and to vertically transmit them to the base . . . or high-rises accordingly.” (Engel 2013, 14) The focus of this paper is on the characteristics of height-active wood structures due to their vertical extension and susceptibility to horizontal loading. We shall argue that “more innovation can be expected from the advanced understanding of material characteristics, which can be integrated and taken advantage of in the design process, rather than homogenized, approximated or ignored.” (Correa, Krieg and Meyboom 2019, 74) Conventional construction, insofar, has employed linear and planar wood elements in a hierarchical manner. There is an interest to take advantage of wood’s flexibility to innovate free-form high-rise wood structures. Digitized material application of wood has a wide range of technical and functional adaptation. This field notes essay highlights the importance of three main material characteristics of wood – elasticity, anisotropicity, hygroscopicity – for structural design typology of evolving high-rise endeavors.
series ACADIA
type field note
email
last changed 2024/04/17 13:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_127064 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002