CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 604

_id ecaadesigradi2019_282
id ecaadesigradi2019_282
authors Fernández González, Alberto, Guerrero del Rio, Camilo and Jorquera Sepúlveda, Layla
year 2019
title BIM Chilean Social Housing Analysis - from the 70´s to 90´s
doi https://doi.org/10.52842/conf.ecaade.2019.1.259
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 259-266
summary This research based on education digs on the "evolution" of Chilean social housing between the period from 70's to 90's asking us the "phylogenic" relation between "typos" of designs that developed several problems in the urban fabric development during 20 years of intricate design just thinking in quantity but not quality in our country.The focus in this research is as the first step understanding the design behind dwellings between this time range, then its process of evolution and transformation by users, and then by BIM understand the virtues and defects of each design and rethink the typologies in a housing life cycle look for the next years.
keywords BIM; Social Housing; Catalogue; Design; Intervention; Strategies
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id cf2019_048
id cf2019_048
authors Argota Sanchez-Vaquerizo, Javier and Daniel Cardoso Llach
year 2019
title The Social Life of Small Urban Spaces 2.0 Three Experiments in Computational Urban Studies
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 430
summary This paper introduces a novel framework for urban analysis that leverages computational techniques, along with established urban research methods, to study how people use urban public space. Through three case studies in different urban locations in Europe and the US, it demonstrates how recent machine learning and computer vision techniques may assist us in producing unprecedently detailed portraits of the relative influence of urban and environmental variables on people’s use of public space. The paper further discusses the potential of this framework to enable empirically-enriched forms of urban and social analysis with applications in urban planning, design, research, and policy.
keywords Data Analytics, Urban Design, Machine Learning, Artificial Intelligence, Big Data, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:18

_id caadria2019_396
id caadria2019_396
authors Cao, Rui, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Quantifying Visual Environment by Semantic Segmentation Using Deep Learning - A Prototype for Sky View Factor
doi https://doi.org/10.52842/conf.caadria.2019.2.623
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 623-632
summary Sky view factor (SVF) is the ratio of radiation received by a planar surface from the sky to that received from the entire hemispheric radiating environment, in the past 20 years, it was more applied to urban-climatic areas such as urban air temperature analysis. With the urbanization and the development of cities, SVF has been paid more and more attention on as the important parameter in urban construction and city planning area because of increasing building coverage ratio to promote urban forms and help creating a more comfortable and sustainable urban residential building environment to citizens. Therefore, efficient, low cost, high precision, easy to operate, rapid building-wide SVF estimation method is necessary. In the field of image processing, semantic segmentation based on deep learning have attracted considerable research attention. This study presents a new method to estimate the SVF of residential environment by constructing a deep learning network for segmenting the sky areas from 360-degree camera images. As the result of this research, an easy-to-operate estimation system for SVF based on high efficiency sky label mask images database was developed.
keywords Visual environment; Sky view factor; Semantic segmentation; Deep learning; Landscape simulation
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_091
id caadria2019_091
authors Ilha Pereira, Bianca
year 2019
title Master Planning with Urban Algorithms - Urban parameters, optimization and scenarios
doi https://doi.org/10.52842/conf.caadria.2019.2.051
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 51-60
summary The analogue definition of studies on urban planning can be very time consuming in the top-down process of designing. Keeping in mind the rapid urbanization we had in Brazil, and the continuous migration to the capital of the country located in Federal District, our aim is to use digital aid models that could be flexible and make quicker responses to urban issues. Algorithms as finite sequences of instructions have broad application. Designing cities demands the interpretation of variables linked to the territory and takes into account the current legislation in order to develop urban plans. This research creates an algorithmic basis using Grasshopper® to propose a mathematical solution for interpreting the existing space, and from it, to model urban scenes. The territorial analysis uses the user's perspective, with the interpretation of pre-existing characteristics, such as main roads, function and equipment distributions that make up the basic services. It is based on parameters extracted from theoretical repertoire and community facilities optimization through Galapagos evolutionary solver to deliver different proposed scenarios.
keywords urban algorithms; master planning; Grasshopper; Galapagos; Federal District
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaadesigradi2019_643
id ecaadesigradi2019_643
authors Stein?, Nicolai
year 2019
title Parametric Urban Design from Concept to Practice
doi https://doi.org/10.52842/conf.ecaade.2019.1.817
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 817-826
summary Little research has been made into the application of parametric urban design approaches to urban design in practice. On the part of urban design practitioners, lack of knowledge of parametric design, time constraints and a focus on day-to-day operations contribute to this situation. And on the part of parametric design researchers, lack of understanding of practice workflows, project types and media output types also contribute. The limited interaction between academia and practice in itself constitutes a barrier to changing the situation. This paper presents some first results from a research project aiming to overcome this barrier. The research design involves a theoretical framework for parameterising site design on the level of site layout, building forms and facade schemas. It also involves an analysis of typical workflows from urban design practice, as well as of the types of media which are typically used to present urban design projects.
keywords parametric design; urban design; urban design practice; methodology; workflow
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_202
id caadria2019_202
authors Yang, Chunxia, Gu, Zhuoxing and Yao, Ziying
year 2019
title Adaptive Urban Design Research based on Multi-Agent System - Taking The Urban Renewal Design Of Shanghai Hongkou Port Area As An Example
doi https://doi.org/10.52842/conf.caadria.2019.1.225
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 225-234
summary Utilizing digital method to establish a multi-agent simulation platform and establish an interactive simulation between site elements and agents particles behavior. In this study, urban space could not have the absolute frozen state, it is always evolving and self-renewing. We hope to integrate such unstable relationships into urban design methods and programs. By constructing various type of agent particles and the interaction behaviors, we not only directly simulate the flow of people or traffic, but also simulate the public space relationship such as line of sight space, waterfront space accessibility, commercial supporting function layout, and historical and cultural block attraction from a more abstract level. From macro to micro, the result of spatial simulation has an intrinsic close causal relationship with the site's landform, building status, site function, and planning pattern, can be the basis for space generation.
keywords Self-organization; Multi-agent System; Cluster City; Particle Personality; Site Elements
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia19_222
id acadia19_222
authors Birol, Eda Begum; Lu, Yao; Sekkin, Ege; Johnson, Colby; Moy, David; Islam, Yaseen; Sabin, Jenny
year 2019
title POLYBRICK 2.0
doi https://doi.org/10.52842/conf.acadia.2019.222
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 222-233
summary Natural load bearing structures are characterized by aspects of specialized morphology, lightweight, adaptability, and a regenerative life cycle. PolyBrick 2.0 aims to learn from and apply these characteristics in the pursuit of revitalizing ceramic load bearing structures. For this, algorithmic design processes are employed, whose physical manifestations are realized through available clay/porcelain additive manufacturing technologies (AMTs). By integrating specialized expertise across disciplines of architecture, engineering, and material science, our team proposes an algorithmic toolset to generate PolyBrick geometries that can be applied to various architectural typologies. Additionally, comparative frameworks for digital and physical performance analyses are outlined. Responding to increasing urgencies of material efficiency and environmental sensibility, this project strives to provide for designers a toolset for environmentally responsive, case-specific design, characterized by the embedded control qualities derived from the bone and its adaptability to specific loading conditions. Various approaches to brick tessellation and assembly are proposed and architectural possibilities are presented. As an outcome of this research, PolyBrick 2.0 is effectively established as a Grasshopper plug-in, “PolyBrick” to be further explored by designers.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ijac201917206
id ijac201917206
authors Ackerman, Aidan; Jonathan Cave, Chien-Yu Lin and Kyle Stillwell
year 2019
title Computational modeling for climate change: Simulating and visualizing a resilient landscape architecture design approach
source International Journal of Architectural Computing vol. 17 - no. 2, 125-147
summary Coastlines are changing, wildfires are raging, cities are getting hotter, and spatial designers are charged with the task of designing to mitigate these unknowns. This research examines computational digital workflows to understand and alleviate the impacts of climate change on urban landscapes. The methodology includes two separate simulation and visualization workflows. The first workflow uses an animated particle fluid simulator in combination with geographic information systems data, Photoshop software, and three-dimensional modeling and animation software to simulate erosion and sedimentation patterns, coastal inundation, and sea level rise. The second workflow integrates building information modeling data, computational fluid dynamics simulators, and parameters from EnergyPlus and Landsat to produce typologies and strategies for mitigating urban heat island effects. The effectiveness of these workflows is demonstrated by inserting design prototypes into modeled environments to visualize their success or failure. The result of these efforts is a suite of workflows which have the potential to vastly improve the efficacy with which architects and landscape architects use existing data to address the urgency of climate change.
keywords Modeling, simulation, environment, ecosystem, landscape, climate change, sea level rise, urban heat island
series journal
email
last changed 2019/08/07 14:04

_id caadria2019_388
id caadria2019_388
authors Beattie, Hamish, Brown, Daniel and Kindon, Sara
year 2019
title Functional Fiction to Collective Action - Values-Based Participatory Urban Design Gaming
doi https://doi.org/10.52842/conf.caadria.2019.1.737
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 737-746
summary This paper discusses the methodology and results of the Maslow's Palace workshops project, which engages with current debates surrounding the democratisation of digital urban design technology and stakeholder decision making, through the implementation of a speculative oriented approach to serious gaming. The research explores how serious games might be used to help marginalised communities consider past, future and present community experiences, reconcile dissimilar assumptions, generate social capital building and design responses and prime participants for further long term design engagement processes. Empirical material for this research was gathered from a range of case study workshops prepared with three landfill-based communities and external partners throughout 2017. Results show the approach helped participants develop shared norms, values and understandings of sensitive topics and develop ideas for future action through "collective tinkering".
keywords Participatory design; urban design; social capital; serious games; slum upgrading
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2023_39
id sigradi2023_39
authors Borges, Marina, Karantino, Lucas and Gorges, Diego
year 2023
title Walkability: Digital Parametric Process for Analyzing and Evaluating Walkability Criteria in Peripheral Central Regions of Belo Horizonte
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 397–408
summary According to one of the Sustainable Development Goals (UN, 2018), it is important for cities to be inclusive, safe, resilient, and sustainable. Therefore, it is necessary to value pedestrians and consequently active mobility, giving priority to the concepts of the Transportation Oriented Development (TOD) methodology. Although the Master Plan (BELO HORIZONTE, 2019) proposes that areas located in regional centralities are enhancing active mobility, can residents actually benefit from these resources at a walkable distance to access basic services? Thus, the aim of this research is to utilize digital technologies to visualize, analyze, and assess pedestrians' access conditions to commerce and basic services, identifying areas lacking infrastructure. The goal is for the model to serve as a reference for the development of public policies. To achieve this, metadata was used for parametric modeling to study walkability in the peripheral region of the city of Belo Horizonte.
keywords Walkability, Urban Data Analysis, Urban Design, Parametric Urbanism, Algorithmic Logic
series SIGraDi
email
last changed 2024/03/08 14:07

_id ecaadesigradi2019_381
id ecaadesigradi2019_381
authors Buš, Peter
year 2019
title Large-scale Prototyping Utilising Technologies and Participation - On-demand and Crowd-driven Urban Scenarios
doi https://doi.org/10.52842/conf.ecaade.2019.2.847
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 847-854
summary The paper theorises and elaborates the idea of crowd-driven assemblies for flexible and adaptive constructions utilising automatic technologies and participatory activities within the context of twenty-first century cities. As economic and technological movements and shifts in society and cultures are present and ongoing, the building technology needs to incorporate human inputs following the aspects of customisation to build adaptive architectural and urban scenarios based on immediate decisions made according to local conditions or specific spatial demands. In particular, the paper focuses on large-scale prototyping for urban applications along with on-site interactions between humans and automatic building technologies to create on-demand spatial scenarios. It discusses the current precedents in research and practice and speculates future directions to be taken in creation, development or customisation of contemporary and future cities based on participatory and crowd-driven building activities. The main aim of this theoretical overview is to offer a more comprehensive understanding of the relations between technology and humans in the context of reactive and responsive built environments.
keywords large-scale urban prototyping; on-site participation; human-machine interaction; intelligent cities; responsive cities; urban autopoiesis
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_204
id ecaadesigradi2019_204
authors Castro, Rúben and Beir?o, José Nuno
year 2019
title Shape Grammars as a support instrument for heritage safeguard planning - From a vernacular language to a contemporary materialization
doi https://doi.org/10.52842/conf.ecaade.2019.2.377
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 377-384
summary In this project we used the concept of shape grammars as a tool for understanding the vernacular heritage in the Moorish village of Aljezur in the South of Portugal, and subsequently use it to guide the planning rehabilitation and growth of the village. First, we inferred a grammar for describing the existent vernacular heritage, and based on it developed two other grammars suitable for the rehabilitation of pre-existences and the construction of new houses involving features that can harmoniously mingle with the heritage surroundings. This paper supports the use of shape grammars for the development of heritage safeguard strategies in historical urban agglomerates.
keywords Shape Grammars; parametric; architectural heritage; safeguard; planning
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_350
id ecaadesigradi2019_350
authors Cheng, Chi-Li and Hou, June-Hao
year 2019
title A highly integrated Horizontal coordinate-based tool for architecture
doi https://doi.org/10.52842/conf.ecaade.2019.3.305
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 305-312
summary In this research, we attempt to develop a tool which integrates certain common geographic information from OpenStreetMap and OpenTopography into Grasshopper. We name it as OSMKIT temporarily. Besides, in order to make the integration in the design process easier, this tool includes the bilateral conversion function of coordinate in Rhinoceros 3D and the coordinate of the World Geodetic System. These characteristics bring about several possibilities for further usage. This paper contains explanations of functions and examples. For instance, it can be employed for data visualization on a map when these data contain coordinate information. Additionally, since this tool is simple and intuitive to convert points into GPS coordinates, it can make users plan drone for photogrammetry and deal with other related tasks on the rhinoceros 3D interface, helping them to gain most current urban models. Moreover, architects or designers can be not only users but also contributors for open source map system such as OpenStreetMap; the process of sharing the mode which user measure is demonstrated in this paper. To sum up, this coordinate system based tool is designed to be multifunctional and suitable for interdisciplinary usages in grasshopper.
keywords open-source maps; data visualization; geographic information system; urban research; parametric design; interdisciplinary
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_081
id ecaadesigradi2019_081
authors Costa, Phillipe
year 2019
title Grey Box City - Building cybernetic urban systems for smarter simulations
doi https://doi.org/10.52842/conf.ecaade.2019.1.767
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 767-774
summary In this paper we approach the concept of grey box model to understand the subjectivity and objectivity of urban design. From the beginning of the insertion of computational systems in the systems management, we understand that some simulations and the understanding of the city itself were partial: we do not understand the city and its spatial complexity and we have the pretension to do urban design thinking that we understand the urban life . Here we will address some categories of how we can simulate and create our urban systems using a more tactile cybernetics.
keywords Grey Box; Cybernetics; Smart City; Information Technology
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_405
id ecaadesigradi2019_405
authors da Cunha Teixeira, Luísa and Cury Paraizo, Rodrigo
year 2019
title Caronae - ridesharing and first steps into commuting opportunitie of academic exchange
doi https://doi.org/10.52842/conf.ecaade.2019.1.805
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 805-816
summary Location-based mobile applications have been a rising theme for academics in the field of urbanism and in urban and transportation, because of the potential of transformation they might bring to the urban landscape (De Souza e Silva, 2013). One of the possibilities we study here is to observe social encounters fostered by commuting rides. In this paper, we try to examine the practice from the broad perspective of estimating the environmental benefits, in a context where digital information technology is wielded to address problems old and new (Townsend, 2014). This paper aims to analyze the potential of transformations that new ICTs bring to urban mobility, using as case study the official ridesharing system of the Federal University of Rio de Janeiro, the Carona? project. The system was developed focusing on the reduction of the number of motorized trips to the University, as well as the amount of CO2 generated by them. Here we analyze the dynamics of ridesharing, using the system data, and also try to observe the role it may play towards the promotion of integration in the UFRJ community.
keywords mobile apps; urban mobility; ridesharing; caronae ufrj
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_262
id ecaadesigradi2019_262
authors Globa, Anastasia, Costin, Glenn, Wang, Rui, Khoo, Chin Koi and Moloney, Jules
year 2019
title Hybrid Environmental-Media Facade - Full-Scale Prototype Panel Fabrication
doi https://doi.org/10.52842/conf.ecaade.2019.2.685
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 685-694
summary This paper reports the design, fabrication and evaluation strategies of full-scale aluminium panel prototypes developed for a kinetic hybrid facade system. The concept of a hybrid facade system was proposed as a solution to maximise the value of kinetic intelligent building systems by repurposing the animation sunscreening as a low-resolution media display. The overarching research project investigates the potential, feasibility and real-life applications of a hybrid facade that integrates the: environmental, media and individual micro-control functions in one compound system that operates through autonomous wirelessly controlled hexagonal rotating panels. The study explores new ways of communication and connectivity in architectural and urban context, utilising and fusing together a wide range of technologies including: artificial intelligence, robotics, wireless control technologies, calibration of physical and digital simulations, development of fully autonomous self-organised and powered units and the use of additive digital manufacturing. This article reports the third research stage of the hybrid facade project development - the manufacture of full scale panel prototypes.
keywords kinetic facade; digital fabrication; full-scale prototype; intelligent building systems; hybrid facade
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_643
id caadria2019_643
authors Hramyka, Alina, Grewal, Neil, Makki, Mohammed and Dillon, Brittney
year 2019
title Intelligent Territory - A responsive cooling tower and shading system for arid environments
doi https://doi.org/10.52842/conf.caadria.2019.2.571
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 571-580
summary Climatic change coupled with desertification processes impacting cities located around the Mediterranean, has raised serious questions for the capability of the affected cities to adapt to the rapidly changing environmental conditions. This research aims to design small-scale tower structures and shading devices in Nicosia, Cyprus through employing environmental analyses within a generative design process to create an intelligent, adaptive system. Guided by Bernoulli's principles, geometrical design parameters acquired from fluid simulations, alongside solar analyses of the existing city fabric, were used to generate an evolutionary algorithm for design. The research develops a methodology to facilitate environmental flows in urban architectural systems, generating cooling processes in arid environments that facilitate the adaptation of cities to changes in climatic and environmental conditions.
keywords CFD Simulation; Generative Design; Desertification; Passive cooling system
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_305
id ecaadesigradi2019_305
authors Kabošová, Lenka, Worre Foged, Isak, Kme, Stanislav and Katunský, Dušan
year 2019
title Building envelope adapting from and to the wind flow
doi https://doi.org/10.52842/conf.ecaade.2019.2.131
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 131-138
summary The paper presents research for wind-responsive architecture. The main objective is the digital design methodology incorporating the dynamic, fluctuating wind flow into the shape-generating process of architectural envelopes. These computational studies are advanced and informed through physical prototyping models, allowing a hybrid method approach. The negative impacts of the wind at the building scale (wind loads), as well as urban scale (wind discomfort), can be avoided and even transformed into an advantage by incorporating the local wind conditions to the process of creating architectural envelopes with adaptive structures. The paper proposes a tensegrity-membrane system which, when exposed to the dynamic wind flow, enables a local passive shape adaptation. Thus, the action of the wind pressure transforms the shape of the building envelope to an unsmoothed, dimpled surface. As a consequence, the aerodynamic properties of the building are modified, which contributes to reducing wind suction and drag force. Moreover, the slight shape change materializes and articulates the immaterial wind phenomena. For a better understanding of the dynamic geometric properties, one unit of the wind-responsive envelope is tested through simulations, and through physical prototypes. The idea and material-geometric studies are subsequently applied in a specific case study, including a designed building envelope in an industrial silo cluster in Stockholm.
keywords adaptive envelope; tensegrity; wind flow; digital designing; shape-change
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_143
id caadria2019_143
authors Kato, Yuri and Matsukawa, Shohei
year 2019
title Development of Generating System for Architectural Color Icons Using Google Map Platform and Tensorflow-Segmentation
doi https://doi.org/10.52842/conf.caadria.2019.2.081
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 81-90
summary In this research, the goal is to develop a generating system for architectural color icons using Google Map Platform and Tensorflow-Segmentation. There has been no case of developing a system that allows users to visualize the color tendency of buildings as architectural color icons for each building element from images of various regions. It is considered meaningful to be able to create criteria for decision making in architecture and the urban design by developing a system to clarify the current state of the architectural colors. It will contribute a rise in the consciousness of landscape conservation and be essential for the design of architectures and public objects. This paper includes the explanation of development method, use experiments, and consideration of five problems among architectural color icons creation. It is assumed that the accuracy of the present system will be better as the technology improves.
keywords Google street view; machine learning; image segmentation; color palette; color analysis
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_078
id ecaadesigradi2019_078
authors Kim, Eonyong, Jeon, Hyunwoo, Jun, Hanjong and Lee, Seongjoon
year 2019
title The Development of Architectural Design Environment for BIPV using BIM
doi https://doi.org/10.52842/conf.ecaade.2019.1.223
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 223-232
summary BIPV is a building integrated photovoltaic power generation system, which is used for building finishing materials, roof, and wall, so there is no need for separate installation space, and the usability is continuously increasing in urban areas with relatively small installation space. And continues to increase. BIPV is a building-integrated type, but the application plan should be made from the early stage of design. However, there is a lack of BIPV related design information. As a result, the possibility of integrating BIPV and building design is reduced and BIPV is applied in a limited range. Method: BIM-based BIPV design process, BIPV installable location, BIPV elevation design factor. And the theory necessary to implement the support model. Lastly, usability was examined using the support model. Result: This study describes a BIM-based design support model for BIPV installed elevation design that designers can apply BIPV installation location planning and design in a BIM environment.
keywords Building Integrated Photovoltaic System ; Building Information Modelling ; Shadow Analysis ; Array design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_207443 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002