CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id caadria2019_350
id caadria2019_350
authors Tomarchio, Ludovica, Hasler, Stephanie, Herthogs, Pieter, Müller, Johannes, Tunçer, Bige and He, Peijun
year 2019
title Using an Online Participation Tool to Collect Relevant Data for Urban Design - The construction of two participation exercices
doi https://doi.org/10.52842/conf.caadria.2019.2.747
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 747-756
summary This paper discusses the design of an online digital participation campaign, developed as an academic research project in Singapore. In order to develop appropriate exercises which fitted the tool and the context, we addressed several questions: how can online participation tools maintain a negotiation and education power? What data generated by citizens, in the form of a design proposals, is useful for urban design? We created two different exercises, at different scales: one exercise asking people to design proposals with functional blocks and one where citizens could decide the equipment and furniture in a public space. For each exercise we discuss the scale, the elements, the educating and mediating impact, but also the way we intended to use the gathered local knowledge in urban design. The exercise did not receive the expected contributions, gathering little attention from internet users. More results were obtained using an offline experimental setup. In conclusion, we reconsider the weakest points of the design in a critical analysis and provide direction for future online participation tools.
keywords participation; urban design ; online tool; engagement
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_318
id ecaadesigradi2019_318
authors Al Bondakji, Louna, Lammich, Anne-Liese and Werner, Liss C.
year 2019
title ViBe (Virtual Berlin) - Immersive Interactive 3D Urban Data Visualization - Immersive interactive 3D urban data visualization
doi https://doi.org/10.52842/conf.ecaade.2019.3.083
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 83-90
summary The project investigates the possibility of visualizing open source data in a 3D interactive virtual environment. We propose a new tool, 'ViBe'. We programmed 'ViBe' using Unity for its compatibility with HTC VIVE glasses for virtual reality (VR). ViBe offers an abstract visualization of open source data in a 3D interactive environment. The ViBe environment entails three main topics a) inhabitants, b) environmental factors, and c) land-use; acting as representatives of parameters for cities and urban design. Berlin serves as a case study. The data sets used are divided according to Berlin's twelve administrative districts. The user immerses into the virtual environment where they can choose, using the HTC Vive controllers, which district (or Berlin as a whole) they want information for and which topics they want to be visualized, and they can also teleport back and forth between the different districts. The goal of this project is to represent different urban parameters an abstract simulation where we correlate the corresponding data sets. By experiencing the city through visualized data, ViBe aims to provide the user with a clearer perspective onto the city and the relationship between its urban parameters. ViBe is designed for adults and kids, urban planners, politicians and real estate developers alike.
keywords 3D-Visualization; open source data; immersive virtual reality; interactive ; Unity
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
doi https://doi.org/10.52842/conf.caadria.2021.2.131
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2019_266
id caadria2019_266
authors Indraprastha, Aswin and Dwi Pranata Putra, Bima
year 2019
title Informed Walkable City Model - Developing A Multi-Objective Optimization Model for Evaluating Walkability Concept
doi https://doi.org/10.52842/conf.caadria.2019.2.161
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 161-170
summary This study presents an informed city analysis methodology as a tool for evaluating the concept of walkability for the existing urban area. The aim of this study was to propose an integrative approaches enable optimization of urban design element and walkability amenities under certain walkability performance criteria. The parametric methods are being developed in three stages of modeling: 1) City data modeling; 2) Walkability scores and indicators modeling; 3) Optimization model of the urban area. In the walk score algorithm, we modified three elements that determine walk score result: Walk Score Categories, Distance Decay Function and Pedestrian Friendliness Metric. We developed the customized algorithm based on the data gathered from field observation and sample interviews to normalize and define values in the walk score algorithm. The result is a parametric model to evaluate walkability concept in a certain urban area considering quantified factors that determine walkability scores. The model furthermore seeks to optimize walkability score by assessing new amenities on an existing urban area using multi-objective optimization method that produces an integrative method of urban analysis.
keywords walkability; walk score; parametric models; multi-objective optimization; informed city analysis
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2019_362
id caadria2019_362
authors Lee, Jaejong, Ikeda, Yasushi and Hotta, Kensuke
year 2019
title Comparative Evaluation of Viewing Elements by Visibility Heat Map of 3D Isovist - Urban planning experiment for Shinkiba in Tokyo Bay
doi https://doi.org/10.52842/conf.caadria.2019.1.341
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 341-350
summary This paper presents a visibility analysis for 3D urban environments and its possible applications for urban design. This multi-view visibility analysis tool was generated by 3D isovist in Grasshopper, Rhino. The advantage of this analysis tool is that it can be compared within the measurement area. In addition, setting a visual object different from the existing isovist. The visual object is a landmark of a city space, such as landscape or object. First, the application experimented on the relevance between the calculation time and precision by this analysis tool. Based on the results of this experiment, it applied it to an actual part of an urban space. The multi-view visibility includes confirming the possibility of a comprehensive evaluation on the urban redevelopment and change of the view caused by the building layout plan - by numerical analysis showing the visual characteristics of the area while using 3D isovist theory. The practically applied area is Shinkiba, which is a part of Tokyo's landfill site; and while using the calculated data, multi-view visibility of each plan in the simulation of the visibility map is compared and evaluated.
keywords 3D isovist; Multi-view visibility; Comprehensive integration visibility evaluation; Urban redevelopment; Algorithmic urban design
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2021_053
id caadria2021_053
authors Rhee, Jinmo and Veloso, Pedro
year 2021
title Generative Design of Urban Fabrics Using Deep Learning
doi https://doi.org/10.52842/conf.caadria.2021.1.031
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 31-40
summary This paper describes the Urban Structure Synthesizer (USS), a research prototype based on deep learning that generates diagrams of morphologically consistent urban fabrics from context-rich urban datasets. This work is part of a larger research on computational analysis of the relationship between urban context and morphology. USS relies on a data collection method that extracts GIS data and converts it to diagrams with context information (Rhee et al., 2019). The resulting dataset with context-rich diagrams is used to train a Wasserstein GAN (WGAN) model, which learns how to synthesize novel urban fabric diagrams with the morphological and contextual qualities present in the dataset. The model is also trained with a random vector in the input, which is later used to enable parametric control and variation for the urban fabric diagram. Finally, the resulting diagrams are translated to 3D geometric entities using computer vision techniques and geometric modeling. The diagrams generated by USS suggest that a learning-based method can be an alternative to methods that rely on experts to build rule sets or parametric models to grasp the morphological qualities of the urban fabric.
keywords Deep Learning; Urban Fabric; Generative Design; Artificial Intelligence; Urban Morphology
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_627
id ecaadesigradi2019_627
authors Yang, Yang, Samaranayake, Samitha and Dogan, Timur
year 2019
title Using Open Data to Derive Local Amenity Demand Patterns for Walkability Simulations and Amenity Utilization Analysis
doi https://doi.org/10.52842/conf.ecaade.2019.2.665
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 665-674
summary Understanding human behavior and preferences are important for urban planning and the design of walkable neighborhoods. However, it remains challenging to study human activity patterns because significant efforts are required to collect the relevant data, convert unstructured data into useful knowledge, and take into consideration different urban contexts. In the context of the heated discussion about urban walkability and amenities, as well as the need of identifying a feasible approach to analyze human activities, this paper proposes a simple and effective metric of the amenity demand patterns, which demonstrates the spatiotemporal distribution of human activities according to the activeness in urban amenities. Such metric has the potential to support the urban study about people, mobility, and built environment, as well as other relevant design thinking. Further, a case study illustrates the data and the new metric can be used in walkability simulations and amenity utilization analysis, thus informing the design decision-making process.
keywords Big Data; Urban Amenity; Walkability; Human Activity
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id acadia21_76
id acadia21_76
authors Smith, Rebecca
year 2021
title Passive Listening and Evidence Collection
doi https://doi.org/10.52842/conf.acadia.2021.076
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 76-81.
summary In this paper, I present the commercial, urban-scale gunshot detection system ShotSpotter in contrast with a range of ecological sensing examples which monitor animal vocalizations. Gunshot detection sensors are used to alert law enforcement that a gunshot has occurred and to collect evidence. They are intertwined with processes of criminalization, in which the individual, rather than the collective, is targeted for punishment. Ecological sensors are used as a “passive” practice of information gathering which seeks to understand the health of a given ecosystem through monitoring population demographics, and to document the collective harms of anthropogenic change (Stowell and Sueur 2020). In both examples, the ability of sensing infrastructures to “join up and speed up” (Gabrys 2019, 1) is increasing with the use of machine learning to identify patterns and objects: a new form of expertise through which the differential agendas of these systems are implemented and made visible. I trace the differential agendas of these systems as they manifest through varied components: the spatial distribution of hardware in the existing urban environment and / or landscape; the software and other informational processes that organize and translate the data; the visualization of acoustical sensing data; the commercial factors surrounding the production of material components; and the apps, platforms, and other forms of media through which information is made available to different stakeholders. I take an interpretive and qualitative approach to the analysis of these systems as cultural artifacts (Winner 1980), to demonstrate how the political and social stakes of the technology are embedded throughout them.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaadesigradi2019_309
id ecaadesigradi2019_309
authors Dokonal, Wolfgang and Medeiros, Marina Lima
year 2019
title I Want To Ride My Bicycle – I Want To Ride My Bike - Using low cost interfaces for Virtual reality
doi https://doi.org/10.52842/conf.ecaade.2019.2.465
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 465-472
summary The paper will give an overview of our experiments in the past years in developing different interfaces and workflows for the use of low cost Head Mounted Displays (HMD) for Virtual Reality solution. We are mainly interested in using VR tools for designers in the early phases of their design. In our opinion VR tools can help to bring back a better understanding of space and scale which have been lost a little bit in the last century with the change from analogue to digital tools. After teaching architectural and urban design for many years we can clearly say that this effect is still ongoing and it is time that we develop digital tools that try to reverses thi effect. We will then concentrate within this paper on discussing some aspects of data reduction that are important to be able to use these tools in the design process. We are also showing how we use our interfaces presenting some results of student projects for a design in Hong Kong and the strategies and methods for using VR for a ongoing work on a project about the establishment of a so called "bicycle highway" in the city of Graz in Austria.
keywords Virtual Reality; Head Mounted Displays; Low Cost Interfaces; EeZee click
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id caadria2019_651
id caadria2019_651
authors Imani, Marzieh, Sayah, Iman, Vale, Brenda and Donn, Michael
year 2019
title An Innovative, Hierarchical Energy Performance Data Visualization for Facilitating Recognition of Thermal Issues
doi https://doi.org/10.52842/conf.caadria.2019.1.815
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 815-824
summary This paper discusses the characteristics of and relationships between the most common building energy performance tools for simulating and visualising the thermal behaviour of buildings at the early stage of building design. The necessity for the latter and the importance of using relevant tools in practice are discussed. By highlighting existing gaps in these tools, a complementary component has been suggested that could assist building scientists in evaluating energy simulation results. The proposed energy performance data visualisation (EPDV) component is an under-development plugin (SlowLoris) that is intended to be added to the existing Grasshopper add-ons. This EPDV component provides users with simultaneous but different visualisation styles of monthly energy reports for individual floors and thermal zones. As an example, this paper uses a 2-storey building model to show the applicability of the plugin to analysis of energy simulation results.
keywords Building energy simulation; Data visualization; Energy performance analysis
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_567
id ecaadesigradi2019_567
authors Konieva, Kateryna, Joos, Michael Roberto, Herthogs, Pieter and Tunçer, Bige
year 2019
title Facilitating Communication in a Design Process using a Web Interface for Real-time Interaction with Grasshopper Scripts
doi https://doi.org/10.52842/conf.ecaade.2019.2.731
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 731-738
summary Urban design project development encompasses a wide range of disciplines and approaches, which often have separate goals, frameworks, and software tools. Lack of timely alignment of the disconnected expert inputs to the common vision leads to an increasing number of revisions and decreases chances for finding a compromise solution. We developed an intuitive browser-supported interface in order to incorporate various types of expert inputs and ways of representing the information to take a first step towards facilitating collaborative decision-making processes. The current paper describes the application of the developed tool on three exemplary case studies, where the expert and non-expert users' inputs are combined and analysed using Grasshopper scripts at the back-end. Pilot user studies conducted with professionals have shown that the tool has potential to facilitate collaboration across disciplines and compromise decisions, while most of the participants were still more likely to use it for communication with customers rather than the design team. It suggests that the interaction scheme of different actors with the tool needs to correspond better to the interaction of different actors during common negotiation processes. The findings suggest that the type of involvement of different stakeholders should be explored further in order to find the balance in functionality suitable for different parties.
keywords computational design; design exploration; collaborative design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id caadria2020_259
id caadria2020_259
authors Rhee, Jinmo, Veloso, Pedro and Krishnamurti, Ramesh
year 2020
title Integrating building footprint prediction and building massing - an experiment in Pittsburgh
doi https://doi.org/10.52842/conf.caadria.2020.2.669
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 669-678
summary We present a novel method for generating building geometry using deep learning techniques based on contextual geometry in urban context and explore its potential to support building massing. For contextual geometry, we opted to investigate the building footprint, a main interface between urban and architectural forms. For training, we collected GIS data of building footprints and geometries of parcels from Pittsburgh and created a large dataset of Diagrammatic Image Dataset (DID). We employed a modified version of a VGG neural network to model the relationship between (c) a diagrammatic image of a building parcel and context without the footprint, and (q) a quadrilateral representing the original footprint. The option for simple geometrical output enables direct integration with custom design workflows because it obviates image processing and increases training speed. After training the neural network with a curated dataset, we explore a generative workflow for building massing that integrates contextual and programmatic data. As trained model can suggest a contextual boundary for a new site, we used Massigner (Rhee and Chung 2019) to recommend massing alternatives based on the subtraction of voids inside the contextual boundary that satisfy design constraints and programmatic requirements. This new method suggests the potential that learning-based method can be an alternative of rule-based design methods to grasp the complex relationships between design elements.
keywords Deep Learning; Prediction; Building Footprint; Massing; Generative Design
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2019_031
id cf2019_031
authors Shireen, Naghmi; Halil Erhan and Robert Woodbury
year 2019
title Encoding Design Process using Interactive Data Visualization
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 253
summary The existing research on design space exploration favors the exploration of multiple parallel designs, however the act of exploring a design space is still to be integrated in the design of new digital media. We conducted an experiment to understand how designers navigate through large numbers of design alternatives generated from parametric models. We analyzed the data with a purpose-built visualization tool. We observed that participants changed the task environment and took design actions, frequently combining these into action combinations. Five tasks emerged from our analysis: Criteria Building, Criteria Testing, Criteria Applying, Reflection and (Re)Setting. From our analysis, we suggest several features for future systems for interacting with design alternatives.
keywords design space exploration, design alternatives, coding protocol and analysis, creativity support tools, interfaces for design galleries
series CAAD Futures
email
last changed 2019/07/29 14:15

_id cf2019_033
id cf2019_033
authors Soltani, Sahar; Ning Gu, Jorge Ochoa Paniagua, Alpana Sivam and Tim McGinley
year 2019
title Investigating the Social Impacts of Highdensity Neighbourhoods through Spatial Analysis
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 255
summary Studies argue that higher density areas incur social problems such as lack of safety [1], while other studies provide evidence for the positive impact of high-density urban areas, for instance opportunities for social interactions and equal form of accessibility [2]. This paper argues that design factors can mediate the impacts of density on social aspects. Therefore, this study explores the extent to which design factors can be correlated to the social outcomes of different density areas. To do this, data from an empirical study conducted in the UK, which identified the relationship between density and social sustainability through cases of fifteen neighbourhoods, have been utilised. This paper has conducted further analysis based on these cases using a mixed method with spatial analysis tools. Outcomes show that some of the social results in the UK study such as safety are correlated with spatial factors like normalised angular choice. Moreover, the regression model created from the spatial indices can be used to predict the overall social sustainability index reported by the UK study.
keywords Urban Density, Social Sustainability, Spatial Analysis, Space Syntax, Urban Network Analysis
series CAAD Futures
email
last changed 2019/07/29 14:15

_id acadia19_30
id acadia19_30
authors Varshney, Ishaan; Doherty, Ben
year 2019
title A Plane of Thrones
doi https://doi.org/10.52842/conf.acadia.2019.030
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 30-39
summary Creating workplace seating plans is currently a laborious task carried out based on intuition with potentially suboptimal outcomes. A data informed seating plan generator could see an increase in organizational success metrics. In this paper, we present a modular framework for using a social network, a spatial network, and an organization objective to generate data-informed seating plans for a design firm. In addition, an open-source tool was created to allow individuals in an organization to evaluate prospective arrangements. This implementation gave employees more agency by informing their seating decisions as well as the ability to better inform their intuitions about seating arrangements.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_417
id ecaadesigradi2019_417
authors Weissenböck, Renate and Symeonidou, Ioanna
year 2019
title Anatomy of a Building - Introducing interactive RGB lenses for architectural data visualization
doi https://doi.org/10.52842/conf.ecaade.2019.1.739
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 739-748
summary The paper proposes an alternative way to present architectural information, using color filters - specifically RGB lenses - as an interface to emphasize or reveal the internal structure or hidden logic of an architectural artifact. In an interplay of analogue and digital techniques, it employs rules of color blocking in order to highlight certain aspects of complex buildings, urban plans, or interiors, which cannot be discovered using conventional visualization methods. In this research, the authors developed an interactive RGB lens-interface and techniques for superimposed color visualizations that can be used for an enhanced visualization of the internal structure of a building. By applying physical or digital color lenses, viewers can perceive individual layers of project visualizations, in order to understand certain tectonic or construction logics, such as skin, structure or infrastructure. Based on existing bibliography, the paper presents the workflow from drawing, 3D model or photograph to RGB visualization, through a series of test case scenarios applicable to the field of architecture and design.
keywords architectural visualization; color & light; subtractive color mixing; RGB lenses; post-digital; building anatomy
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id cf2019_026
id cf2019_026
authors Wibranek, Bastian; Oliver Tessmann, Boris Belousov and Alymbek Sadybakasov
year 2019
title Interactive Assemblies: Man-Machine Collaborations for a Material-Based Modeling Environment
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 186
summary This paper presents our concept, named Interactive Assemblies, which facilitates interaction between man and machine in construction process in which specially designed building components are used as a design interface. In our setup, users physically manipulate and reposition building components. The components, digitized by means of machine sensing, become a part of the design interface. Each of the three experiments included in this paper examines a different robotic sensor approach that helps transfer of data, including the position and shape of each component, back into the digital model. We investigate combinations of material systems (material computation, selfcorrecting assembly) and matching sensors. The accumulated data serves as input for design algorithms and generates robot tool paths for collaborative fabrication. Using real-world geometry to move from virtual design tools directly to physical interaction and back, our research proposes enhanced participation of human actors in robotic construction processes in architecture.
keywords Man-Machine Collaboration, Robotics, Machine Sensing, As-Built Modelling, Interactive Assemblies
series CAAD Futures
email
last changed 2019/07/29 14:15

_id caadria2019_099
id caadria2019_099
authors Xu, Jianan and Li, Biao
year 2019
title Application of Case-Based Methods and Information Technology in Urban Design - The Renewal Design of the urban region around Roma Railway Station
doi https://doi.org/10.52842/conf.caadria.2019.1.625
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 625-634
summary The research explores the application of the case-based design methods and information technology in urban design by processing OpenStreetMap (OSM) database. Taking the renewal design of the area around the Roma Termini Railway Station as an example, the research has following two purposes. One is to update the abandoned area from the point of view of building function, the other is to design the flyovers connecting the railway station with the pedestrian path simulation. Both of them aim at exploring new methods of urban renewal design by using map information data and providing reference cases for designers.
keywords Urban Design; Generative Design; Case Base; Procedural Modeling
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2019_640
id caadria2019_640
authors Zhang, Ruocheng, Tong, Hanshuang, Huang, Weixin and Zhang, Runzhou
year 2019
title A Generative Design Method for the Functional Layout of Town Planning based on Multi-Agent System
doi https://doi.org/10.52842/conf.caadria.2019.2.231
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 231-240
summary In recent years, with the development of artificial intelligence and digital architecture, more architects begin to wonder how to generate urban planning and urban design through computational method. For the purpose of generating urban planning digitally using computational algorithms, we design a series of algorithms to develop a system that evaluates initial features of the site such as the strength of sunlight, water, landscape. These parameters related to the function zoning of the town were determined based on the data extracted from case studies. These data were integrated into a Markov chain mathematical model for the sake of analyzing the function of grid points. Finally, an algorithm of a multi-agent system was used to optimize the function that could evaluate the grade of each raster point of the town, which could be used to decide the function of a specific region.
keywords Generative design, Town planning,Multi-agent system, Data analysis
series CAADRIA
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_940561 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002