CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 618

_id ecaadesigradi2019_405
id ecaadesigradi2019_405
authors da Cunha Teixeira, Luísa and Cury Paraizo, Rodrigo
year 2019
title Caronae - ridesharing and first steps into commuting opportunitie of academic exchange
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 805-816
doi https://doi.org/10.52842/conf.ecaade.2019.1.805
summary Location-based mobile applications have been a rising theme for academics in the field of urbanism and in urban and transportation, because of the potential of transformation they might bring to the urban landscape (De Souza e Silva, 2013). One of the possibilities we study here is to observe social encounters fostered by commuting rides. In this paper, we try to examine the practice from the broad perspective of estimating the environmental benefits, in a context where digital information technology is wielded to address problems old and new (Townsend, 2014). This paper aims to analyze the potential of transformations that new ICTs bring to urban mobility, using as case study the official ridesharing system of the Federal University of Rio de Janeiro, the Carona? project. The system was developed focusing on the reduction of the number of motorized trips to the University, as well as the amount of CO2 generated by them. Here we analyze the dynamics of ridesharing, using the system data, and also try to observe the role it may play towards the promotion of integration in the UFRJ community.
keywords mobile apps; urban mobility; ridesharing; caronae ufrj
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_016
id ecaadesigradi2019_016
authors Eloy, Sara, Dias, Luís, Ourique, Lázaro and Sales Dias, Miguel
year 2019
title Home Mobility Hazards Detected via Object Recognition in Augmented Reality
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 415-422
doi https://doi.org/10.52842/conf.ecaade.2019.2.415
summary We present an Environmental Analysis and Safety Advisor system capable of identify the environmental barriers and hazards found in the homes of elderly people. This augmented reality tool runs on a portable computing device and can be used by informal and formal caregivers without specific knowledge of Accessible Design, to evaluate the safeness of an elderly home environment, ensuring that potential fall hazards are detected and corrected. The system recognizes specific indoor elements of the house (e.g. arm-chair, bed, chair), and then computes and analyses their mutual distances in the environment so that a warning of hazard is emitted in case of need (e.g. loose cable, not enough space to pass a wheelchair). In this context, we implemented object recognition at the category level of miniature versions of real sized furniture and the determination of the distance between neighboring objects, signaling if it is below a certain threshold value. Environmental Analysis tool can then recognize furniture and measure the distance between two furniture elements enabling the system to pop up an alert sign if the space left does not guarantee good accessibility.
keywords augmented reality; computer vision; object category recognition; ambient assisted living
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_438
id ecaadesigradi2019_438
authors Iunes Salles Esteves, Paula, Carmo Pena Martinez, Andressa, Francisco da Matta Vegi, Lucas, Rodrigues Cardoso, Igor, Nacif Rocha, Mauro, dos Santos Ferreira, Ricardo and Mônaco dos Santos, Denise
year 2019
title SEEstem - Wearable navigation device for people with visual impairments
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 681-690
doi https://doi.org/10.52842/conf.ecaade.2019.1.681
summary Visually impaired people represent a large amount of the Brazilian population. However, although a wide range of existing legislation ensures accessibility, most of the Brazilian public spaces are inadequate to accommodate disabled citizens. In this context, this paper presents a digital device, which combines the smartphone technologies with Arduino microcontrollers, for orientation and obstacle detection. We tested the minimum viable product and the first vest prototype through a user-centered usability test, which combines HCI assessments to other techniques, such as semi-structured interviews. As known, these wearable devices and mobile applications are in the center of the Internet of Things discussion. This study is expected to be an alternative for the urban mobility of visually impaired people, allowing them to have a more active and independent behavior in public spaces.
keywords Assistive wearable devices; Visually impaired people; Accessibility; Human-computer interaction; Collaborative design.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id caadria2019_109
id caadria2019_109
authors Kim, Jinsung, Song, Jaeyeol and Lee, Jin-Kook
year 2019
title Approach to Auto-recognition of Design Elements for the Intelligent Management of Interior Pictures
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 785-794
doi https://doi.org/10.52842/conf.caadria.2019.2.785
summary This paper explores automated recognition of elements in interior design pictures for an intelligent design reference management system. Precedent design references have a significant role to help architects, designer and even clients in general architecture design process. Pictures are one of the representation that could exactly show a kind of design idea and knowledge. Due to the velocity, variety and volume of reference pictures data with growth of references platform, it is hard and time-consuming to handle the data with current manual way. To solve this problem , this paper depicts a deep learning-based approach to figuring out design elements and recognizing the design feature of them on the interior pictures using faster-RCNN and CNN algorithms. The targets are the residential furniture such as a table and a seating. Through proposed application, input pictures can automatically have tagging data as follows; seating1(type: sofa, seating capacity: two-seaters, design style: classic)
keywords Interior design picture; Design element; Design feature; Automated recognition; Design Reference management
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_426
id caadria2019_426
authors Lee, Jisun and Lee, Hyunsoo
year 2019
title Agent-driven Accessibility and Visibility Analysis in Nursing Units
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 351-360
doi https://doi.org/10.52842/conf.caadria.2019.1.351
summary This study investigates the nursing unit design for care quality and efficient operation, evaluating visibility and walking distance of nurses in the different form of layout. Sufficient visibility from nurses' station to patient rooms and corridors can increase nurses' care abilities to understand the needs and movements of patients. The workload and time caused by nurse's walking can be diverted to patient care. Isovist analysis and agent-based simulation are experimented to investigate the effects of spatial layout on visibility and nurses' accessibility to patients. In the isovist analysis, the nurses' station facing patient rooms were more effective in nurse-to-patient visibility. In the nurse's walking trail analysis, uneven walking distance of each nurse appeared due to the asymmetric patient room layout centering the nurses' station and heavy room allocation plan. Understanding the potential impacts of design parameters enables designers to predict possible behaviors in each design alternative and to make effective and efficient design decisions for the occupants. This study underlines the role of the physical environment in the delivery of patient care and nurse's well-being. It presents an evaluation framework integrating syntactic analysis and agent-based simulation to predict the effect of the spatial layouts on the hospital activities.
keywords Nursing unit design; Isovists; Agent-based modeling; Accessibility; Visibility
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2019_033
id cf2019_033
authors Soltani, Sahar; Ning Gu, Jorge Ochoa Paniagua, Alpana Sivam and Tim McGinley
year 2019
title Investigating the Social Impacts of Highdensity Neighbourhoods through Spatial Analysis
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 255
summary Studies argue that higher density areas incur social problems such as lack of safety [1], while other studies provide evidence for the positive impact of high-density urban areas, for instance opportunities for social interactions and equal form of accessibility [2]. This paper argues that design factors can mediate the impacts of density on social aspects. Therefore, this study explores the extent to which design factors can be correlated to the social outcomes of different density areas. To do this, data from an empirical study conducted in the UK, which identified the relationship between density and social sustainability through cases of fifteen neighbourhoods, have been utilised. This paper has conducted further analysis based on these cases using a mixed method with spatial analysis tools. Outcomes show that some of the social results in the UK study such as safety are correlated with spatial factors like normalised angular choice. Moreover, the regression model created from the spatial indices can be used to predict the overall social sustainability index reported by the UK study.
keywords Urban Density, Social Sustainability, Spatial Analysis, Space Syntax, Urban Network Analysis
series CAAD Futures
email
last changed 2019/07/29 14:15

_id caadria2019_660
id caadria2019_660
authors Aghaei Meibodi, Mania, Giesecke, Rena and Dillenburger, Benjamin
year 2019
title 3D Printing Sand Molds for Casting Bespoke Metal Connections - Digital Metal: Additive Manufacturing for Cast Metal Joints in Architecture
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 133-142
doi https://doi.org/10.52842/conf.caadria.2019.1.133
summary Metal joints play a relevant role in space frame constructions, being responsible for large amount of the overall material and fabrication cost. Space frames which are constructed with standardized metal joints are constrained to repetitive structures and topologies. For customized space frames, the fabrication of individual metal joints still remains a challenge. Traditional fabrication methods such as sand casting are labour intensive, while direct 3D metal printing is too expensive and slow for the large volumes needed in architecture.This research investigates the use of Binder Jetting technology to 3D print sand molds for casting bespoke metal joints in architecture. Using this approach, a large number of custom metal joints can be fabricated economically in short time. By automating the generation of the joint geometry and the corresponding mold system, an efficient digital process chain from design to fabrication is established. Several design studies for cast metal joints are presented. The approach is successfully tested on the example of a full scale space frame structure incorporating almost two hundred custom aluminum joints.
keywords 3D printing; binder jetting; sand casting; metal joints; metal casting; space frame; digital fabrication; computational design; lightweight; customization
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_061
id ecaadesigradi2019_061
authors Alkadri, Miktha Farid, De Luca, Francesco, Turrin, Michela and Sariyildiz, Sevil
year 2019
title Making use of Point Cloud for Generating Subtractive Solar Envelopes
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 633-640
doi https://doi.org/10.52842/conf.ecaade.2019.1.633
summary As a contextual and passive design strategy, solar envelopes play a great role in determining building mass based on desirable sun access during the predefined period. With the rapid evolution of digital tools, the design method of solar envelopes varies in different computational platforms. However, current approaches still lack in covering the detailed complex geometry and relevant information of the surrounding context. This, consequently, affects missing information during contextual analysis and simulation of solar envelopes. This study proposes a subtractive method of solar envelopes by considering the geometrical attribute contained in the point cloud of TLS (terrestrial laser scanner) dataset. Integration of point cloud into the workflow of solar envelopes not only increases the robustness of final geometry of existing solar envelopes but also enhances awareness of architects during contextual analysis due to consideration of surface properties of the existing environment.
keywords point cloud data; solar envelopes; subtractive method; solar access
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_290
id ecaadesigradi2019_290
authors Assem, Ayman, Abdelmohsen, Sherif and Ezzeldin, Mohamed
year 2019
title A Fuzzy-Based Approach for Evaluating Existing Spatial Layout Configurations
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
doi https://doi.org/10.52842/conf.ecaade.2019.2.035
summary This paper proposes a fuzzy-based approach for the automated evaluation of spatial layout configurations. Our objective is to evaluate soft and interdependent design qualities (such as connectedness, enclosure, spaciousness, continuity, adjacency, etc.), to satisfy multiple and mutually inclusive criteria, and to account for all potential and logical solutions without discarding preferable, likely or even less likely possible solutions. Using fuzzyTECH, a fuzzy logic software development tool, we devise all possible spatial relation inputs affecting physical and non-physical outputs for a given space using descriptive rule blocks. We implement this fuzzy logic system on an existing residential space to evaluate different layout alternatives. We define all linguistic input variables, output variables, and fuzzy sets, and present space-space relations using membership functions. We use the resulting database of fuzzy agents to evaluate the design of the existing residential spaces.
keywords Fuzzy logic; Space layout planning; Heuristic methods
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_234
id caadria2019_234
authors Bamborough, Chris
year 2019
title The Nature of Data in Early Modern Architectural Practice.
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 343-352
doi https://doi.org/10.52842/conf.caadria.2019.2.343
summary In contemporary data-driven society, forces of capital increasingly seek risk-averse decision making through data and digital calculation, aligned to this the discourse around design intelligence in architecture has begun to embrace the role of data and the technical non-human as much as the human. In parallel, the cultural understanding of data, in technologically mediated societies, has become tied to the digital representation of information experienced in everyday life, which in turn influences human practices. A problem exists in the dominance of scientific thought around data in architecture that exerts disciplinary bias towards quantity rather than quality. In contemporary digital practice, data is assumed to offer an objective characterisation of the world and have faithful representation through the mechanisms of the computer. From this shift, a macro question exists concerning the influence of data's conceptualisation on the physical products of architecture. To contribute to this overall question this paper considers the register of data in early modernism identified as a moment when scientific abstraction and the mapping capacity of the machine combine to afford recognisable data practices and infrastructures.
keywords Data; Design Practice; Infrastructure; History; Theory
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_449
id ecaadesigradi2019_449
authors Becerra Santacruz, Axel
year 2019
title The Architecture of ScarCity Game - The craft and the digital as an alternative design process
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-52
doi https://doi.org/10.52842/conf.ecaade.2019.3.045
summary The Architecture of ScarCity Game is a board game used as a pedagogical tool that challenges architecture students by involving them in a series of experimental design sessions to understand the design process of scarcity and the actual relation between the craft and the digital. This means "pragmatic delivery processes and material constraints, where the exchange between the artisan of handmade, representing local skills and technology of the digitally conceived is explored" (Huang 2013). The game focuses on understanding the different variables of the crafted design process of traditional communities under conditions of scarcity (Michel and Bevan 1992). This requires first analyzing the spatial environmental model of interaction, available human and natural resources, and the dynamic relationship of these variables in a digital era. In the first stage (Pre-Agency), the game set the concept of the craft by limiting students design exploration from a minimum possible perspective developing locally available resources and techniques. The key elements of the design process of traditional knowledge communities have to be identified (Preez 1984). In other words, this stage is driven by limited resources + chance + contingency. In the second stage (Post-Agency) students taking the architects´ role within this communities, have to speculate and explore the interface between the craft (local knowledge and low technological tools), and the digital represented by computation data, new technologies available and construction. This means the introduction of strategy + opportunity + chance as part of the design process. In this sense, the game has a life beyond its mechanics. This other life challenges the participants to exploit the possibilities of breaking the actual boundaries of design. The result is a tool to challenge conventional methods of teaching and leaning controlling a prescribed design process. It confronts the rules that professionals in this field take for granted. The game simulates a 'fake' reality by exploring in different ways with surveyed information. As a result, participants do not have anything 'real' to lose. Instead, they have all the freedom to innovate and be creative.
keywords Global south, scarcity, low tech, digital-craft, design process and innovation by challenge.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaade2024_222
id ecaade2024_222
authors Bindreiter, Stefan; Sisman, Yosun; Forster, Julia
year 2024
title Visualise Energy Saving Potentials in Settlement Development: By linking transport and energy simulation models for municipal planning
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 79–88
doi https://doi.org/10.52842/conf.ecaade.2024.2.079
summary To achieve Sustainable Development Goals, in addition to the switch to sustainable energy sources and energy-efficient buildings, transport offers a major lever for reducing energy consumption and greenhouse gases. The increasing demand for emission-free mobility (e.g. through electromobility) but also heat pumps has a direct impact on the electricity consumption of buildings and settlements. It is still difficult to simulate the effects and interactions of different measures as sector coupling concepts require comprehensible tools for ex ante evaluation of planning measures at the community level and the linking of domain-specific models (energy, transport). Using the municipality of Bruck an der Leitha (Austria) as an example, a digital twin based on an open data model (Bednar et al., 2020) is created for the development of methods, which can be used to simulate measures to improve the settlement structure within the municipality. Forecast models for mobility (Schmaus, 2019; Ritz, 2019) and the building stock are developed or applied and linked via the open data model to be able to run through development scenarios and variants. The forecasting and visualisation options created in the project form the basis for the ex-ante evaluation of measures and policies on the way to a Positive-Energy-District. By identifying and collecting missing data, data gaps are filled for the simulation of precise models in the specific study area. A digital, interactive 3D model is created to examine the forecast results and the different scenarios.
keywords visualisation, decision support, sector coupling, holistic spatial energy models for municipal planning, (energy) saving potentials in settlement development
series eCAADe
email
last changed 2024/11/17 22:05

_id sigradi2023_39
id sigradi2023_39
authors Borges, Marina, Karantino, Lucas and Gorges, Diego
year 2023
title Walkability: Digital Parametric Process for Analyzing and Evaluating Walkability Criteria in Peripheral Central Regions of Belo Horizonte
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 397–408
summary According to one of the Sustainable Development Goals (UN, 2018), it is important for cities to be inclusive, safe, resilient, and sustainable. Therefore, it is necessary to value pedestrians and consequently active mobility, giving priority to the concepts of the Transportation Oriented Development (TOD) methodology. Although the Master Plan (BELO HORIZONTE, 2019) proposes that areas located in regional centralities are enhancing active mobility, can residents actually benefit from these resources at a walkable distance to access basic services? Thus, the aim of this research is to utilize digital technologies to visualize, analyze, and assess pedestrians' access conditions to commerce and basic services, identifying areas lacking infrastructure. The goal is for the model to serve as a reference for the development of public policies. To achieve this, metadata was used for parametric modeling to study walkability in the peripheral region of the city of Belo Horizonte.
keywords Walkability, Urban Data Analysis, Urban Design, Parametric Urbanism, Algorithmic Logic
series SIGraDi
email
last changed 2024/03/08 14:07

_id cf2019_013
id cf2019_013
authors Boychenko, Kristina
year 2019
title Agency of Interactive Architecture in socio-technological relationship through Actor-Network Theory
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 102
summary With fast development of new technologies built environment transitioned from a silent background of activities performed by users to another participant of those activities. Agency of interactive architecture is based on interpretation of input data, like users’ actions, their response to the spatial agency, data from environment or other actors, and changing its performance accordingly. Architectural components, environmental conditions and people are all treated as agents and closely correspond to Actor-Network Theory (ANT). This theory generally aims to reveal the complexities of socio-technological world. ANT incorporates a principle of generalized symmetry, it means that human and nonhuman (artifacts, organization structures, etc.) actors are incorporated into the same conceptual framework and assigned equal level of agency. By analysis of the agency of Interactive Architecture through ANT the paper provides insight on social role of this new emerging type of space and its influence on other participants on socio-technological relationship.
keywords Interactive architecture, Communication, Agency, Social, ActorNetwork Theory
series CAAD Futures
email
last changed 2019/07/29 14:08

_id caadria2019_328
id caadria2019_328
authors Boychenko, Kristina
year 2019
title Agency of Interactive Space in Social Relationship
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 381-390
doi https://doi.org/10.52842/conf.caadria.2019.2.381
summary Embedded computation allows built space to be intelligent and get smarter, becoming interactive and gaining agency with ability not to merely adapt to changing conditions, but to process information and react, observe and learn, communicate and make decisions. The paper investigates agency of interactive space based on interpretation of input data, like users' response to the spatial agency, data from environment or other actors, and ability to change its performance accordingly. The research is focused on the role of interactive space as an active participant in social relationship communicating with users, constantly changing and having its' attitude. The research is aimed at defining social role of interactive environments and explains how they interact with users, what qualities are enabled by interactive behaviour and how do they influence space perception, revealing the significance of bi-directional communication between society and smart spaces. Interactive space does not just providing location for activities and facility for lifestyle, but influences these activities. Users and interactive space constitute one social network being constantly aware of each other establishing bi-directional communication.
keywords interactive architecture; computation; programmable; design; social
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_396
id caadria2019_396
authors Cao, Rui, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Quantifying Visual Environment by Semantic Segmentation Using Deep Learning - A Prototype for Sky View Factor
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 623-632
doi https://doi.org/10.52842/conf.caadria.2019.2.623
summary Sky view factor (SVF) is the ratio of radiation received by a planar surface from the sky to that received from the entire hemispheric radiating environment, in the past 20 years, it was more applied to urban-climatic areas such as urban air temperature analysis. With the urbanization and the development of cities, SVF has been paid more and more attention on as the important parameter in urban construction and city planning area because of increasing building coverage ratio to promote urban forms and help creating a more comfortable and sustainable urban residential building environment to citizens. Therefore, efficient, low cost, high precision, easy to operate, rapid building-wide SVF estimation method is necessary. In the field of image processing, semantic segmentation based on deep learning have attracted considerable research attention. This study presents a new method to estimate the SVF of residential environment by constructing a deep learning network for segmenting the sky areas from 360-degree camera images. As the result of this research, an easy-to-operate estimation system for SVF based on high efficiency sky label mask images database was developed.
keywords Visual environment; Sky view factor; Semantic segmentation; Deep learning; Landscape simulation
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_190
id caadria2019_190
authors Chan, Zion and Crolla, Kristof
year 2019
title Simplifying Doubly Curved Concrete - Post-Digital Expansion of Concrete's Construction Solution Space
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 23-32
doi https://doi.org/10.52842/conf.caadria.2019.1.023
summary This action research project develops a novel conceptual method for non-standardised concrete construction component fabrication and tests its validity through a speculative design project. The paper questions the practical, procedural and economic drivers behind the design and construction of geometrically complex concrete architecture. It proposes an alternative, simple and economical fabrication method for doubly curved concrete centred on the robotic manufacturing of casting moulds through 5-axis hotwire foam cutting for the making of doubly-curved fiber-reinforced concrete (FRC) panels. These panels are used as light-weight sacrificial formwork for in-situ concrete casting. The methodology's opportunity space is tested, evaluated and discussed through a conceptual architectural design project proposal that operates as demonstrator. The paper concludes by addressing the advantages of a design-and-build architecture delivery setup, the potential from using computational technology to adapt conventional design and construction procedures and the expanded role within the design and construction process this gives to architects.
keywords Doubly Curved Concrete; Robotic Manufacture; Post-Digital Architecture; Design and Build; Casting Mould Making
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_249
id ecaadesigradi2019_249
authors Chiarella, Mauro, Gronda, Luciana and Veizaga, Martín
year 2019
title RILAB - architectural envelopes - From spatial representation (generative algorithm) to geometric physical optimization (scientific modeling)
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 17-24
doi https://doi.org/10.52842/conf.ecaade.2019.3.017
summary Augmented graphical thinking operates by integrating algorithmic, heuristic, and manufacturing processes. The Representation and Ideation Laboratory (RILAB-2018) exercise begins with the application of a parametric definition developed by the team of teachers, allowing for the construction of structural systems by the means of the combination of segmental shells and bending-active. The main objetive is the construction of a scientific model of simulation for bending-active laminar structures has brought into reality trustworthy previews for architectural envelopes through the interaction of parametrized relational variables. This way we put designers in a strategic role for the building of the pre-analysis models, allowing more preciseness at the time of picking and defining materials, shapes, spaces and technologies and thus minimizing the decisions based solely in the definition of structural typological categories, local tradition or direct experience. The results verify that the strategic integration of models of geometric physical optimization and spatial representation greatly expand the capabilities in the construction of the complex system that operates in the act of projecting architecture.
keywords architectural envelopes; augmented graphic thinking; geometric optimization; bending-active
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id acadia19_360
id acadia19_360
authors Dackiw, Jean-Nicolas Alois; Foltman, Andrzej; Garivani, Soroush; Kaseman, Keith; Sollazzo, Aldo
year 2019
title Cyber-physical UAV Navigation and Operation
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 360-367
doi https://doi.org/10.52842/conf.acadia.2019.360
summary The purpose of this paper is to present a work in progress pertaining to drone pose estimation and flight calibration. This paper intends to underline the increasing importance of determining alternative path planning instruments through accurate localization for Unmanned Aerial Vehicles (UAVs) with the purpose of achieving complex flight operations for the emerging applications of autonomous robotics in surveying, design, fabrication, and on-site operations. This research is based on the implementation of novel technologies such as Augmented Reality (AR), Robot Operating System (ROS), and computational approaches to define a drone calibration methodology, leveraging existing methods for drone path planning. Drones are equipped with measurement systems to provide geo-location and time information such as onboard Global Positioning System (GPS) sensors, and Inertial Measurement Units (IMU). As stated in previous research, to increase navigation capabilities, measurements and data processing algorithms have a critical role (Daponte et al. 2015). The outcome of this work in progress showcases valuable results in calculating and assessing accurate positioning for UAVs, and developing data exchanges in transmission, reception, and tracking.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia19_412
id acadia19_412
authors Del Campo, Matias; Manninger, Sandra; Carlson, Alexandra
year 2019
title Imaginary Plans
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 412-418
doi https://doi.org/10.52842/conf.acadia.2019.412
summary Artificial Neural Networks (NN) have become ubiquitous across disciplines due to their high performance in modeling the real world to execute complex tasks in the wild. This paper presents a computational design approach that uses the internal representations of deep vision neural networks to generate and transfer stylistic form edits to both 2D floor plans and building sections. The main aim of this paper is to demonstrate and interrogate a design technique based on deep learning. The discussion includes aspects of machine learning, 2D to 2D style transfers, and generative adversarial processes. The paper examines the meaning of agency in a world where decision making processes are defined by human/machine collaborations (Figure 1), and their relationship to aspects of a Posthuman design ecology. Taking cues from the language used by experts in AI, such as Hallucinations, Dreaming, Style Transfer, and Vision, the paper strives to clarify the position and role of Artificial Intelligence in the discipline of Architecture.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_219578 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002