CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 471

_id caadria2019_240
id caadria2019_240
authors Dorta, Tomás, Safin, Stéphane, Boudhraâ, Sana and Beaudry Marchand, Emmanuel
year 2019
title Co-Designing in Social VR - Process awareness and suitable representations to empower user participation
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 141-150
doi https://doi.org/10.52842/conf.caadria.2019.2.141
summary To allow non-designers' involvement in design projects new methods are needed. Co-design gives the same opportunity to all the multidisciplinary participants to co-create ideas simultaneously. Nevertheless, current co-design processes involving such users tend to limit their contribution to the proposal of basic design ideas only through brainstorming. The co-design approach needs to be enhanced by a properly suited representational ecosystem supporting active participation and by conscious use of structured verbal exchanges giving awareness of the creative process. In this respect, we developed two social virtual reality co-design systems, and a co-design verbal exchange methodology to favour participants' awareness of the co-creative process. By using such representations and verbal exchanges, participants could co-create with more ease by benefiting from being informed of the process and from the collective immersion, empowering their participation. This paper presents the rationale behind this approach of using Social VR in co-design and the feedback of three co-design workshops.
keywords Social VR; Project awareness ; Representational ecosystem; User participation; Co-design
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2019_077
id caadria2019_077
authors Rogers, Jessie, Schnabel, Marc Aurel and Moleta, Tane Jacob
year 2019
title Reimagining Relativity - Transitioning the physical body into a virtual inhabitant
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 727-736
doi https://doi.org/10.52842/conf.caadria.2019.2.727
summary This paper explores the ideas and mechanics through a case study which generated a reimagined means of inhabiting a speculative immersive environment. Currently, many users reside within virtual environments for their own leisure, work, or any other reason desired from short amounts of time to extreme lengths. This paper shows the generation directly relative to the inhabitant, where gravity, orientation, scale, and locomotion is completely dynamic. Details within this paper experiment with the laws and bounds of the virtual space within a real-time game engine where reimagining the way one inhabits space compared to current norms of real-world inhabitation is possible with creativity and applied knowledge. Escher's lithograph of Relativity is the driving concept explored within this paper beginning with creating gravitational pulls in multiple directions within the immersive virtual reality environment to accommodate various sources of gravity. The result of the case study demonstrated the generation of new virtual relativity laws reimagining how the virtual space is inhabited, in short, omnidirectional flying, gravitation defined by the inhabitant to geometry relationship, controlled local scaling, and populating space with multiple inhabitants in a unique manner.
keywords Virtual Reality; Speculative; Relativity; Inhabitant; Architecture
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia19_458
id acadia19_458
authors Bartosh, Amber; Anzalone, Phillip
year 2019
title Experimental Applications of Virtual Reality in Design Education
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 458-467
doi https://doi.org/10.52842/conf.acadia.2019.458
summary By introducing rapid reproduction, algorithms, and complex formal configurations, the digital era of architecture began a revolution. Architects incorporated the computational capacity of the computer into the design process both as a tool and as a critical component of the theories and practice of architecture as a whole. As we move into what has been coined “the second digital turn,” a period in which digital integration is considered ubiquitous, how can we consider, prepare, and propel towards the next technological innovation to significantly inform design thinking, representation, and manifestation? What tools are available to investigate this speculative design future and how can they be implemented? If the integration of technology in architecture is now a given, perhaps the next digital design era is not just digital but virtual. As new technologies emerge the potential for integrating the virtual design world with our physical senses affords novel possibilities for interactive design, simulation, analysis and construction. Hybrid reality technologies including virtual reality (VR) and augmented reality (AR), embody the potential to supersede conventional representation methodologies such as drawing, rendering, physical modeling, and animation. As they become increasingly pervasive, they will transform how we communicate ideas and data as spatial concepts. Further, they will reform the construct of the built environment when applied to both materiality and fabrication. This paper will describe the incorporation of VR as a tool in various classroom and laboratory settings, recognize the educational outcomes of this incorporation, and identify the potential relationship of these technologies to future academic exploration and application to practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2019_647
id caadria2019_647
authors Camacho, Daniel, Dobbs, Tiara, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Hands On Design - Integrating haptic interaction and feedback in virtual environments for enhanced immersive experiences in design practice.
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 563-572
doi https://doi.org/10.52842/conf.caadria.2019.1.563
summary The usability of virtual reality (VR) controller interfaces are often complex and difficult for first time users. Most controllers provide minimal feedback which relegates the potential for heightened interaction and feedback within virtual experiences. This research explores how haptic technology systems partnered with VR can deliver immersive interactions between user and virtual environment (VE). This research involves the development of a haptic glove interface prototype that incorporates a force feedback and vibrotactile feedback system. It focuses on determining a workflow that communicates in real-time user interaction and environmental feedback using Unreal Engine and the produced haptic glove system. Testing and calibrating the prototype feedback system provided a baseline for developers to rationalise and improve accuracy of current real-time virtual feedback systems. The evaluation of this research in industry unfolds new technical knowledge for implementing a wider range of haptic technologies within VR. This further development would involve reviewing the usability and interaction standards for VR users in the design process.
keywords Virtual Environments; Haptic Technologies; Feedback; Interaction; Usability
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_626
id caadria2019_626
authors Hahm, Soomeen, Maciel, Abel, Sumitiomo, Eri and Lopez Rodriguez, Alvaro
year 2019
title FlowMorph - Exploring the human-material interaction in digitally augmented craftsmanship
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 553-562
doi https://doi.org/10.52842/conf.caadria.2019.1.553
summary It has been proposed that, after the internet age, we are now entering a new era of the '/Augmented Age/' (King, 2016). Physician Michio Kaku imagined the future of architects will be relying heavily on Augmented Reality technology (Kaku, 2015). Augmented reality technology is not a new technology and has been evolving rapidly. In the last three years, the technology has been applied in mainstream consumer devices (Coppens, 2017). This opened up possibilities in every aspect of our daily lives and it is expected that this will have a great impact on every field of consumer's technology in near future, including design and fabrication. What is the future of design and making? What kind of new digital fabrication paradigm will emerge from inevitable technological development? What kind of impact will this have on the built environment and industry? FlowMorph is a research project developed in the Bartlett School of Architecture, B-Pro AD with the collaboration of the authors and students as a 12 month MArch programme, we developed a unique design project trying to answer these questions which will be introduced in this paper.
keywords Augmented Reality, Mixed Reality, Virtual Reality, Design Augmentation, Digital Fabrication, Cognition models, Conceptual Designing, Design Process, Design by Making, Generative Design, Computational Design, Human-Machine Collaboration, Human-Computer Collaboration, Human intuition in digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia19_310
id acadia19_310
authors Leblanc, Maxime; Vardouli, Theodora
year 2019
title Bursting the Bubble
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 310-319
doi https://doi.org/10.52842/conf.acadia.2019.310
summary The “bubble" is an oft-used keyword in discussions about Virtual Reality (VR) and Virtual Environments (VE). Apart from pointing to the growing, yet precarious, rise of these domains in technology markets, the “bubble" is also a prolific metaphor for spatial, experiential, and technical aspects of virtual worlds. Combining material from architectural history and history of computing, this paper situates and critically activates two threads of the “bubble" metaphor: the bubble as a closed, autonomous system severed from its surroundings, and the bubble as an ubiquitous, limitless environment. Through historical episodes from the development of Head Mounted Displays (HMDs), the paper positions current VR HDMs into a genealogy of miniaturization of actual architectural “bubbles”— from military simulation domes to wearable “micro environments”—and examines the techniques that support the illusion of these closed, autonomous worlds as limitless and ubiquitous. The paper concludes with the description of a critical design project that exposes the limits of VR's limitless worlds and the role of context (physical, architectural) in both making and breaking the VR bubble.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id caadria2019_403
id caadria2019_403
authors Lin, Xuhui and Muslimin, Rizal
year 2019
title RESHAPE - Rapid forming and simulation system using unmanned aerial vehicles for architectural representation
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 413-422
doi https://doi.org/10.52842/conf.caadria.2019.1.413
summary As digital technology advances, multiple ways of repre-senting objects interactively in space, architects and designers begin to use Virtual Reality (VR) and Immersive Digital Environ-ments (IDE) to communicate their ideas. However, these technolo-gies are bounded with their spatial limitations. In responding to this issue, our paper introduces ReShape, a digital-physical spatial representation system supported by Unmanned Aerial Vehicle (UAV) swarm technology that allows a user to project their unbuilt design and interact with them in real space, unattached by headset, fixed cameras or screen. ReShape can be controlled by user orien-tation and gesture as an input, where the real-time feedback is provided by UAV spatial arrangement in space, augmented by computational simulation. Spatial data is transmitted between the UAV agents for the user to experience the digital model, creating a versatile and computationally efficient platform to edit and en-hance the design in real-space. This paper outlines four systems in ReShape, i.e., (1) detection system to identify and locate the user position and orientation; (2) task-arrangement system to provide spatial information to the UAV agents; (3) UAV's communicating system to control the UAV position and task in space; and (4) Physical-Digital forming system, to project digital simulation by the UAV agents.
keywords UAV system; Spatial representation; a detecting sys-tem; human-computation interaction
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_439
id caadria2019_439
authors Lo, Tian Tian, Xiao, ZuoPeng and Yu, Henry
year 2019
title Designing 'Action Trigger' for Architecture Modelling Design within Immersive Virtual Reality
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 545-552
doi https://doi.org/10.52842/conf.caadria.2019.1.545
summary Architectural modelling is radically evolving with time. The introduction of VR into gaming and education has also encouraged architecture to integrate VR into its course of the design process. However, the current integration of Augmented Reality (AR) and Virtual Reality (VR) components is mostly limited to enhancing visualisation, especially towards the corresponding design tasks. This opportunity lead to an increase in attempts to bring the modelling process into the immersive environment. This paper aims to challenge the current design capabilities within the immersive environment and introduce a new interaction method between the human and the virtual reality. The research in human-computer interaction (HCI) has been ongoing for years till present day to observe how humans interact with computers and design technologies. The appearance of the smartphone has extended this HCI research towards hand-carried devices. With VR, although the hardware is still considered 'computer', the interaction is very much different. Since the human is immersed in the virtual environment, the interaction is already beyond the traditional keyboard and mouse. This paper responds to the conference theme by capitalising the power of VR technology to bring new methods of HVRI to the architecture design process.
keywords VR; HVRI; Interaction; Action Trigger; Immersive
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_156
id ecaadesigradi2019_156
authors Loyola, Mauricio, Rossi, Bruno, Montiel, Constanza and Daiber, Max
year 2019
title Use of Virtual Reality in Participatory Design
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 449-454
doi https://doi.org/10.52842/conf.ecaade.2019.2.449
summary Virtual Reality technology was used as a visualization tool in a participatory design process of an urban design project in Santiago, Chile. Community members with little or no familiarity with digital technologies visualized the project using traditional means of architectural representation and immersive virtual reality, and then, answered standardized questionnaires on spatial comprehension. Participants who visualized the project using virtual reality showed a higher level of spatial comprehension and a more precise understanding of the formal and spatial qualities of the project than users who used traditional means.
keywords Virtual Reality; Participatory Design; Urban Design; Head Mounted Displays
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id caadria2019_365
id caadria2019_365
authors Natephra, Worawan and Motamedi, Ali
year 2019
title BIM-based Live Sensor Data Visualization using Virtual Reality for Monitoring Indoor Conditions
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 191-200
doi https://doi.org/10.52842/conf.caadria.2019.2.191
summary This paper proposes a method for an automated live sensor data visualization of building indoor environment conditions using a VR system. The proposed method is based on the integration of environmental sensors, BIM, and VR technology. Such integration provides an opportunity to utilize an immersive and live sensing technology for improving data visualization. In our case study, the environmental data, such as indoor air temperature, humidity, and light level are captured by sensors connected to Arduino microcontrollers. The data output of sensors obtained from Arduino units are stored onto the BIM model and transferred to the developed VR system. The developed system simultaneously visualizes numerical values of sensors' reading together with the virtual model of the building in a VR headset. The result of the case study showed that the developed system is capable of visualizing various indoor environmental information of the building with the VR technology. It can provide users with useful information to help monitoring indoor thermal comfort conditions of the building in real-time, while performing the walkthrough in the virtual environment.
keywords Building Information Modeling (BIM); environmental sensor; thermal comfort; Virtual Reality (VR); Arduino; IoT
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_474
id ecaadesigradi2019_474
authors Nunes de Vasconcelos, Guilherme, Malard, Maria Lucia, van Stralen, Mateus, Campomori, Maurício, Canavezzi de Abreu, Sandro, Lobosco, Tales, Flach Gomes, Isabella and Duarte Costa Lima, Lucas
year 2019
title Do we still need CAVEs?
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 133-142
doi https://doi.org/10.52842/conf.ecaade.2019.3.133
summary This paper discusses the relevance of CAVE systems in comparison with virtual and augmented reality head-mounted displays in terms of immersion experience, costs, maintenance, ease to use, interactivity, and social interaction. It is based on a comparative study of a systematic literature review comprising the works available at CumInCAD and IEEE databases in the period from 1998-2018, and empirical data from technical visits made to five CAVEs in Europe. The discussion seeks to cover the limits of each technology and questions the need for CAVEs nowadays.
keywords CAVE; Virtual Reality; head mounted display; Augmented reality
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id caadria2019_411
id caadria2019_411
authors Yan, Liang, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Intergrating UAV Development Technology with Augmented Reality toward Landscape Tele-Simulation
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 423-432
doi https://doi.org/10.52842/conf.caadria.2019.1.423
summary Augmented reality (AR) is an emerging landscape simulation technology being used in the construction industry to reduce losses in subsequent projects by reviewing the landscape before a building is completed. However, since AR projects virtual models into the real world through portable devices, the designer's review perspective and the number of people able to participate in the review process is limited. Therefore, a system that combines AR and unmanned aerial vehicle (UAV) development with telecommunications technology was designed and prototyped to use the UAV camera as the source of the video stream of AR. This frees the designer's review perspective through ground control and allows remote communication with off-site people, thus allowing more users site access and improving system usability. This paper details the construction of the integrated system, including the integrating of different development languages, environments, and mutual calls used, the AR and UAV development modules, the construction process of the telecommunication protocol, and mutual data interoperability.
keywords Landscape simulation; tele-simulation; Markerless Augmented Reality (AR); Unmanned Aerial Vehicle (UAV); telecommunication
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia19_586
id acadia19_586
authors Mitterberger, Daniela; Derme, Tiziano
year 2019
title Soil 3D Printing
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 586-595
doi https://doi.org/10.52842/conf.acadia.2019.586
summary Despite, the innovation of additive manufacturing (AM) technology, and in spite of the existence of natural bio-materials offering notable mechanical properties, materials used for AM are not necessarily more sustainable than materials used in traditional manufacturing. Furthermore, potential material savings may be partially overshadowed by the relative toxicity of the material and binders used for AM during fabrication and post-fabrication processes, as well as the energy usage necessary for the production and processing workflow. Soil as a building material offers a cheap, sustainable alternative to non-biodegradable material systems, and new developments in earth construction show how earthen buildings can create light, progressive, and sustainable structures. Nevertheless, existing large-scale earthen construction methods can only produce highly simplified shapes with rough detailing. This research proposes to use robotic additive manufacturing processes to overcome current limitations of constructing with earth, supporting complex three-dimensional geometries, and the creation of novel organic composites. More specifically the research focuses on robotic binder-jetting with granular bio-composites and non-toxic binding agents such as hydrogels. This paper is divided into two main sections: (1) biodegradable material system, and (2) multi-move robotic process, and describes the most crucial fabrication parameters such as compaction pressure, density of binders, deposition strategies and toolpath planning as well as identifying the architectural implications of using this novel biodegradable fabrication process. The combination of soil and hydrogel as building material shows the potential of a fully reversible construction process for architectural components and foresees its potential full-scale architectural implementations.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_102
id ecaadesigradi2019_102
authors Passsaro, Andres Martin, Henriques, Gonçalo Castro, Sans?o, Adriana and Tebaldi, Isadora
year 2019
title Tornado Pavilion - Simplexity, almost nothing, but human expanded abilities
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 305-314
doi https://doi.org/10.52842/conf.ecaade.2019.1.305
summary In the context of the fourth industrial revolution, not all regions have the same access to technology for project development. These technological limitations do not necessarily result in worst projects and, on the contrary, can stimulate creativity and human intervention to overcome these shortcomings. We report here the design of a small pavilion with scarce budget and an ambitious goal to qualify a space through tactical urbanism. We develop the project in a multidisciplinary partnership between academy and industry, designing, manufacturing and assembling Tornado Pavilion, a complex structure using combined HIGH-LOW technologies, combining visual programming with analog manufacture and assembly. The design strategy uses SIMPLEXITY with ruled surfaces strategy to achieve a complex geometry. Due to the lack of automated mechanical cutting or assembly, we used human expanded abilities for the construction; instead of a swarm of robots, we had a motivated and synchronized swarm of students. The pavilion became a reference for local population that adopted it. This process thus shows that less or almost nothing (Sola-Morales 1995), need not to be boring (Venturi 1966) but less can be much more (Kolarevic 2017).
keywords Simplexity; CAD-CAM; Ruled Surfaces; expanded abilities; pavilion
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_360
id ecaadesigradi2019_360
authors Wei, Likai, Ta, La, Li, Liang, Han, Yang, Feng, Yingying, Wang, Xin and Xu, Zhen
year 2019
title RAF: Robot Aware Fabrication - Hand-motion Augmented Robotic Fabrication Workflow and Case Study
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 241-250
doi https://doi.org/10.52842/conf.ecaade.2019.2.241
summary Fabricating process with robotic awareness and creativity makes architect able to explore the new boundary between digital and material world. Although parametric and generative design method make diverse processing of materials possible for robots, it's still necessary to establish a new design-fabrication framework, where we could simultaneously deal with designers, robots, data, sensor technology and material natural characters. In order to develop a softer system without gap between preset program and robot's varying environments, this paper attempts to establish an environment-computer-robot workflow and transform traditional robotic fabrication from linear to more tangible and suitable for architects' and designers' intuitive motion and gesture. RAF (Robotic Aware Fabrication), a concept of real-time external enhancement fabrication is proposed, and a new workflow of HARF (Hand-motion Augmented Robotic Fabrication) is developed, where motion sensor captures designer's hand-motion, filter algorithm recognizes the intention and update the preset program, robotic controller and RSI (Robotic Sensor Interface) adjusts robot's TCP (Tool Center Point) path in real time. With HARF workflow, two case studies of Hand-motion robotic dance and Free-form concrete wall are made.
keywords RAF; HARF; Hand-motion Sensor; Styrofoam Mold; Concrete Wall; RSI
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_318
id ecaadesigradi2019_318
authors Al Bondakji, Louna, Lammich, Anne-Liese and Werner, Liss C.
year 2019
title ViBe (Virtual Berlin) - Immersive Interactive 3D Urban Data Visualization - Immersive interactive 3D urban data visualization
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 83-90
doi https://doi.org/10.52842/conf.ecaade.2019.3.083
summary The project investigates the possibility of visualizing open source data in a 3D interactive virtual environment. We propose a new tool, 'ViBe'. We programmed 'ViBe' using Unity for its compatibility with HTC VIVE glasses for virtual reality (VR). ViBe offers an abstract visualization of open source data in a 3D interactive environment. The ViBe environment entails three main topics a) inhabitants, b) environmental factors, and c) land-use; acting as representatives of parameters for cities and urban design. Berlin serves as a case study. The data sets used are divided according to Berlin's twelve administrative districts. The user immerses into the virtual environment where they can choose, using the HTC Vive controllers, which district (or Berlin as a whole) they want information for and which topics they want to be visualized, and they can also teleport back and forth between the different districts. The goal of this project is to represent different urban parameters an abstract simulation where we correlate the corresponding data sets. By experiencing the city through visualized data, ViBe aims to provide the user with a clearer perspective onto the city and the relationship between its urban parameters. ViBe is designed for adults and kids, urban planners, politicians and real estate developers alike.
keywords 3D-Visualization; open source data; immersive virtual reality; interactive ; Unity
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id lasg_whitepapers_2019_367
id lasg_whitepapers_2019_367
authors Atelier Iris van Herpen
year 2019
title Exploring New Forms of Craft
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.367 - 392
summary Dutch fashion designer Iris van Herpen and Canadian architect Philip Beesley have been united by friendship and a mutual interest in esoteric, experimental craft since 2012. Together they collaborated on various dresses, techniques and materials, featured in six of Iris van Herpen's Couture collections. Since her first show in 2007, van Herpen has been preoccupied with inventing new forms and methods of sartorial expression by combining the most traditional and the most radical materials and garment construction methods into her unique aesthetic vision.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaadesigradi2019_449
id ecaadesigradi2019_449
authors Becerra Santacruz, Axel
year 2019
title The Architecture of ScarCity Game - The craft and the digital as an alternative design process
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-52
doi https://doi.org/10.52842/conf.ecaade.2019.3.045
summary The Architecture of ScarCity Game is a board game used as a pedagogical tool that challenges architecture students by involving them in a series of experimental design sessions to understand the design process of scarcity and the actual relation between the craft and the digital. This means "pragmatic delivery processes and material constraints, where the exchange between the artisan of handmade, representing local skills and technology of the digitally conceived is explored" (Huang 2013). The game focuses on understanding the different variables of the crafted design process of traditional communities under conditions of scarcity (Michel and Bevan 1992). This requires first analyzing the spatial environmental model of interaction, available human and natural resources, and the dynamic relationship of these variables in a digital era. In the first stage (Pre-Agency), the game set the concept of the craft by limiting students design exploration from a minimum possible perspective developing locally available resources and techniques. The key elements of the design process of traditional knowledge communities have to be identified (Preez 1984). In other words, this stage is driven by limited resources + chance + contingency. In the second stage (Post-Agency) students taking the architects´ role within this communities, have to speculate and explore the interface between the craft (local knowledge and low technological tools), and the digital represented by computation data, new technologies available and construction. This means the introduction of strategy + opportunity + chance as part of the design process. In this sense, the game has a life beyond its mechanics. This other life challenges the participants to exploit the possibilities of breaking the actual boundaries of design. The result is a tool to challenge conventional methods of teaching and leaning controlling a prescribed design process. It confronts the rules that professionals in this field take for granted. The game simulates a 'fake' reality by exploring in different ways with surveyed information. As a result, participants do not have anything 'real' to lose. Instead, they have all the freedom to innovate and be creative.
keywords Global south, scarcity, low tech, digital-craft, design process and innovation by challenge.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_425
id ecaadesigradi2019_425
authors Betti, Giovanni, Aziz, Saqib and Ron, Gili
year 2019
title Pop Up Factory : Collaborative Design in Mixed Rality - Interactive live installation for the makeCity festival, 2018 Berlin
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 115-124
doi https://doi.org/10.52842/conf.ecaade.2019.3.115
summary This paper examines a novel, integrated and collaborative approach to design and fabrication, enabled through Mixed Reality. In a bespoke fabrication process, the design is controlled and altered by users in holographic space, through a custom, multi-modal interface. Users input is live-streamed and channeled to 3D modelling environment,on-demand robotic fabrication and AR-guided assembly. The Holographic Interface is aimed at promoting man-machine collaboration. A bespoke pipeline translates hand gestures and audio into CAD and numeric fabrication. This enables non-professional participants engage with a plethora of novel technology. The feasibility of Mixed Reality for architectural workflow was tested through an interactive installation for the makeCity Berlin 2018 festival. Participants experienced with on-demand design, fabrication an AR-guided assembly. This article will discuss the technical measures taken as well as the potential in using Holographic Interfaces for collaborative design and on-site fabrication.Please write your abstract here by clicking this paragraph.
keywords Holographic Interface; Augmented Reality; Multimodal Interface; Collaborative Design; Robotic Fabrication; On-Site Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 23HOMELOGIN (you are user _anon_506374 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002