CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 571

_id acadia19_458
id acadia19_458
authors Bartosh, Amber; Anzalone, Phillip
year 2019
title Experimental Applications of Virtual Reality in Design Education
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 458-467
doi https://doi.org/10.52842/conf.acadia.2019.458
summary By introducing rapid reproduction, algorithms, and complex formal configurations, the digital era of architecture began a revolution. Architects incorporated the computational capacity of the computer into the design process both as a tool and as a critical component of the theories and practice of architecture as a whole. As we move into what has been coined “the second digital turn,” a period in which digital integration is considered ubiquitous, how can we consider, prepare, and propel towards the next technological innovation to significantly inform design thinking, representation, and manifestation? What tools are available to investigate this speculative design future and how can they be implemented? If the integration of technology in architecture is now a given, perhaps the next digital design era is not just digital but virtual. As new technologies emerge the potential for integrating the virtual design world with our physical senses affords novel possibilities for interactive design, simulation, analysis and construction. Hybrid reality technologies including virtual reality (VR) and augmented reality (AR), embody the potential to supersede conventional representation methodologies such as drawing, rendering, physical modeling, and animation. As they become increasingly pervasive, they will transform how we communicate ideas and data as spatial concepts. Further, they will reform the construct of the built environment when applied to both materiality and fabrication. This paper will describe the incorporation of VR as a tool in various classroom and laboratory settings, recognize the educational outcomes of this incorporation, and identify the potential relationship of these technologies to future academic exploration and application to practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2019_530
id caadria2019_530
authors Lu, Siliang, Wang, Shihan, Cochran Hameen, Erica, Shi, Jie and Zou, Yue
year 2019
title Comfort-Based Integrative HVAC System with Non-Intrusive Sensing in Office Buildings
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 785-794
doi https://doi.org/10.52842/conf.caadria.2019.1.785
summary Heating, ventilation and air-conditioning system plays a key role in shaping the built environment. The effective and efficient HVAC operations not only achieve energy savings but also create a more comfortable environment for occupant indoors. Since current HVAC systems with fixed schedules cannot guarantee the operation with high energy efficiency and provision of comfortable thermal environment for occupants, it is of great importance to develop new paradigm of HVAC system framework, especially in the open-plan office environment so that everyone could work under their preferred thermal environment. Moreover, compared to environment-related factors to thermal comfort, sensing systems for occupant-related factors such as clothing insulation, metabolic rate, skin temperature have not had standardized yet and most of sensing systems for occupant-related factors may either result in privacy issue or are too intrusive. Hence, it is necessary to develop a new non-intrusive and less private sensing framework for monitoring individual thermal comfort in real-time. Therefore, this paper proposes an integrative comfort-based personalized cooling system with the operation of the centralized systems in office buildings. The results show that such integrative and interactive HVAC system for workplaces has advantages over thermal comfort improvements and energy savings.
keywords Adaptive thermal comfort; Non-intrusive personalized cooling system; Occupant-responsive HVAC control; Intelligent workplace
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id lasg_whitepapers_2019_089
id lasg_whitepapers_2019_089
authors Byrne, Daragh; and Dana Cupkova
year 2019
title Towards Psychosomatic Architecture; Attuning Reactive Architectural Materials through Biofeedback
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.089 - 100
summary The built environment is known to affect human health and wellbeing. Yet, architecture does not respond to our bodies or our minds. It tends to be static, ignoring the human occupant, their mood, behaviors, and emotions. There is evidence that this monotony of average space is harmful to human health. Additionally, differences in gender, race and cultural conditions vary the perception of and preferences for temperature and color. To improve the psychosomatic relationship with architectural spaces, there arises the necessity for it to have a greater range of spatial reactivity and better support for personalized thermoregulation and aesthetics. This paper proposes an architecture that operates like a mood-ring, one that creates rich feedback between architecture and occupant towards individualized reactivity and expression. [Sentient Concrete] ([Image 1]) is a prototype of a thermochromically treated concrete panel that is thermally actuated by embedded electromechanical systems and can dynamically produce localized thermally reactive responses. It serves as a test case for outlining further research agendas and possible design frameworks for psychosomatic architecture.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id caadria2019_004
id caadria2019_004
authors Janssen, Patrick, Pung, Derek and Chen, Kian Wee
year 2019
title Visual Programming for Geo-COmputation - Towards Tools for Tool Makers
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 665-674
doi https://doi.org/10.52842/conf.caadria.2019.2.665
summary The paper presents the Möbius Geospatial Modeller, a web-based visual programming tool developed by the authors for creating interactive 3D geospatial datasets. As an evaluation of the modeller, the results of a five-day workshop are presented. The paper ends with a discussion, proposing the creation of customised visual programming environments that provide users with the ability to create their own customised high-level domain-specific functions, as opposed to trying to creating hundreds of functions to cater for all possible used case.
keywords visual programming; geo-computation; geospatial visualization; dataflow and control flow
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_667
id ecaadesigradi2019_667
authors Werner, Liss C.
year 2019
title Form and Data - from linear Calculus to cybernetic Computation and Interaction
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 675-682
doi https://doi.org/10.52842/conf.ecaade.2019.2.675
summary Digital architecture developed in the 1960s and, supported by CAAD the 1990s, has created the path towards an architecture produced by computer and architect in a mutual relationship. The evolution of architecture since the 1970s led to the beginning of the first digital turn in the 1990s, and subsequently to the emergence of new typologies of buildings, architects and design tools; atom-based, bit-based (virtual) [1], and cyber-physical as a combination of both. The paper provides an insight into historical foundations of CAAD insofar as it engages with complexity in mechanics, geometry, and space between the 1600s and 1950s. I will address a selection of principles discovered, and mechanisms invented before computer-aided-architectural-design; those include the typewriter, the Cartesian grid and a pre-cyber-physical system by Hermann von Helmholtz. The paper concludes with a summary and an outlook to the future of CAAD challenged by the variety of correlations of disparate data sets.
keywords HCI; cyber-physical systems; cybernetics; digital history; computational architecture; Helmholtz
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_446
id ecaadesigradi2019_446
authors Worre Foged, Isak, Pasold, Anke and Pelosini, Tommaso
year 2019
title Material Studies for Thermal Responsive Composite Envelopes
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 207-214
doi https://doi.org/10.52842/conf.ecaade.2019.1.207
summary The material-based studies examine through computation and physical prototyping layered composites for thermal responsive building envelopes. Focus is placed on surveying and computing a large series of materials across four groups, for then to test these materials from factors of solar energy reception capacities, internal heating methods, heat isolation coatings and layer bonding. An oak-polyethylene structure is developed based on the first studies and further tested towards implementation as part of an adaptive envelope demonstrator, with these studies focused on fabrication and assembly methods. Results of the developed, tested and applied composite as part of an adaptive envelope shows that the environmental-material composite is strongly influenced by colour and direct solar radiation exposure. This in turn allow a material-fabrication approach to program a responsive system driven by exergy. Reinforcing the responsive reaction of the composite by internal heating does not advance the performance, as coatings are needed to maintain the heat inside the material, which adds weight and isolate the composite from the thermal environment that otherwise is intended to provide the energy for driving the responsive behaviour. Please write your abstract here by clicking this paragraph.
keywords Material Studies; Thermal Responsive; Composites; Building Envelopes
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id cf2019_038
id cf2019_038
authors El-Dabaa, Rana and Sherif Abdelmohsen
year 2019
title HMTM: Hygromorphic-Thermobimetal Composites as a Novel Approach to Enhance Passive Actuation of Adaptive Façades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 290-300
summary Typical adaptive facades rely on mechanical actuators that respond to the outdoor climate and regulate its effect on indoor spaces. With the emergence of ubiquitous computing, several studies have independently utilized the latent properties of programmable materials, such as the hygroscopic properties of wood and the difference in expansion coefficient of metals, to passively program material response. Motion stimuli vary for each material however, involving changes in humidity and temperature fluctuation for wood and metals respectively. This paper introduces Hygromorphic-Thermobimetal (HMTM), as a low-tech low-cost passive programmable composite. A series of physical experiments are conducted to deduce design parameters that induce specific actuation mechanisms based on the stimulation of both hygroscopic properties in wood and metal expansion through temperature variation. This allows for an extended implementation of the hygroscopic properties of wood and its actuation configurations in hot arid climates, where variation in temperature, rather than humidity, is more dominant.
keywords Hygroscopic properties of wood, Passive actuation, Thermobimetals, Programmable materials, Adaptive façades
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ecaadesigradi2019_367
id ecaadesigradi2019_367
authors Goti, Kyriaki, Katz, Shir, Baharlou, Ehsan, Vasey, Lauren and Menges, Achim
year 2019
title Jamming Formations - Intuitive design and fabrication process through human-computer interaction
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 669-680
doi https://doi.org/10.52842/conf.ecaade.2019.1.669
summary This paper examines the potential of User Interfaces (UI) and sensor feedback to develop an intuitive design and fabrication process utilizing granular jamming. By taking advantage of the variable stiffness of granular jamming over time, an adaptive fabrication process is presented in which various structures are formed from individual jammed components which can weave or interlock in an overall system. A User Interface (UI) is developed as a design tool which would enable interactive design decisions and operations, based on pre-designed formal and tectonic strategies. The project has four research trajectories that are developed in parallel: (1) material system research; (2) development of an ad hoc digital recording system; (3) creation of a computational library that stores users' iterations; and (4) development of a User Interface (UI) that enables users' interaction with the computational library.
keywords Granular Jamming, Human-computer Interaction, Adaptive Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id lasg_whitepapers_2019_157
id lasg_whitepapers_2019_157
authors Kretzer, Manuel
year 2019
title Tomorrowland
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.157 - 172
summary This essay is a transcript of a series of lectures I presented entitled ‘Tomorrowland’ and is partially based on material which has been previously published in ‘Information Materials – Smart Materials for Adaptive Architecture, Manuel Kretzer. Bern: Springer International Publishing, 2017’ as well as an unpublished paper co-written with Adil Bokhari on our common design studio ‘Synthetic Ecologies.’
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id caadria2019_318
id caadria2019_318
authors Martinho, Helena, Belém, Catarina, Leitão, António, Loonen, Roel and Gomes, M. Glória
year 2019
title Algorithmic Design and Performance Analysis of Adaptive Façades
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 685-694
doi https://doi.org/10.52842/conf.caadria.2019.1.685
summary Building performance simulation tools have the potential for aiding the decision-making process in early design stages of an architectural project. As traditional simulation tools are based on a static design and adaptive façades encompass an envisioned movement of construction elements, there is a lack of supporting tools and workflows that can correctly evaluate the performance of such building envelopes at an early stage. The presented ongoing research focuses on developing efficient parametric performance-based approaches for assessing the energy consumption in buildings with adaptive façades, combining generative architectural design and performance analysis in a seamless workflow. To this end, we combine a new algorithmic design research tool with the well-established whole-building simulation engine EnergyPlus. The purpose of linking both tools lies in the possibility of generating and simulating models with adaptive façade mechanisms through a single script, evaluating and using the simulation results to adjust the model's parameters and develop optimized control strategies.
keywords Building performance simulation; Adaptive façades; Algorithmic design; Energy analysis
series CAADRIA
email
last changed 2022/06/07 07:59

_id lasg_whitepapers_2019_235
id lasg_whitepapers_2019_235
authors Parlac, Vera
year 2019
title Soft Kinetics; Integrating Soft Robotics into Architectural Assemblies
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.235 - 250
summary The project described in this paper explores the integration of custom-made soft robotic muscles into a component-based surface. This project is part of a broader research that focuses on new material behaviors and their capacity to produce adaptive and dynamic material systems. The paper discusses the use of a pneumatic system as a form of material-based actuation. It presents the ongoing research into the capacity of integrated [pneu] structures to generate kinetic movement within a component-based assembly to produce a responsive and “programmable” architectural skin. This is a prototype-based exploration that demonstrates different kinds of movement achieved by different silicone muscle types and proposes a light modular construct, its components, and patterns of aggregation that work in unison with the silicone muscles to produce a dynamic architectural skin. The project is informed by a history of pneumatic structures, the technology of soft robotics, and a kit-of-parts design strategy.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id lasg_whitepapers_2019_319
id lasg_whitepapers_2019_319
authors Shahi, Sheida
year 2019
title Adaptability in Residential Adaptive Reuse
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.319 - 326
summary This research complements existing LASG focuses on experimental constructional systems, especially relating to the LASG Scaffolds stream. Finding feasible and applicable strategies for improving resilience and empowering adaptability in the built environment are the objectives of this research and are aligned with the long-term objectives of the LASG. Residential adaptive reuse and ideas of adaptability integrated within the refurbishment of existing residential buildings will be examined in this paper. The potential for existing buildings to be extended and renewed by repurposing and adjusting outer layers of envelope and balconies will be addressed. Within the Scaffolds stream, a main focus is on the constructional systems and spatial qualities of envelopes and skeleton systems that will be needed to support dynamic movement and programming with multiple functions. This research contributes to a practical base that can provide opportunities to implement LASG systems at full public scale.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id caadria2019_202
id caadria2019_202
authors Yang, Chunxia, Gu, Zhuoxing and Yao, Ziying
year 2019
title Adaptive Urban Design Research based on Multi-Agent System - Taking The Urban Renewal Design Of Shanghai Hongkou Port Area As An Example
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 225-234
doi https://doi.org/10.52842/conf.caadria.2019.1.225
summary Utilizing digital method to establish a multi-agent simulation platform and establish an interactive simulation between site elements and agents particles behavior. In this study, urban space could not have the absolute frozen state, it is always evolving and self-renewing. We hope to integrate such unstable relationships into urban design methods and programs. By constructing various type of agent particles and the interaction behaviors, we not only directly simulate the flow of people or traffic, but also simulate the public space relationship such as line of sight space, waterfront space accessibility, commercial supporting function layout, and historical and cultural block attraction from a more abstract level. From macro to micro, the result of spatial simulation has an intrinsic close causal relationship with the site's landform, building status, site function, and planning pattern, can be the basis for space generation.
keywords Self-organization; Multi-agent System; Cluster City; Particle Personality; Site Elements
series CAADRIA
email
last changed 2022/06/07 07:57

_id ijac201917202
id ijac201917202
authors Zarzycki, Andrzej and Martina Decker
year 2019
title Climate-adaptive buildings: Systems and materials
source International Journal of Architectural Computing vol. 17 - no. 2, 166-184
summary This article discusses research case studies that deploy physical computing with kinetic, pneumatic, and smart material technologies as vehicles to address the prospects of these technologies and their future impact on resilient and high- performance buildings. It looks into conceptual aspects of an integrated hybrid system that combines both computation approaches and unique opportunities inherent to these hybrid designs.
keywords High-performance buildings, adaptable designs, smart materials, smart buildings, sustainable design
series journal
email
last changed 2019/08/07 14:04

_id acadia19_346
id acadia19_346
authors Gehron, Luke; Chernick, Adam; Morse, Christopher; Naumovski, Sabrina; Ren, Zeyu
year 2019
title Sound Space
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 346-351
doi https://doi.org/10.52842/conf.acadia.2019.346
summary Sound Space, an interactive virtual reality tool, allows architects and designers to simulate and visualize the acoustic implications of their building designs. By providing designers with the ability to pause, rewind and fast forward a sound wave within a virtual built environment, we empower them to let acoustics influence their design decisions. With a focus on simulation accuracy as well as user experience, we let the user interact with, explore, and curate their own experience while gaining an intuitive understanding of the acoustic implications of their design. Sound Space explores the opportunities that a linked BIM connection may bring within game engine based experiences, and looks at some of the tools we used to try to make that connection. Sound Space focuses on evaluating the acoustic performance of a space in an interactive and visual experience. For buildings such as symphony halls or theaters, acoustic engineers are a part of the design process from the beginning, but the majority of projects such as schools, hospitals, or museums might employ acoustic specialists only near the end, if at all. At this point it is often too late to make meaningful changes to account for the important acoustic characteristics that can make such spaces work better for students, patients, and visitors. Our goal was to create an environment that was visually interesting enough to immerse and retain users in the experience, and accurate enough to give useful results to the users for them to make informed choices about their design decisions.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia20_142p
id acadia20_142p
authors Kilian, Axel
year 2020
title The Flexing Room
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 142-147
summary Robotics has been largely confined to the object category with fewer examples at the scale of buildings. Robotic buildings present unique challenges in communicating intent to the enclosed user. Precedent work in architectural robotics explored the performative dimension, the playful and interactive qualities, and the cognitive challenges of AI systems interacting with people in architecture. The Flexing Room robotic skeleton was installed at MIT at its full designed height for the first time and tested for two weeks in the summer of 2019. The approximately 13-foot-tall structure is comprised of 36 pneumatic actuators and an active bend fiberglass structure. The full height allowed for a wide range of postures the structure could take. Acoustic monitoring through Piezo pickup mics was added that allowed for basic rhythmic responses of the structure to people tapping or otherwise triggering the vibration sensors. Data streams were collected synchronously from Kinect skeleton tracking, piezo pickup mics, camera streams, and posture data. The emphasis in this test period was first to establish reliable hardware operations at full scale and second to record correlated data streams of the sensors installed in the structure together with the actuation triggers and the human poses of the inhabitant. The full-scale installation of hardware was successful and proved the feasibility of the structural and actuation approach previously tested on a one-level setup. The range of postures was increased and more transparent for the occupant. The perception of the structure as space was also improved as the system reached regular ceiling height and formed a clearer architectural scale enclosure. The ambition of communicating through architectural postures has not been achieved yet, but promising directions emerged from the test and data collection
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id caadria2019_256
id caadria2019_256
authors Lertsithichai, Surapong
year 2019
title Augemented Architecture - Interplay between Digital and Physical Environments
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 353-362
doi https://doi.org/10.52842/conf.caadria.2019.2.353
summary In an increasingly connected world where computers are everywhere, surrounding us in embedded small portable devices, appliances and inside buildings, implementing these interconnected and embedded computers have now become common practice in the design of smart spaces and intelligent environments of today. Digital information is constantly being collected and distributed by a network of digital devices communicating with users and vice versa. New behaviors and activities that may have not been considered before in the design of architectural building types are now commonly found in public and private spaces throughout the world. In an attempt to explore and experiment with the concept of interplay between digital and physical environments, an option studio was proposed to 4th year architecture students to develop a new type of augmented architecture that corresponds to changes in human social behavior due to digital technologies. Five pilot projects are presented with experiments conducted to question three social activities commonly found in everyday lives using Arduino prototypes installed in real physical locations. The prototypes were then used as a basis for the development of large-scale projects proposed as augmented architecture.
keywords Human-Computer Interaction; Ubiquitous Computing; Virtual / Augmented Reality; Computational Design Research; IoT for Built Environments
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia19_310
id acadia19_310
authors Leblanc, Maxime; Vardouli, Theodora
year 2019
title Bursting the Bubble
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 310-319
doi https://doi.org/10.52842/conf.acadia.2019.310
summary The “bubble" is an oft-used keyword in discussions about Virtual Reality (VR) and Virtual Environments (VE). Apart from pointing to the growing, yet precarious, rise of these domains in technology markets, the “bubble" is also a prolific metaphor for spatial, experiential, and technical aspects of virtual worlds. Combining material from architectural history and history of computing, this paper situates and critically activates two threads of the “bubble" metaphor: the bubble as a closed, autonomous system severed from its surroundings, and the bubble as an ubiquitous, limitless environment. Through historical episodes from the development of Head Mounted Displays (HMDs), the paper positions current VR HDMs into a genealogy of miniaturization of actual architectural “bubbles”— from military simulation domes to wearable “micro environments”—and examines the techniques that support the illusion of these closed, autonomous worlds as limitless and ubiquitous. The paper concludes with the description of a critical design project that exposes the limits of VR's limitless worlds and the role of context (physical, architectural) in both making and breaking the VR bubble.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia19_642
id acadia19_642
authors Chua, Pamela Dychengbeng; Hui, Lee Fu
year 2019
title Compliant Laminar Assemblies
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 642-653
doi https://doi.org/10.52842/conf.acadia.2019.642
summary This paper presents an innovative approach to the design and fabrication of three-dimensional objects from single-piece flat sheets, inspired by the origami technique of twist-closing. While in origami twist-closing is merely used to stabilize a cylindrical or spherical structure, ensuring it maintains its shape, this research investigates the potential of twist-closing as a multi-functional mechanism that also activates and controls the transformation of a planar surface into a predesigned three-dimensional form. This exploration is directed towards an intended application to stiff and brittle sheet materials that are difficult to shape through other processes. The methods we have developed draw mainly upon principles of lattice kirigami and laminar reciprocal structures. These are reflected in a workflow that integrates digital form-generation and fabrication-rationalization techniques to reference and apply these principles at every stage. Significant capabilities of the developed methodology include: (1) achievement of pseudo-double-curvature with brittle, stiff sheet materials; (2) stabilization in a 3D end-state as a frameless self-contained single-element laminar reciprocal structure—essentially a compliant mechanism; and (3) an ability to pre-encode 3D assembly constraints in a 2D cutout pattern, which guides a moldless fabrication process. The paper reviews the precedent geometric techniques and principles that comprise this method of 3D surface fabrication and describes a sample deployment of the method as applied to the design of laminar modules made of high-pressure laminate (HPL).
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_899630 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002