CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id cf2019_046
id cf2019_046
authors Garg, Akanksha ;and Halil Erhan
year 2019
title Use of Data in Design Exploration: Design Analyzer
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 399-411
summary This paper presents a system prototype that demonstrates and tests how visual analytics of parametric design data can become an integral workflow in design exploration. Parametric design process, as a complex creative exercise, can lead to generation of a large number of alternative solutions rapidly. The designers are then tasked with effectively finding the potential solutions among a torrent of design data. This task poses challenges like choice overload, which considerably affects the designer’s performance and design output. We hypothesize that the application of visual analytics to parametric design data can help alleviate the choice overload problem. In this paper, we use the term “Design Analytics” which primarily revolves around the application of visual analytics to parametric design data and we test this approach with the help of a low-fidelity prototype called “DANZ: Design Analyzer:”.
keywords Parametric Data, Visual Analytics, Creativity Support Tool, Design Analytics, Data Visualization
series CAAD Futures
email
last changed 2019/07/29 14:15

_id caadria2019_241
id caadria2019_241
authors Cristie, Verina and Joyce, Sam Condrad
year 2019
title Capturing Parametric Design Exploration Process - Emperical insights from user activity and design states data
doi https://doi.org/10.52842/conf.caadria.2019.2.491
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 491-500
summary Computational design, especially parametric associative modelling tools, have opened a whole new world of possibility in design exploration. However, their now established use poses further questions regarding how they effect design process and ultimately the quality of the outcomes. Answering those questions requires a better understanding of parametric design process through empirical data. In this paper, we extend a method to systematically capture the design process into a structured data of designer's activity and design states. Analysis of design sessions reveal a unique pattern of parametric modelling and exploration strategies produced by each designer. Capability to save design process into structured design states shows potential to improve process.
keywords Design exploration; Parametric Design; History Recording; Version control; Conceptual Design
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
doi https://doi.org/10.52842/conf.caadria.2021.2.131
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id ecaadesigradi2019_002
id ecaadesigradi2019_002
authors Sousa, JP, Xavier, JP and Castro Henriques, G (eds.)
year 2019
title Architecture in the Age of the 4th Industrial Revolution, Volume 3
doi https://doi.org/10.52842/conf.ecaade.2019.3
source Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, 374 p.
summary Going back in history, the 1st Industrial Revolution occurred between the 18th and 19th centuries, when water and steam power led to the mechanization period. By then, social changes radically transformed cities and, together with manufactured materials like steel and glass, promoted the emergence of new building design typologies like the railway station. In the end of the 19th century, the advent of electrical power triggered mass production systems. This 2nd Revolution affected the building construction industry in many ways, inspiring the birth to the modern movement. For some, standardization emerged as an enemy of arts and crafts, while, for others, it was an opportunity to embrace new design agendas, where construction economy and quality could be controlled in novel ways. More recently, electronics and information technology fostered the 3rd Revolution with the production automation. In architecture, the progressive use of digital design, analysis and fabrication processes started to replace the traditional means of analogical representation. This opened the door for the exploration of a higher degree of design freedom, complexity and customization. The rise of the Internet also changed the way architects communicated and promoted the emergence of global architectural practices in the planet. Today, in the beginning of the 21th century, we are in a moment of profound and accelerated changes in the way we perceive and interact with(in) the world, which many authors, like Klaus Schwab, do not hesitate to call as the Fourth Industrial Revolution. Extraordinary advancements in areas like mobile communication, artificial intelligence, big data, cloud computing, blockchain, nanotechnology, biotechnology, facial recognition, robotics or additive manufacturing are fusing the physical, biological and digital systems of production. Such technological context has triggered a series of disruptive concepts and innovations, like the smart-phone, social networks, online gaming, internet of things, smart materials, interactive environments, personal fabrication, 3D printing, virtual and augmented realities, drones, selfdriving cars or the smart cities, which, all together, are drawing a radically new world.
series eCAADeSIGraDi
last changed 2022/06/07 07:49

_id ecaadesigradi2019_000
id ecaadesigradi2019_000
authors Sousa, JP, Xavier, JP and Castro Henriques, G (eds.)
year 2019
title Architecture in the Age of the 4th Industrial Revolution, Volume 1
doi https://doi.org/10.52842/conf.ecaade.2019.1
source Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, 835 p.
summary Going back in history, the 1st Industrial Revolution occurred between the 18th and 19th centuries, when water and steam power led to the mechanization period. By then, social changes radically transformed cities and, together with manufactured materials like steel and glass, promoted the emergence of new building design typologies like the railway station. In the end of the 19th century, the advent of electrical power triggered mass production systems. This 2nd Revolution affected the building construction industry in many ways, inspiring the birth to the modern movement. For some, standardization emerged as an enemy of arts and crafts, while, for others, it was an opportunity to embrace new design agendas, where construction economy and quality could be controlled in novel ways. More recently, electronics and information technology fostered the 3rd Revolution with the production automation. In architecture, the progressive use of digital design, analysis and fabrication processes started to replace the traditional means of analogical representation. This opened the door for the exploration of a higher degree of design freedom, complexity and customization. The rise of the Internet also changed the way architects communicated and promoted the emergence of global architectural practices in the planet. Today, in the beginning of the 21th century, we are in a moment of profound and accelerated changes in the way we perceive and interact with(in) the world, which many authors, like Klaus Schwab, do not hesitate to call as the Fourth Industrial Revolution. Extraordinary advancements in areas like mobile communication, artificial intelligence, big data, cloud computing, blockchain, nanotechnology, biotechnology, facial recognition, robotics or additive manufacturing are fusing the physical, biological and digital systems of production. Such technological context has triggered a series of disruptive concepts and innovations, like the smart-phone, social networks, online gaming, internet of things, smart materials, interactive environments, personal fabrication, 3D printing, virtual and augmented realities, drones, selfdriving cars or the smart cities, which, all together, are drawing a radically new world.
series eCAADeSIGraDi
last changed 2022/06/07 07:49

_id ecaadesigradi2019_001
id ecaadesigradi2019_001
authors Sousa, JP, Xavier, JP and Castro Henriques, G (eds.)
year 2019
title Architecture in the Age of the 4th Industrial Revolution, Volume 2
doi https://doi.org/10.52842/conf.ecaade.2019.2
source Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, 872 p.
summary Going back in history, the 1st Industrial Revolution occurred between the 18th and 19th centuries, when water and steam power led to the mechanization period. By then, social changes radically transformed cities and, together with manufactured materials like steel and glass, promoted the emergence of new building design typologies like the railway station. In the end of the 19th century, the advent of electrical power triggered mass production systems. This 2nd Revolution affected the building construction industry in many ways, inspiring the birth to the modern movement. For some, standardization emerged as an enemy of arts and crafts, while, for others, it was an opportunity to embrace new design agendas, where construction economy and quality could be controlled in novel ways. More recently, electronics and information technology fostered the 3rd Revolution with the production automation. In architecture, the progressive use of digital design, analysis and fabrication processes started to replace the traditional means of analogical representation. This opened the door for the exploration of a higher degree of design freedom, complexity and customization. The rise of the Internet also changed the way architects communicated and promoted the emergence of global architectural practices in the planet. Today, in the beginning of the 21th century, we are in a moment of profound and accelerated changes in the way we perceive and interact with(in) the world, which many authors, like Klaus Schwab, do not hesitate to call as the Fourth Industrial Revolution. Extraordinary advancements in areas like mobile communication, artificial intelligence, big data, cloud computing, blockchain, nanotechnology, biotechnology, facial recognition, robotics or additive manufacturing are fusing the physical, biological and digital systems of production. Such technological context has triggered a series of disruptive concepts and innovations, like the smart-phone, social networks, online gaming, internet of things, smart materials, interactive environments, personal fabrication, 3D printing, virtual and augmented realities, drones, selfdriving cars or the smart cities, which, all together, are drawing a radically new world.
series eCAADeSIGraDi
last changed 2022/06/07 07:49

_id ecaadesigradi2019_602
id ecaadesigradi2019_602
authors Toulkeridou, Varvara
year 2019
title Steps towards AI augmented parametric modeling systems for supporting design exploration
doi https://doi.org/10.52842/conf.ecaade.2019.1.081
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 81-90
summary Dataflow parametric modeling environments have become popular as exploratory tools due to them allowing the variational exploration of a design by controlling the parameters of its parametric model schema. However, the nature of these systems requires designers to prematurely commit to a structure and hierarchy of geometric relationships, which makes them inflexible when it comes to design exploration that requires topological changes to the parametric modeling graph. This paper is a first step towards augmenting parametric modeling systems via the use of machine learning for assisting the user towards topological exploration. In particular, this paper describes an approach where Long Short-Term Memory recurrent neural networks, trained on a data set of parametric modeling graphs, are used as generative systems for suggesting alternative dataflow graph paths to the parametric model under development.
keywords design exploration; visual programming; machine learning
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id cf2019_034
id cf2019_034
authors Usman, Muhammad; Davide Schaumann, Brandon Haworth, Mubbasir Kapadia and Petros Faloutsos
year 2019
title Joint Parametric Modeling of Buildings and Crowds for Human-Centric Simulation and Analysis
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 256
summary Simulating groups of virtual humans (crowd simulation) affords the analysis and data-driven design of interactions between buildings and their occupants. For this to be useful in practice however, crowd simulators must be well coupled with modeling tools in a way that allows users to iteratively use simulation feedback to adjust their designs. This is a non-trivial research and engineering task as designers often use parametric exploration tools early in their design pipelines. To address this issue, we propose a platform that provides a joint parametric representation of (a) a building and the bounds of its permissible alterations, (b) a crowd that populates the environment, and (c) the activities that the crowd engages in. Based on this input, users can systematically run simulations and analyze the results in the form of data-maps, spatialized representations of human-centric analyses. The platform combines Dynamo with SteerSuite, two established tools for parametric design and crowd simulations, to create a familiar node-based workow. We systematically evaluate the approach by tuning spatial, social, and behavioral parameters to generate human-centric analyses for the design of a generic exhibition space.
keywords Human-centric analytics, crowd simulation, parametric modeling, building occupancy, multi-agent systems
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ijac201917206
id ijac201917206
authors Ackerman, Aidan; Jonathan Cave, Chien-Yu Lin and Kyle Stillwell
year 2019
title Computational modeling for climate change: Simulating and visualizing a resilient landscape architecture design approach
source International Journal of Architectural Computing vol. 17 - no. 2, 125-147
summary Coastlines are changing, wildfires are raging, cities are getting hotter, and spatial designers are charged with the task of designing to mitigate these unknowns. This research examines computational digital workflows to understand and alleviate the impacts of climate change on urban landscapes. The methodology includes two separate simulation and visualization workflows. The first workflow uses an animated particle fluid simulator in combination with geographic information systems data, Photoshop software, and three-dimensional modeling and animation software to simulate erosion and sedimentation patterns, coastal inundation, and sea level rise. The second workflow integrates building information modeling data, computational fluid dynamics simulators, and parameters from EnergyPlus and Landsat to produce typologies and strategies for mitigating urban heat island effects. The effectiveness of these workflows is demonstrated by inserting design prototypes into modeled environments to visualize their success or failure. The result of these efforts is a suite of workflows which have the potential to vastly improve the efficacy with which architects and landscape architects use existing data to address the urgency of climate change.
keywords Modeling, simulation, environment, ecosystem, landscape, climate change, sea level rise, urban heat island
series journal
email
last changed 2019/08/07 14:04

_id ecaadesigradi2019_318
id ecaadesigradi2019_318
authors Al Bondakji, Louna, Lammich, Anne-Liese and Werner, Liss C.
year 2019
title ViBe (Virtual Berlin) - Immersive Interactive 3D Urban Data Visualization - Immersive interactive 3D urban data visualization
doi https://doi.org/10.52842/conf.ecaade.2019.3.083
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 83-90
summary The project investigates the possibility of visualizing open source data in a 3D interactive virtual environment. We propose a new tool, 'ViBe'. We programmed 'ViBe' using Unity for its compatibility with HTC VIVE glasses for virtual reality (VR). ViBe offers an abstract visualization of open source data in a 3D interactive environment. The ViBe environment entails three main topics a) inhabitants, b) environmental factors, and c) land-use; acting as representatives of parameters for cities and urban design. Berlin serves as a case study. The data sets used are divided according to Berlin's twelve administrative districts. The user immerses into the virtual environment where they can choose, using the HTC Vive controllers, which district (or Berlin as a whole) they want information for and which topics they want to be visualized, and they can also teleport back and forth between the different districts. The goal of this project is to represent different urban parameters an abstract simulation where we correlate the corresponding data sets. By experiencing the city through visualized data, ViBe aims to provide the user with a clearer perspective onto the city and the relationship between its urban parameters. ViBe is designed for adults and kids, urban planners, politicians and real estate developers alike.
keywords 3D-Visualization; open source data; immersive virtual reality; interactive ; Unity
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_061
id ecaadesigradi2019_061
authors Alkadri, Miktha Farid, De Luca, Francesco, Turrin, Michela and Sariyildiz, Sevil
year 2019
title Making use of Point Cloud for Generating Subtractive Solar Envelopes
doi https://doi.org/10.52842/conf.ecaade.2019.1.633
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 633-640
summary As a contextual and passive design strategy, solar envelopes play a great role in determining building mass based on desirable sun access during the predefined period. With the rapid evolution of digital tools, the design method of solar envelopes varies in different computational platforms. However, current approaches still lack in covering the detailed complex geometry and relevant information of the surrounding context. This, consequently, affects missing information during contextual analysis and simulation of solar envelopes. This study proposes a subtractive method of solar envelopes by considering the geometrical attribute contained in the point cloud of TLS (terrestrial laser scanner) dataset. Integration of point cloud into the workflow of solar envelopes not only increases the robustness of final geometry of existing solar envelopes but also enhances awareness of architects during contextual analysis due to consideration of surface properties of the existing environment.
keywords point cloud data; solar envelopes; subtractive method; solar access
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id cf2019_048
id cf2019_048
authors Argota Sanchez-Vaquerizo, Javier and Daniel Cardoso Llach
year 2019
title The Social Life of Small Urban Spaces 2.0 Three Experiments in Computational Urban Studies
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 430
summary This paper introduces a novel framework for urban analysis that leverages computational techniques, along with established urban research methods, to study how people use urban public space. Through three case studies in different urban locations in Europe and the US, it demonstrates how recent machine learning and computer vision techniques may assist us in producing unprecedently detailed portraits of the relative influence of urban and environmental variables on people’s use of public space. The paper further discusses the potential of this framework to enable empirically-enriched forms of urban and social analysis with applications in urban planning, design, research, and policy.
keywords Data Analytics, Urban Design, Machine Learning, Artificial Intelligence, Big Data, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:18

_id cf2019_069
id cf2019_069
authors Caetano, Inês ;and António Leitão
year 2019
title Weaving Architectural Façades: Exploring algorithmic stripe-based design patterns
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 565-584
summary With the recent technological developments, particularly, the integration of computational design approaches in architecture, the traditional art techniques became increasingly important in the field. This includes weaving techniques, which have a promising application in architectural screens and façade designs. Nevertheless, the adoption of weaving as a design strategy still has many unexplored areas, particularly those related to Algorithmic Design (AD). This paper addresses the creation of weave-based façade patterns by presenting a Generative System (GS) that aids architects that intend to use AD in the design of façades inspired on traditional weaving techniques. This GS proves to reduce the time and effort spent with the programming task, while supporting the exploration of a wider solution space. Moreover, in addition to enabling the integration of user-generated weaving patterns, the GS also provides rationalization algorithms to assess the construction feasibility of the obtained solutions.
keywords Algorithmic Design, Façade Design, Weaving Patterns, Algorithmic Framework, Rationalization Processes
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:19

_id cf2019_017
id cf2019_017
authors Cardoso Llach, Daniel and Javier Argota Sánchez-Vaquerizo
year 2019
title An Ecology of Conflicts Using Network Analytics to Explore the Data of Building Design
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 131
summary The scale and socio-technical complexity of contemporary architectural production poses challenges to researchers and practitioners interested in their description and analysis. This paper discusses the novel use of network analysis techniques to study a dataset comprising thousands of design conflicts reported during design coordination of a large project by a group of architects using BIM software. We discuss in detail three approaches to the use of network analysis techniques on these data, showing their potential to offer topological insights about the phenomenon of contemporary architectural design and construction, which complement other forms of architectural analysis.
keywords Architecture, Network Analysis, Design Ecology, BIM, Data Visualization
series CAAD Futures
email
last changed 2019/07/29 14:08

_id ecaadesigradi2019_645
id ecaadesigradi2019_645
authors Diniz, Nancy, Melendez, Frank, Boonyapanachoti, Woraya and Morales, Sebastian
year 2019
title Body Architectures - Real time data visualization and responsive immersive environments
doi https://doi.org/10.52842/conf.ecaade.2019.2.739
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 739-746
summary This project sets up a design framework that promotes augmenting the human body's interactions exploring methods for merging and blending the users of physical and virtual environments, through the design of wearable devices that are embedded with sensors and actuators. This allows for haptic and visual feedback through the use of data that reflects changes in the surrounding physical environment, and visualized in the immersive Virtual Reality (VR) environment. We consider the Body Architectures project to serve as mechanisms for augmenting the body in relation to the virtual architecture. These wearable devices serve to bring a hyper-awareness to our senses, as closed-loop cybernetic systems that utilize 'digitized' biometric and environmental data through the use of 3D scanning technologies and cloud point models, virtual reality visualization, sensing technologies, and actuation. The design of Body Architectures relies on hybrid design, transdisciplinary collaborations, to explore new possibilities for wearable body architectures that evolve human-machine-environment interactions, and create hyper awareness of the temporal, atmospheric qualities that make up our experience of space, as 'sensorial envelopes' (Lally 2014).
keywords Virtual Reality; Wearable Design; Physical Computing; Data Visualization; Immersive Environments; Responsive Architecture
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_309
id ecaadesigradi2019_309
authors Dokonal, Wolfgang and Medeiros, Marina Lima
year 2019
title I Want To Ride My Bicycle – I Want To Ride My Bike - Using low cost interfaces for Virtual reality
doi https://doi.org/10.52842/conf.ecaade.2019.2.465
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 465-472
summary The paper will give an overview of our experiments in the past years in developing different interfaces and workflows for the use of low cost Head Mounted Displays (HMD) for Virtual Reality solution. We are mainly interested in using VR tools for designers in the early phases of their design. In our opinion VR tools can help to bring back a better understanding of space and scale which have been lost a little bit in the last century with the change from analogue to digital tools. After teaching architectural and urban design for many years we can clearly say that this effect is still ongoing and it is time that we develop digital tools that try to reverses thi effect. We will then concentrate within this paper on discussing some aspects of data reduction that are important to be able to use these tools in the design process. We are also showing how we use our interfaces presenting some results of student projects for a design in Hong Kong and the strategies and methods for using VR for a ongoing work on a project about the establishment of a so called "bicycle highway" in the city of Graz in Austria.
keywords Virtual Reality; Head Mounted Displays; Low Cost Interfaces; EeZee click
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_191
id ecaadesigradi2019_191
authors Engel, Pedro
year 2019
title CONTROLING DESIGN VARIATIONS - DESIGNING A SEMANTIC CONTROLER FOR A GENERATIVE SYSTEM
doi https://doi.org/10.52842/conf.ecaade.2019.2.369
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 369-376
summary This article will describe the recent steps in the development of a computational generative system based on the selection and combination of ordinary architectural elements. Built as a Grasshopper definition, the system was conceived to generate designs of architectural façades and to produce models, physical and digital, for didactic use. More specifically, The paper will address the conception of controlling devices, that is, the parts of the computational system that govern design variations. This process involved two complementary actions: first, the definition of a clear organizational logic, where elements can be represented as a data structure that encompasses classes, sub-classes, sets, libraries and attributes; secondly, the establishment of means to operate the variations through the use of filters and heuristics based on visual patterns, allowing varying degrees of automation and user control. It will be argued that such organizational model paves the way to increase the number of design possibilities in the future and to and provide means to integrate of architectural criteria into the generation process. This research has received the support of CNPq.
keywords Algorithm; Parametric Design; Architectural Design; Teaching ; Physical Model
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id cf2019_041
id cf2019_041
authors Erhan, Halil; Barbara Berry, John Dill and Akanksha Garg
year 2019
title Investigating the Role of Students’ Representation Use Patterns in Spatial Thinking
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 331-346
summary Teaching spatial thinking explicitly helps students develop spatial abilities. In this paper, we present our initial findings from an experiment that explored how first year students who successfully completed an introductory spatial thinking course, demonstrated their use of three design representations: sketching, digital and physical modeling. Students were asked to solve a design problem requiring spatial thinking at the same level of complexity as their course project. Video data from twelve participants were analyzed and results from an independent expert panel review of students’ solutions, and use of representations were compiled. Our results show high variability in both the quality of students’ solutions and their use of the three modes of representation. We discovered many students used embodied actions in solving the spatial problem and explaining solutions. These results will inform a revision of our course and curriculum supporting spatial thinking in undergraduate design students.
keywords spatial thinking, design pedagogy, design representations
series CAAD Futures
email
last changed 2019/07/29 14:15

_id cf2019_014
id cf2019_014
authors Ferrando, Cecilia; Niccolo Dalmasso, Jiawei Mai, Daniel Cardoso Llach
year 2019
title Architectural Distant Reading Using Machine Learning to Identify Typological Traits Across Multiple Buildings
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 114-127
summary This paper introduces an approach to architectural “distant reading”: the use of computational methods to analyze architectural data in order to derive spatial insights from—and explore new questions concerning—large collections of architectural work. Through a case study comprising a dataset of religious buildings, we show how we may use machine learning techniques to identify typological and functional traits from building plans. We find that spatial structure, rather than local features, is particularly effective in supporting this type of analysis. Further, we speculate on the potential of this computational method to enrich architectural design, research, and criticism by, for example, enabling new ways of thinking about architectural concepts such as typology in ways that reflect gradual variations, rather than sharp distinctions.
keywords Architectural Analytics, Machine Learning, Classification, Religious buildings, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_67892 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002