CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 612

_id ecaadesigradi2019_153
id ecaadesigradi2019_153
authors Gomez-Zamora, Paula, Bafna, Sonit, Zimring, Craig, Do, Ellen and Romero Vega, Mario
year 2019
title Spatiotemporal Occupancy for Building Analytics
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 111-120
doi https://doi.org/10.52842/conf.ecaade.2019.2.111
summary Numerous studies on Space Syntax and Evidence-based Design explored occupancy and movements in the built environment using traditional methods for behavior mapping, such as observation and surveys. This approach, however, has majorly focused on studying such behaviors as aggregated results -totals or averages- to corroborate the idea that people's interactions are outcomes of the influence of space. The research presented in this paper focuses on capturing human occupancy with a high spatiotemporal data resolution of 1 sq.ft per second (0.1 sq.mt./s). This research adapts computer vision to obtain large occupancy datasets in a hospitalization setting for one week, providing opportunities to explore correlations among spatial configurations, architectural programs, organizational activities planned and unplanned, and time. The vision is to develop new analytics for building occupancy dynamics, with the purpose of endorsing the integration of a temporal dimension into architectural research. This study introduces the "Isovist-minute"; a metric that captures the relationship between space and occupancy, towards a point of interest, in a dynamic sequence.
keywords Spatiotemporal Occupancy; Occupancy Analytics; Occupancy Patterns; Building-Organizational Performance; Healthcare Settings
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_592
id ecaadesigradi2019_592
authors Carvalho, Jo?o, Figueiredo, Bruno and Cruz, Paulo
year 2019
title Free-form Ceramic Vault System - Taking ceramic additive manufacturing to real scale
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 485-492
doi https://doi.org/10.52842/conf.ecaade.2019.1.485
summary The use of Additive Manufacturing (AM) for the production of architectural components has more and more examples attesting the possibilities and the advantages of its application. At the same time we seen a fast grow of the usage of ceramic materials to produce fully customised architectural components using Layer Deposition Modelling (LDM) [1] techniques. However, the use of this material, as paste, leads to a series of constraints relative to its behaviour when in the viscous state, but also in the drying and firing stages. Thus, when ceramic dries, the retraction effects may be a barrier to the regular use of this material to build future architectural systems. In this sense, it is important to study the material behaviour and know how to control and use it as a primary construction material. To do that we present the challenges and outcomes of project Hexashade, a ceramic vault shading system prototype whose geometry and internal structure is defined according to the solar incidence. This paper explain how we expect to build a real scale self-supporting prototype.
keywords Ceramic 3D printing; Additive Manufacturing; Vaulting Systems; Parametric Design; Performative Design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_239
id ecaadesigradi2019_239
authors Garrido, Federico and Meyer, Joost
year 2019
title Dexterity-controlled Design Procedures
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 659-668
doi https://doi.org/10.52842/conf.ecaade.2019.1.659
summary This paper explores the development of design procedures in relationship to their digital proceedings, in order to interface human movement and parametric design procedures. The research studied the use of Leap Motion controller, a gesture recognition device using infrared sensors combined with time-based generative tools in Rhinoceros Grasshopper. A physical, artistic procedure was used as a reference to model a digital design procedure, including a series of parametric definitions combined with them in an attempt to produce complex three-dimensional designs in real time. In a later stage of this research, a modular, open source, digitizing arm was developed to capture hand movement and interact with an autonomous parametric definition, augmenting even more the range of applications of dexterity-based digital design. The challenge of this experimental investigation lies in the negotiation of the designer's needs for a complex yet open design process and the possibilities of defined soft- and hardware solutions.
keywords digital design; dexterity; parametric design; motion detection
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_671
id ecaadesigradi2019_671
authors Jabi, Wassim, Chatzivasileiadi, Aikaterini, Wardhana, Nicholas Mario, Lannon, Simon and Aish, Robert
year 2019
title The synergy of non-manifold topology and reinforcement learning for fire egress
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 85-94
doi https://doi.org/10.52842/conf.ecaade.2019.2.085
summary This paper illustrates the synergy of non-manifold topology (NMT) and a branch of artificial intelligence and machine learning (ML) called reinforcement learning (RL) in the context of evaluating fire egress in the early design stages. One of the important tasks in building design is to provide a reliable system for the evacuation of the users in emergency situations. Therefore, one of the motivations of this research is to provide a framework for architects and engineers to better design buildings at the conceptual design stage, regarding the necessary provisions in emergency situations. This paper presents two experiments using different state models within a simplified game-like environment for fire egress with each experiment investigating using one vs. three fire exits. The experiments provide a proof-of-concept of the effectiveness of integrating RL, graphs, and non-manifold topology within a visual data flow programming environment. The results indicate that artificial intelligence, machine learning, and RL show promise in simulating dynamic situations as in fire evacuations without the need for advanced and time-consuming simulations.
keywords Non-manifold topology; Topologic; Reinforcement Learning; Fire egress
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_298
id caadria2019_298
authors Karoji, Gen, Hotta, Kensuke, Hotta, Akito and Ikeda, Yasushi
year 2019
title Pedestrian Dynamic Behaviour Modeling - An application to commercial environment using RNN framework
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 281-290
doi https://doi.org/10.52842/conf.caadria.2019.1.281
summary The research of developing and improving pedestrian simulation model is essential in the process of analysing, evaluating and generating the architectural spaces that can not only satisfy circulation design condition but also promote sales by attracting customers. In terms of programming the simulation for commercial environment, current study attempts to use shortest-path algorithm generally and these results suggested that the model can reproduce approximate real trajectory within given environment. However, these studies also mentioned about necessity of considering shopper internal state and visual field. In this paper, in order to further incorporate the dynamic internal state (memory) into simulation model, we propose using iterative algorithm based on recurrent neural network (RNN) framework which allow it to exhibit temporal dynamic behaviour for a time sequence. Finally, we demonstrate the effectiveness of these algorithms we introduce and assess the combination of multiple algorithms and calibration of probability by comparing with trajectories of the experiment.
keywords Pedestrian simulation; Algorithm; RNN; Commercial environment
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_117
id ecaadesigradi2019_117
authors Kido, Daiki, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Development of a Semantic Segmentation System for Dynamic Occlusion Handling in Mixed Reality for Landscape Simulation
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 641-648
doi https://doi.org/10.52842/conf.ecaade.2019.1.641
summary The use of mixed reality (MR) for landscape simulation has attracted attention recently. MR can produce a realistic landscape simulation by merging a three-dimensional computer graphic (3DCG) model of a new building on a real space. One challenge with MR that remains to be tackled is occlusion. Properly handling occlusion is important for the understanding of the spatial relationship between physical and virtual objects. When the occlusion targets move or the target's shape changes, depth-based methods using a special camera have been applied for dynamic occlusion handling. However, these methods have a limitation of the distance to obtain depth information and are unsuitable for outdoor landscape simulation. This study focuses on a dynamic occlusion handling method for MR-based landscape simulation. We developed a real-time semantic segmentation system to perform dynamic occlusion handling. We designed this system for use in mobile devices with client-server communication for real-time semantic segmentation processing in mobile devices. Additionally, we used a normal monocular camera for practice use.
keywords Mixed Reality; Dynamic occlusion handling; Semantic segmentation; Deep learning; Landscape simulation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_567
id ecaadesigradi2019_567
authors Konieva, Kateryna, Joos, Michael Roberto, Herthogs, Pieter and Tunçer, Bige
year 2019
title Facilitating Communication in a Design Process using a Web Interface for Real-time Interaction with Grasshopper Scripts
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 731-738
doi https://doi.org/10.52842/conf.ecaade.2019.2.731
summary Urban design project development encompasses a wide range of disciplines and approaches, which often have separate goals, frameworks, and software tools. Lack of timely alignment of the disconnected expert inputs to the common vision leads to an increasing number of revisions and decreases chances for finding a compromise solution. We developed an intuitive browser-supported interface in order to incorporate various types of expert inputs and ways of representing the information to take a first step towards facilitating collaborative decision-making processes. The current paper describes the application of the developed tool on three exemplary case studies, where the expert and non-expert users' inputs are combined and analysed using Grasshopper scripts at the back-end. Pilot user studies conducted with professionals have shown that the tool has potential to facilitate collaboration across disciplines and compromise decisions, while most of the participants were still more likely to use it for communication with customers rather than the design team. It suggests that the interaction scheme of different actors with the tool needs to correspond better to the interaction of different actors during common negotiation processes. The findings suggest that the type of involvement of different stakeholders should be explored further in order to find the balance in functionality suitable for different parties.
keywords computational design; design exploration; collaborative design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_183
id ecaadesigradi2019_183
authors Mughal, Humera and Beirao, Jose
year 2019
title A Workflow for the Performance Based Design of Naturally Ventilated Tall Buildings Using a Genetic Algorithm (GA)
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 645-654
doi https://doi.org/10.52842/conf.ecaade.2019.2.645
summary Optimization of Natural Ventilation process in highrise buildings is one of the most complex and least addressed phenomenon in the field of sustainable architecture. This issue requires urgent consideration to reduce the computation time due to fast growing demand of vertical construction in metropolitan cities. Until recently most highrise buildings have been operated with mechanical systems, causing high energy loads in hot climates and have high carbon footprints. Highrise buildings with natural ventilation and sky gardens can address these problems. This study involves the development of a Genetic Algorithm (GA) addressing the multi objective optimization of natural ventilation in tall buildings incorporated with Sky-Gardens at different levels all connected through a central ventilation shaft. The fitness function for this GA is composed of three scales; temperature reduction due to evapotranspiration of plants of sky-gardens, optimum wind velocity for channelizing air inside the corridors and ventilation shaft, and optimum building configuration. The aim is to find the best solutions for tall buildings constructed in hot climate through the provision of optimized airflow paths suitable for the effectiveness of natural ventilation, within a reasonably short computation time for supporting design processes at early stage.
keywords Optimization; Natural Ventilation; Tall buildings; Genetic Algorithms
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_280
id ecaadesigradi2019_280
authors Rossi, Gabriella and Nicholas, Paul
year 2019
title Haptic Learning - Towards Neural-Network-based adaptive Cobot Path-Planning for unstructured spaces
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 201-210
doi https://doi.org/10.52842/conf.ecaade.2019.2.201
summary Collaborative Robots, or Cobots, bring new possibilities for human-machine interaction within the fabrication process, allowing each actor to contribute with their specific capabilities. However creative interaction brings unexpected changes, obstacles, complexities and non-linearities which are encountered in real time and cannot be predicted in advance. This paper presents an experimental methodology for robotic path planning using Machine Learning. The focus of this methodology is obstacle avoidance. A neural network is deployed, providing a relationship between the robot's pose and its surroundings, thus allowing for motion planning and obstacle avoidance, directly integrated within the design environment. The method is demonstrated through a series of case-studies. The method combines haptic teaching with machine learning to create a task specific dataset, giving the robot the ability to adapt to obstacles without being explicitly programmed at every instruction. This opens the door to shifting to robotic applications for construction in unstructured environments, where adapting to the singularities of the workspace, its occupants and activities presents an important computational hurdle today.
keywords Architectural Robotics; Neural Networks; Path Planning; Digital Fabrication; Artificial Intelligence; Data
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_370
id ecaadesigradi2019_370
authors Sperling, David, Vizioli, Simone Helena Tanoue, Botasso, Gabriel Braulio, Tiberti, Mateus Segnini, Santana, Eduardo Felipe Zambom and Sígolo, Brianda de Oliveira Ordonho
year 2019
title Crossing Timelines - Main research topics in the histories of eCAADe and SIGraDi
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 407-416
doi https://doi.org/10.52842/conf.ecaade.2019.1.407
summary Being in tune with the joint eCAADe and SIGraDi conference, this paper systematizes and analyzes data related to the set of papers presented in the history of the conferences of both societies. Which paths traced from eCAADe and SIGraDi brought us to the "architecture in the age of the fourth industrial revolution"? This paper describes a bibliometric study focused on eCCADe and SIGraDi papers from 2003 to 2018 retrieved from CumInCad by using an open source software developed by the team for this research. The most used keywords and most cited authors, cross-citations between societies and time series about this data were synthesized, recovering part of the histories of these societies. Some similarities and differences between them are pointed out allowing to understand their past for better drawing their future.
keywords CAAD; History; Bibliometrics; Cumincad; eCAADe; SIGraDi
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_024
id ecaadesigradi2019_024
authors Wit, Andrew John and Ng, Rashida
year 2019
title cloudMAGNET - A prototype for climatically active light-weight skins
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 627-636
doi https://doi.org/10.52842/conf.ecaade.2019.2.627
summary This paper describes a potential for the integration of micro-encapsulated phase change material (mircoPCM) into lightweight skins as a means of regulating internal climatic conditions of volumetric objects. Viewed through the lens of the recently completed series of quarter-scale cloudMAGNET prototypes tested in the cloud forests of Monteverde, Costa Rica, this research utilized a wound, flexible carbon fiber framework and a lightweight fabric skin coated with varying densities of microPCM. The prototypes were monitored using real-time collection of climate data throughout the testing. In this paper we will demonstrate how climatic variables such as temperature, humidity, and pressure can be passively manipulated by varying the form and energy storage properties of materials without the use of active mechanical systems. Produced to bring awareness to the rising cloud levels within the Monteverde cloud forest, this research is intended to explore the fundamental relationships of material, energy and form. Beyond these objectives, the paper will also illustrate how these methods can be more broadly applied to the development of thermal-regulating lightweight tensile structures. Such innovations could be utilized as a method for the reimagining the architectural design and production processes allowing for the emergence of new typologies of environmentally self-mediating architecture.
keywords material performance; phase change material; carbon fiber reinforced polymers; computation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id cf2019_052
id cf2019_052
authors Abdelmohsen, Sherif ;Passaint Massoud, Rana El-Dabaa, Aly Ibrahim and Tasbeh Mokbel
year 2019
title The Effect of Hygroscopic Design Parameters on the Programmability of Laminated Wood Composites for Adaptive Façades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 435
summary Typical adaptive façades respond to external conditions to enhance indoor spaces based on complex mechanical actuators and programmable functions. Hygroscopic embedded properties of wood, as low-cost low-tech programmable material, have been utilized to induce passive motion mechanisms. Wood as anisotropic material allows for different passive programmable motion configurations that relies on several hygroscopic design parameters. This paper explores the effect of these parameters on programmability of laminated wood composites through physical experiments in controlled humidity environment. The paper studies variety of laminated configurations involving different grain orientations, and their effect on maximum angle of deflection and its durability. Angle of deflection is measured using image analysis software that is used for continuous tracking of deflection in relation to time. Durability is studied as the number of complete programmable cycles that wood could withstand before reaching point of failure. Results revealed that samples with highest deflection angle have least programmability durability.
keywords Wood, hygroscopic design, lamination, deflection, durability, adaptive façades
series CAAD Futures
email
last changed 2019/07/29 14:18

_id caadria2019_660
id caadria2019_660
authors Aghaei Meibodi, Mania, Giesecke, Rena and Dillenburger, Benjamin
year 2019
title 3D Printing Sand Molds for Casting Bespoke Metal Connections - Digital Metal: Additive Manufacturing for Cast Metal Joints in Architecture
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 133-142
doi https://doi.org/10.52842/conf.caadria.2019.1.133
summary Metal joints play a relevant role in space frame constructions, being responsible for large amount of the overall material and fabrication cost. Space frames which are constructed with standardized metal joints are constrained to repetitive structures and topologies. For customized space frames, the fabrication of individual metal joints still remains a challenge. Traditional fabrication methods such as sand casting are labour intensive, while direct 3D metal printing is too expensive and slow for the large volumes needed in architecture.This research investigates the use of Binder Jetting technology to 3D print sand molds for casting bespoke metal joints in architecture. Using this approach, a large number of custom metal joints can be fabricated economically in short time. By automating the generation of the joint geometry and the corresponding mold system, an efficient digital process chain from design to fabrication is established. Several design studies for cast metal joints are presented. The approach is successfully tested on the example of a full scale space frame structure incorporating almost two hundred custom aluminum joints.
keywords 3D printing; binder jetting; sand casting; metal joints; metal casting; space frame; digital fabrication; computational design; lightweight; customization
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_182
id ecaadesigradi2019_182
authors Argin, Gorsev, Pak, Burak and Turkoglu, Handan
year 2019
title Post-flâneur in Public Space - Altering walking behaviour in the era of smartphones
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 649-658
doi https://doi.org/10.52842/conf.ecaade.2019.1.649
summary Smartphones have become an ordinary accompanier of our walks and created new modes of appropriation of public space. This study aims to research these modes by observing the altering visual attention and walking behavior of people using smartphones in public space, and in this way, to reveal the emergence of different types of post-flâneurs. In order to address these aims, 346 (195 females, 151 males) smartphone users were observed in a central public square in Ghent, Belgium for seven days in 10-minute time intervals. Each person's gender, age, number of accompanies and their dominant mode of smartphone usage(s) were identified. Afterward, each person's walking timeline was organized into seconds and coded according to their focus of visual attention in 24 different modes which grouped under the three gaze types; visual attention on the environment, on the environment through the smartphone screen, and on the smartphone screen. Results of the descriptive statistics, multivariate graph, and rhythm-based in-depth analysis show that different types of smartphone activities affect visual attention and speed differently. Different types of post-flâneurs such as navigators and photo takers were identified based upon their high percentage of visual attention on the environment and slower walking speed. The study also revealed the frequent presence of phone-walkers (who walk while only holding the smartphone) and smartphone zombies (who walk slowly and without attention to their surrounding) in public space. In addition to these, our research revealed rapid smartphone zombies who walk faster than the average walking speed, a finding contrary to the former studies reviewed.
keywords visual attention; public space; smartphone; walking behaviour; post-flâneur
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_204
id caadria2019_204
authors Calixto, Victor, Gu, Ning and Celani, Gabriela
year 2019
title A Critical Framework of Smart Cities Development
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 685-694
doi https://doi.org/10.52842/conf.caadria.2019.2.685
summary This paper investigates through a review of the current literature on smart cities, reflecting different concepts across different political-social contexts, seeking to contribute to the establishment of a critical framework for smart cities development. The present work provides a review of the literature of 250 selected publications from four databases (Scielo, ScienceDirect, worldwide science, and Cumincad), covering the years from 2012 to 2018. Publications were categorised by the following steps: 3RC framework proposed by Kummitha and Crutzen (2017), the main political sectors of city planning, implementation strategies, computational techniques, and organisation rules. The information was analised graphically trying to identify tendencies along the time, and also, seeking to explore future possibilities for implementations in different political-social contexts. As a case of study, Australia and Brazil were compared using the proposed framework.
keywords smart city; smart cities; literature review
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_647
id caadria2019_647
authors Camacho, Daniel, Dobbs, Tiara, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Hands On Design - Integrating haptic interaction and feedback in virtual environments for enhanced immersive experiences in design practice.
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 563-572
doi https://doi.org/10.52842/conf.caadria.2019.1.563
summary The usability of virtual reality (VR) controller interfaces are often complex and difficult for first time users. Most controllers provide minimal feedback which relegates the potential for heightened interaction and feedback within virtual experiences. This research explores how haptic technology systems partnered with VR can deliver immersive interactions between user and virtual environment (VE). This research involves the development of a haptic glove interface prototype that incorporates a force feedback and vibrotactile feedback system. It focuses on determining a workflow that communicates in real-time user interaction and environmental feedback using Unreal Engine and the produced haptic glove system. Testing and calibrating the prototype feedback system provided a baseline for developers to rationalise and improve accuracy of current real-time virtual feedback systems. The evaluation of this research in industry unfolds new technical knowledge for implementing a wider range of haptic technologies within VR. This further development would involve reviewing the usability and interaction standards for VR users in the design process.
keywords Virtual Environments; Haptic Technologies; Feedback; Interaction; Usability
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_309
id ecaadesigradi2019_309
authors Dokonal, Wolfgang and Medeiros, Marina Lima
year 2019
title I Want To Ride My Bicycle – I Want To Ride My Bike - Using low cost interfaces for Virtual reality
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 465-472
doi https://doi.org/10.52842/conf.ecaade.2019.2.465
summary The paper will give an overview of our experiments in the past years in developing different interfaces and workflows for the use of low cost Head Mounted Displays (HMD) for Virtual Reality solution. We are mainly interested in using VR tools for designers in the early phases of their design. In our opinion VR tools can help to bring back a better understanding of space and scale which have been lost a little bit in the last century with the change from analogue to digital tools. After teaching architectural and urban design for many years we can clearly say that this effect is still ongoing and it is time that we develop digital tools that try to reverses thi effect. We will then concentrate within this paper on discussing some aspects of data reduction that are important to be able to use these tools in the design process. We are also showing how we use our interfaces presenting some results of student projects for a design in Hong Kong and the strategies and methods for using VR for a ongoing work on a project about the establishment of a so called "bicycle highway" in the city of Graz in Austria.
keywords Virtual Reality; Head Mounted Displays; Low Cost Interfaces; EeZee click
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id caadria2019_406
id caadria2019_406
authors Fitriawijaya, Adam, Hsin-Hsuan, Tsai and Taysheng, jeng
year 2019
title A Blockchain Approach to Supply Chain Management in a BIM-Enabled Environment
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 411-420
doi https://doi.org/10.52842/conf.caadria.2019.2.411
summary The blockchain is a distributed ledger managed by a peer to peer network that stores all transaction records. The distributed ledger technology offers new possibilities, promising to ensure that data is secure, decentralized and incomparable. In the Architecture, Engineering, Construction (AEC) industry, Building Information Modeling (BIM) has quickly become a standard platform where all parties work together on a single and shared model for collaboration. The issues of Supply Chain Management (SCM) within BIM can be identified in BIM maturity level, based on PAS1193 that developed through Common Data Environment (CDE). The research strategy is to make model and simulation of SCM using BIM and create CDE to become decentralized and integrate the blockchain technology. The smart contract system validates every material and configuration of components within the model from the design stage until the operation stage. Traceability and auditability through an immutable historic eventually be more visible and allow real-time tracking of a material to a construction site providing a history from the origin.
keywords Blockchain; BIM; Supply Chain
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2019_602
id caadria2019_602
authors Freitas, José and Leitão, António
year 2019
title Back to Reality - Dendritic structures using current construction techniques
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 173-182
doi https://doi.org/10.52842/conf.caadria.2019.1.173
summary Architects throughout time have designed tree-inspired structures, not only to decorate their creations, but also to explore biomimicry to solve mechanical and structural problems. With the predominance of digital simulation tools, these dendritic-shaped structures are now more easily explored. However, these explorations tend to lack the rationalization required to make them applicable to current production means. In this paper, we take a step back and ensure the connection between the creation and the production of the designs generated with these new digital approaches. The present investigation combines design and analysis tools in search for tree-inspired structures that take advantage of the current techniques of building construction.
keywords Biomimicry; Dendritic structures; Algorithmic design; Performative architecture; Structural analysis
series CAADRIA
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_57163 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002