CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 452

_id acadia19_532
id acadia19_532
authors Retsin, Gilles
year 2019
title Toward Discrete Architecture: Automation Takes Command
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 532-541
doi https://doi.org/10.52842/conf.acadia.2019.532
summary This paper describes a framework for discrete computational design and fabrication in the context of automation. Whereas digital design and fabrication are technical notions, automation immediately has societal and political repercussions. Automation relates to industrialization and mechanisation—allowing to historically reconnect the digital while bypassing the post-modern, deconstructivist, or parametric decades. Using a series of built prototypes making use of timber, this paper will describe how the combined technologies of automation and discreteness enable both technical efficiencies and new architectural interest. Both projects are based on timber sheet materials, cut and folded into larger elements that are then assembled into functional structures. Both projects are also fragments of larger housing blocks. Discrete building blocks are presented from a technical perspective as occupying a space in between programmable matter and modular prefabrication. Timber is identified as an ideal material for automated discrete construction. From an architectural perspective, the paper discusses the implications of an architecture based on parts that remain autonomous from the whole.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_302
id ecaadesigradi2019_302
authors Mrosla, Laura, Koch, Volker and von Both, Petra
year 2019
title Quo vadis AI in Architecture? - Survey of the current possibilities of AI in the architectural practice
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-54
doi https://doi.org/10.52842/conf.ecaade.2019.2.045
summary The permeation of various fields by the applications of artificial intelligence (AI) has arrived in the collective consciousness and is increasingly present in the physical world. Current results of AI research in the field of architecture illustrate that already today within every step of the architectural conception and fabrication approaches towards their automation are being made. Even the very human features of motivation and creativity aren't left untouched anymore. This paper discusses, on the basis of different concepts and examples, up to what extent the contemporary possible implementations of AI and their underlying algorithms are able to conquer the architectural profession. Furthermore, it presents a summary of an automation-concept for the whole profession.
keywords Artificial Neural Networks; Artificial Intelligence; Creativity; Architecture; Automatisation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_519
id ecaadesigradi2019_519
authors Scheeren, Rodrigo, Herrera, Pablo C. and Sperling, David
year 2019
title Evolving stages of digital fabrication in Latin America - Outlines of a research and extension project
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 797-806
doi https://doi.org/10.52842/conf.ecaade.2019.2.797
summary The introduction of digital fabrication technologies in Latin America faces diverse, heterogeneous and decentralized conditions. After several years, there was not a comprehensive perspective on the situation in the region. The goal of this paper is to present a project called "Homo Faber: Digital Fabrication in Latin America" and some of its results. The project comprehends the creation of a database that led to researches and exhibitions about digital fabrication in design, architecture and building construction in Latin America. The questions that guide the investigation try to understand which factors contribute and limit the potential of automation in material processes towards 4.0 industry.
keywords Computer Aided Architectural Design; Digital Fabrication; Latin America; Mapping
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id caadria2021_251
id caadria2021_251
authors Ma, Chun Yu and van Ameijde, Jeroen
year 2021
title Participatory Housing: Discrete Design and Construction Systems for High-Rise Housing in Hong Kong
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 271-280
doi https://doi.org/10.52842/conf.caadria.2021.1.271
summary There has been a recent increase in the exploration of mereological systems, speculating on how digital design, assembly and reconfiguration of digital materials (Gershenfeld, 2015) enables digitally informed physical worlds that change over time. Besides opportunities for construction and design automation, there is a potential to reimagine how multiple stakeholders can participate in the computational decision-making process, using the benefits of the mass customization of logistics (Retsin, 2019). This paper presents a research-by-design project that applies a digital and discrete material system to high-rise housing in Hong Kong. The project has developed an integrated approach to design, construction, and inhabitation, using a system of discrete parts which can be assembled in various apartment configurations, to incorporate varying occupants requirements and facilitate negotiations and changes over time.
keywords Participatory Design; Generative Design; Adaptable Architecture; High-rise Housing
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia21_70
id acadia21_70
authors McAndrew, Claire; Jaschke, Clara; Retsin, Gilles; Saey, Kevin; Claypool, Mollie; Parissi, Danaë
year 2021
title House Block
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 70-75.
doi https://doi.org/10.52842/conf.acadia.2021.070
summary House Block was a temporary housing prototype in East London, UK from April to May 2021. The project constituted the most recent in a series of experiments developing Automated Architecture (AUAR) Labs’ discrete framework for housing production, one which repositions the architect as curator of a system and enables participants to engage with active agency. Recognizing that there is a knowledge gap to be addressed for this reconfiguration of practices to take form, this project centred on making automation and its potential for local communities tangible. This sits within broader calls advocating for a more material alignment of inclusive design with makers and 21st Century making in practice (see, for example, Luck 2018).

House Block was designed and built using AUAR’s discrete housing system consisting of a kit of parts, known as Block Type A. Each block was CNC milled from a single sheet of plywood, assembled by hand, and then post-tensioned on site. Constructed from 270 identical blocks, there are no predefined geometric types or hierarchy between parts. The discrete enables an open-ended, adaptive system where each block can be used as a column, floor slab, wall, or stair—allowing for disconnection, reconfiguration, and reassembly (Retsin 2019). The democratisation of design and production that defines the discrete creates points for alternative value systems to enter, for critical realignments in architectural production.

series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2019_234
id caadria2019_234
authors Bamborough, Chris
year 2019
title The Nature of Data in Early Modern Architectural Practice.
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 343-352
doi https://doi.org/10.52842/conf.caadria.2019.2.343
summary In contemporary data-driven society, forces of capital increasingly seek risk-averse decision making through data and digital calculation, aligned to this the discourse around design intelligence in architecture has begun to embrace the role of data and the technical non-human as much as the human. In parallel, the cultural understanding of data, in technologically mediated societies, has become tied to the digital representation of information experienced in everyday life, which in turn influences human practices. A problem exists in the dominance of scientific thought around data in architecture that exerts disciplinary bias towards quantity rather than quality. In contemporary digital practice, data is assumed to offer an objective characterisation of the world and have faithful representation through the mechanisms of the computer. From this shift, a macro question exists concerning the influence of data's conceptualisation on the physical products of architecture. To contribute to this overall question this paper considers the register of data in early modernism identified as a moment when scientific abstraction and the mapping capacity of the machine combine to afford recognisable data practices and infrastructures.
keywords Data; Design Practice; Infrastructure; History; Theory
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia19_458
id acadia19_458
authors Bartosh, Amber; Anzalone, Phillip
year 2019
title Experimental Applications of Virtual Reality in Design Education
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 458-467
doi https://doi.org/10.52842/conf.acadia.2019.458
summary By introducing rapid reproduction, algorithms, and complex formal configurations, the digital era of architecture began a revolution. Architects incorporated the computational capacity of the computer into the design process both as a tool and as a critical component of the theories and practice of architecture as a whole. As we move into what has been coined “the second digital turn,” a period in which digital integration is considered ubiquitous, how can we consider, prepare, and propel towards the next technological innovation to significantly inform design thinking, representation, and manifestation? What tools are available to investigate this speculative design future and how can they be implemented? If the integration of technology in architecture is now a given, perhaps the next digital design era is not just digital but virtual. As new technologies emerge the potential for integrating the virtual design world with our physical senses affords novel possibilities for interactive design, simulation, analysis and construction. Hybrid reality technologies including virtual reality (VR) and augmented reality (AR), embody the potential to supersede conventional representation methodologies such as drawing, rendering, physical modeling, and animation. As they become increasingly pervasive, they will transform how we communicate ideas and data as spatial concepts. Further, they will reform the construct of the built environment when applied to both materiality and fabrication. This paper will describe the incorporation of VR as a tool in various classroom and laboratory settings, recognize the educational outcomes of this incorporation, and identify the potential relationship of these technologies to future academic exploration and application to practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id lasg_whitepapers_2019_089
id lasg_whitepapers_2019_089
authors Byrne, Daragh; and Dana Cupkova
year 2019
title Towards Psychosomatic Architecture; Attuning Reactive Architectural Materials through Biofeedback
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.089 - 100
summary The built environment is known to affect human health and wellbeing. Yet, architecture does not respond to our bodies or our minds. It tends to be static, ignoring the human occupant, their mood, behaviors, and emotions. There is evidence that this monotony of average space is harmful to human health. Additionally, differences in gender, race and cultural conditions vary the perception of and preferences for temperature and color. To improve the psychosomatic relationship with architectural spaces, there arises the necessity for it to have a greater range of spatial reactivity and better support for personalized thermoregulation and aesthetics. This paper proposes an architecture that operates like a mood-ring, one that creates rich feedback between architecture and occupant towards individualized reactivity and expression. [Sentient Concrete] ([Image 1]) is a prototype of a thermochromically treated concrete panel that is thermally actuated by embedded electromechanical systems and can dynamically produce localized thermally reactive responses. It serves as a test case for outlining further research agendas and possible design frameworks for psychosomatic architecture.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id acadia19_642
id acadia19_642
authors Chua, Pamela Dychengbeng; Hui, Lee Fu
year 2019
title Compliant Laminar Assemblies
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 642-653
doi https://doi.org/10.52842/conf.acadia.2019.642
summary This paper presents an innovative approach to the design and fabrication of three-dimensional objects from single-piece flat sheets, inspired by the origami technique of twist-closing. While in origami twist-closing is merely used to stabilize a cylindrical or spherical structure, ensuring it maintains its shape, this research investigates the potential of twist-closing as a multi-functional mechanism that also activates and controls the transformation of a planar surface into a predesigned three-dimensional form. This exploration is directed towards an intended application to stiff and brittle sheet materials that are difficult to shape through other processes. The methods we have developed draw mainly upon principles of lattice kirigami and laminar reciprocal structures. These are reflected in a workflow that integrates digital form-generation and fabrication-rationalization techniques to reference and apply these principles at every stage. Significant capabilities of the developed methodology include: (1) achievement of pseudo-double-curvature with brittle, stiff sheet materials; (2) stabilization in a 3D end-state as a frameless self-contained single-element laminar reciprocal structure—essentially a compliant mechanism; and (3) an ability to pre-encode 3D assembly constraints in a 2D cutout pattern, which guides a moldless fabrication process. The paper reviews the precedent geometric techniques and principles that comprise this method of 3D surface fabrication and describes a sample deployment of the method as applied to the design of laminar modules made of high-pressure laminate (HPL).
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_561
id ecaadesigradi2019_561
authors Cress, Kevan and Beesley, Philip
year 2019
title Architectural Design in Open-Source Software - Developing MeasureIt-ARCH, an Open Source tool to create Dimensioned and Annotated Architectural drawings within the Blender 3D creation suite.
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 621-630
doi https://doi.org/10.52842/conf.ecaade.2019.1.621
summary MeasureIt-ARCH is A GNU GPL licensed, dimension, annotation, and drawing tool for use in the open source software Blender. By providing free and open tools for the reading and editing of architectural drawings, MeasurIt-ARCH allows works of architecture to be shared, read, and modified by anyone. The digitization of architectural practice over the last 3 decades has brought with it a new set of inter-disciplinary discourses for the profession. An attempt to utilise 'Open-Source' methodologies, co-opted from the world of software development, in order to make high quality design more affordable, participatory and responsible has emerged. The most prominent of these discussions are embodied in Carlo Raitti and Mathew Claudel's manifesto 'Open-Source Architecture' (Ratti 2015) and affordable housing initiatives like the Wikihouse project (Parvin 2016). MeasurIt-ARCH aims to be the first step towards creating a completely Open-Source design pipeline, by augmenting Blender to a level where it can be used produce small scale architectural works without the need for any proprietary software, serving as an exploratory critique on the user experience and implementations of industry standard dimensioning tools that exist on the market today.
keywords Blender; Open-Source; Computer Aided Design ; OSArc
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_405
id ecaadesigradi2019_405
authors da Cunha Teixeira, Luísa and Cury Paraizo, Rodrigo
year 2019
title Caronae - ridesharing and first steps into commuting opportunitie of academic exchange
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 805-816
doi https://doi.org/10.52842/conf.ecaade.2019.1.805
summary Location-based mobile applications have been a rising theme for academics in the field of urbanism and in urban and transportation, because of the potential of transformation they might bring to the urban landscape (De Souza e Silva, 2013). One of the possibilities we study here is to observe social encounters fostered by commuting rides. In this paper, we try to examine the practice from the broad perspective of estimating the environmental benefits, in a context where digital information technology is wielded to address problems old and new (Townsend, 2014). This paper aims to analyze the potential of transformations that new ICTs bring to urban mobility, using as case study the official ridesharing system of the Federal University of Rio de Janeiro, the Carona? project. The system was developed focusing on the reduction of the number of motorized trips to the University, as well as the amount of CO2 generated by them. Here we analyze the dynamics of ridesharing, using the system data, and also try to observe the role it may play towards the promotion of integration in the UFRJ community.
keywords mobile apps; urban mobility; ridesharing; caronae ufrj
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia19_140
id acadia19_140
authors Dambrosio, Niccol?; Zechmeister, Christoph; Bodea, Serban; Koslowski, Valentin; Gil-Pérez, Marta; Rongen, Bas
year 2019
title Buga Fibre Pavilion
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 140-149
doi https://doi.org/10.52842/conf.acadia.2019.140
summary This research showcases the integrated design process and development of an ultra-light-weight, composite dome structure as a case study for the investigation of high-performance, long-span, fibre-reinforced-polymer (FRP) based building systems. Particular emphasis is given to the exploration of design strategies and the exposure of multidirectional flows of information across different fields under the premise of going beyond preliminary investigations on a demonstrator level, towards full scale architectural applications. Building upon previous research in the realm of lightweight fiber composites conducted at the University of Stuttgart, novel design strategies and fabrication methods are discussed. Based on the design and development of the Buga Fibre Pavilion for the Heilbronn Bundesgartenschau 2019, previously prototypically tested processes are further developed and implemented at a larger scale which attempt to reduce the necessary formwork to a minimum while achieving a flexible and scalable building system.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_296
id ecaadesigradi2019_296
authors Dounas, Theodoros, Lombardi, Davide and Jabi, Wassim
year 2019
title Towards Blockchains for architectural design - Consensus mechanisms for collaboration in BIM
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 267-274
doi https://doi.org/10.52842/conf.ecaade.2019.1.267
summary We present a Blockchain collaboration mechanism on optimisation problems between distributed participants who work with building information modelling tools. The blockchain mechanism is capable of executing smart contracts, acting as a reward mechanism of independent designers attempting to collaborate or compete on optimising a design performance problem. Earlier work has described the potential integration through different levels of Computer Aided Design and Blockchain. We present an expanded version of that integration and we showcase how a team can collaboratively and competitively work, using BIM tools, through the blockchain. The original contribution of the paper is the use of the design optimisation performance as a consensus mechanism for block writing in blockchains. To accomplish that we introduce mechanisms for BIM to Blockchain Integration but also describe a special category of blockchains for architectural design and the built environment. The paper concludes with an analysis of the relationship between trust and values as encapsulated in the blockchain and how these could affect the design collaboration.
keywords Blockchain; BIM; agent; collaboration; competition
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_398
id ecaadesigradi2019_398
authors Fink, Theresa and Koenig, Reinhard
year 2019
title Integrated Parametric Urban Design in Grasshopper / Rhinoceros 3D - Demonstrated on a Master Plan in Vienna
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 313-322
doi https://doi.org/10.52842/conf.ecaade.2019.3.313
summary By 2050 an estimated 70 percent of the world's population will live in megacities with more than 10 million citizens (Renner 2018). This growth calls for new target-oriented, interdisciplinary methods in urban planning and design in cities to meet sustainable development targets. In response, this paper exemplifies an integrated urban design process on a master plan project in Vienna. The objective is to investigate the potential towards a holistic, digital, urban design process aimed at the development of a practical methodology for future designs. The presented urban design process includes analyses and simulation tools within Rhinoceros 3D and its plug-in Grasshopper as quality-enhancing mediums that facilitate the creative approaches in the course of the project. The increase in efficiency and variety of design variants shows a promising future for the practical suitability of this approach.
keywords urban design; parametric modeling; urban simulation; design evaluation; environmental performance
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id caadria2019_172
id caadria2019_172
authors G. Belém, Catarina and Leitão, António
year 2019
title Conflicting Goals in Architecture - A study on Multi-Objective Optimisation
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 453-462
doi https://doi.org/10.52842/conf.caadria.2019.1.453
summary Sustainability and economic factors are driving architectural practice towards more efficient designs. The application of optimization to the design process becomes essential to reduce the environmental footprint of buildings, as well as to reduce their costs. Building design requirements tend to be conflicting, involving the optimization of multiple goals simultaneously, which often translates to different compromises among the goals. Ideally, to make more informed and intelligent decisions, the architect should be given a set of design variations representing a heterogeneous sample of the optimal compromises one can achieve. In this paper, we discuss different approaches to find such compromises and we focus on multi-objective optimization algorithms that produce the required design variants, applying them in the context of an architectural case study.
keywords Multi-Objective Optimization; Pareto Optimization
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2019_663
id caadria2019_663
authors Gaudilliere, Nadja
year 2019
title Towards an History of Computational Tools in Automated Architectural Design - The Seroussi Pavilion Competition as a Case Study
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 581-590
doi https://doi.org/10.52842/conf.caadria.2019.2.581
summary The present research proposes a method to analyse computational tools at the architect's disposal and the potential technical bias they induce in architectural design. Six case studies will be used as a demonstration of the method's ability to highlight those biases and how architects and designers manipulate those tools to translate their architectural expertise into algorithmic design. Those case studies are the six answers to the Seroussi Pavilion competition, organized in 2007 by Natalie Seroussi, a Parisian gallery owner. Having a keen interest into computational design, she invited six architectural practices specializing in this field. As the six case studies answer the same design brief, it represents a particularly suitable opportunity to analyse the intricate relationship between architectural constraints, their translation into computational data and instructions and the programming tools used to do so. Through the analysis of four different aspects of the project - algorithmic tools/method, computational set-up, organizational chart and architectural design - several issues of the computational turn in architecture are discussed.
keywords digital heritage; computational design tools; architectural constraints; programming-based spatial design; Seroussi pavilion competition
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_510
id ecaadesigradi2019_510
authors Giannopoulou, Effima, Baquero, Pablo, Warang, Angad, Orciuoli, Affonso and T. Estévez, Alberto
year 2019
title Stripe Segmentation for Branching Shell Structures - A Data Set Development as a Learning Process for Fabrication Efficiency and Structural Performance
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 63-70
doi https://doi.org/10.52842/conf.ecaade.2019.3.063
summary This article explains the evolution towards the subject of digital fabrication of thin shell structures, searching for the computational design techniques which allow to implement biological pattern mechanisms for efficient fabrication procedures. The method produces data sets in order to analyse and evaluate parallel alternatives of branching topologies, segmentation patterns, material usage, weight and deflection values as a user learning process. The importance here is given to the selection of the appropriate attributes, referring to which specific geometric characteristics of the parametric model are affecting each other and with what impact. The outcomes are utilized to train an Artificial Neural Network to predict new building information based on new combinations of desired parameters so that the user can decide and adjust the design based on the new information.
keywords Digital Fabrication; Shell Structures; Segmentation; Machine Learning; Branching Topologies; Bio-inspired
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_153
id ecaadesigradi2019_153
authors Gomez-Zamora, Paula, Bafna, Sonit, Zimring, Craig, Do, Ellen and Romero Vega, Mario
year 2019
title Spatiotemporal Occupancy for Building Analytics
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 111-120
doi https://doi.org/10.52842/conf.ecaade.2019.2.111
summary Numerous studies on Space Syntax and Evidence-based Design explored occupancy and movements in the built environment using traditional methods for behavior mapping, such as observation and surveys. This approach, however, has majorly focused on studying such behaviors as aggregated results -totals or averages- to corroborate the idea that people's interactions are outcomes of the influence of space. The research presented in this paper focuses on capturing human occupancy with a high spatiotemporal data resolution of 1 sq.ft per second (0.1 sq.mt./s). This research adapts computer vision to obtain large occupancy datasets in a hospitalization setting for one week, providing opportunities to explore correlations among spatial configurations, architectural programs, organizational activities planned and unplanned, and time. The vision is to develop new analytics for building occupancy dynamics, with the purpose of endorsing the integration of a temporal dimension into architectural research. This study introduces the "Isovist-minute"; a metric that captures the relationship between space and occupancy, towards a point of interest, in a dynamic sequence.
keywords Spatiotemporal Occupancy; Occupancy Analytics; Occupancy Patterns; Building-Organizational Performance; Healthcare Settings
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_218
id ecaadesigradi2019_218
authors Grasser, Alexander
year 2019
title Towards an Architecture of Collaborative Objects
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 325-332
doi https://doi.org/10.52842/conf.ecaade.2019.1.325
summary Towards an Architecture of Collaborative Objects, explores the potential of playing with Collaborative Objects in real, augmented and mixed realities. A multi-player game platform App: VoxelCO, developed by the author, provides a speculative playground to research, the interaction with objects, things and people, as well as provokes new opportunities to engage deeply with its content and context. Furthermore, VoxelCO, reveals new modes of participation, to design and collaborate in real-time with augmented reality, using millennial tools: mobile devices. A case study project, the VoxelStage, offered an opportunity to apply VoxelCO to design a stage together with a group of students. To merge the collaboratively aggregated virtual objects of VoxelCO with reality, real WireCubes were augmented and assembled, proposing an architecture of socially augmented fuzzy formations.
keywords Collaborative Objects; Augmented Reality; Realtime; Fuzzy; Play
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_164175 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002