CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 172

_id ecaadesigradi2019_567
id ecaadesigradi2019_567
authors Konieva, Kateryna, Joos, Michael Roberto, Herthogs, Pieter and Tunçer, Bige
year 2019
title Facilitating Communication in a Design Process using a Web Interface for Real-time Interaction with Grasshopper Scripts
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 731-738
doi https://doi.org/10.52842/conf.ecaade.2019.2.731
summary Urban design project development encompasses a wide range of disciplines and approaches, which often have separate goals, frameworks, and software tools. Lack of timely alignment of the disconnected expert inputs to the common vision leads to an increasing number of revisions and decreases chances for finding a compromise solution. We developed an intuitive browser-supported interface in order to incorporate various types of expert inputs and ways of representing the information to take a first step towards facilitating collaborative decision-making processes. The current paper describes the application of the developed tool on three exemplary case studies, where the expert and non-expert users' inputs are combined and analysed using Grasshopper scripts at the back-end. Pilot user studies conducted with professionals have shown that the tool has potential to facilitate collaboration across disciplines and compromise decisions, while most of the participants were still more likely to use it for communication with customers rather than the design team. It suggests that the interaction scheme of different actors with the tool needs to correspond better to the interaction of different actors during common negotiation processes. The findings suggest that the type of involvement of different stakeholders should be explored further in order to find the balance in functionality suitable for different parties.
keywords computational design; design exploration; collaborative design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_194
id caadria2019_194
authors Leitão, António, Castelo-Branco, Renata and Santos, Guilherme
year 2019
title Game of Renders - The Use of Game Engines for Architectural Visualization
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 655-664
doi https://doi.org/10.52842/conf.caadria.2019.1.655
summary Good visualization mechanisms offer architects, and their clients, a better grasp of how their designs are going to turn out when built, and the experience one might have inside the constructions. This also helps the architect orient the design in a more informed manner. However, typically used modeling tools do not offer satisfactory visualization solutions. The operations available to view and navigate through the 3D space are flawed in terms of speed, interactivity, and real-time rendering quality. To solve this issue, we propose the coupling of a portable algorithmic design framework with a Game Engine (GE) to support interactive visualization of architectural models and increase the rendering performance of the framework. We explain in detail this integration, and we evaluate this workflow by implementing a case study and comparing the performance of the GE to architectural modeling tools.
keywords Algorithmic Design; Game Engine; Interactive Visualization
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_132
id caadria2019_132
authors Zhu, Yuehan, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Synthesizing 360-Degree Live Streaming for an Erased Background to Study Renovation using Mixed Reality
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 71-80
doi https://doi.org/10.52842/conf.caadria.2019.2.071
summary In a modern society, people spend more time indoors. Indoor Environmental Quality (IEQ) and its effect on occupants' health and comfort has become an important area of study. Many existing building stocks still have huge social, economic, and environmental value. There is a high demand for stock renovation, which gives existing buildings new lives, rather than building new ones. In the early stage of the renovation design, it is essential to achieve a timely feedback process as bring together stakeholders. Introducing Mixed Reality (MR) with Diminished Reality (DR) provides users with an indirect view of the world where some objects have been made invisible which makes it easier to display indoor renovation plans. This paper describes the development of an MR system for architectural designers that integrates DR results into the MR system. Aiming to provide a stable, realistic and real-time DR results for enhancing feedback efficiency during renovation design which can help stakeholders better understand or evaluate the renovation plan.
keywords building stock renovation; mixed reality (MR); diminished reality (DR); real-time background update
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_065
id ecaadesigradi2019_065
authors Fukuda, Tomohiro, Novak, Marcos and Fujii, Hiroyuki
year 2019
title Development of Segmentation-Rendering on Virtual Reality for Training Deep-learning, Simulating Landscapes and Advanced User Experience
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 433-440
doi https://doi.org/10.52842/conf.ecaade.2019.2.433
summary Virtual reality (VR) has been suggested for various purposes in the field of architecture, engineering, and construction (AEC). This research explores new roles for VR toward the super-smart society in the near future. In particular, we propose to develop post-processing rendering, segmentation-rendering and shadow-casting rendering algorithms for novel VR expressions to enable more versatile approaches than the normal photorealistic red, green, and blue (RGB) expressions. We succeeded in applying a wide variety of VR renderings in urban-design projects after implementation. The developed system can create images in real time to train deep-learning algorithms, can also be applied to landscape analysis and contribute to advanced user experience.
keywords Super-smart society; Virtual Reality; Segmentation; Deep-learning; Landscape simulation; Shader
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_117
id ecaadesigradi2019_117
authors Kido, Daiki, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Development of a Semantic Segmentation System for Dynamic Occlusion Handling in Mixed Reality for Landscape Simulation
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 641-648
doi https://doi.org/10.52842/conf.ecaade.2019.1.641
summary The use of mixed reality (MR) for landscape simulation has attracted attention recently. MR can produce a realistic landscape simulation by merging a three-dimensional computer graphic (3DCG) model of a new building on a real space. One challenge with MR that remains to be tackled is occlusion. Properly handling occlusion is important for the understanding of the spatial relationship between physical and virtual objects. When the occlusion targets move or the target's shape changes, depth-based methods using a special camera have been applied for dynamic occlusion handling. However, these methods have a limitation of the distance to obtain depth information and are unsuitable for outdoor landscape simulation. This study focuses on a dynamic occlusion handling method for MR-based landscape simulation. We developed a real-time semantic segmentation system to perform dynamic occlusion handling. We designed this system for use in mobile devices with client-server communication for real-time semantic segmentation processing in mobile devices. Additionally, we used a normal monocular camera for practice use.
keywords Mixed Reality; Dynamic occlusion handling; Semantic segmentation; Deep learning; Landscape simulation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id acadia19_654
id acadia19_654
authors Maierhofer, Mathias; Soana, Valentina; Yablonina, Maria; Erazo, Seiichi Suzuki; Körner, Axel; Knippers, Jan; Menges, Achim
year 2019
title Self-Choreographing Network
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 654-663
doi https://doi.org/10.52842/conf.acadia.2019.654
summary The aim of this research is to challenge the prevalent separation between (digital) design and (physical) operation processes of adaptive and interactive architectural systems. The linearity of these processes implies predetermined material or kinetic behaviors, limiting performances to those that are predictable and safe. This is particularly restricting with regard to compliant or flexible material systems, which exhibit significant kinetic and thus adaptive potential, but behave in ways that are difficult to fully predict in advance. In this paper we present a hybrid approach: a real-time, interactive design and operation process that enables the (material) system to be self-aware, fully utilizing and exploring its kinetic design space for adaptive purposes. The proposed approach is based on the interaction of compliant materials with embedded robotic agents, at the interface between digital and physical. This is demonstrated in the form of a room-scale spatial architectural robot, comprising networks of linear elastic components augmented with robotic joints capable of sensing and two axis actuation. The system features both a physical instance and a corresponding digital twin that continuously augments physical performances based on simulation feedback informed by sensor data from the robotic joints. With this setup, spatial adaptation and reconfiguration can be designed in real-time, based on an openended and cyber-physical negotiation between numerical, robotic, material, and human behaviors, in the context of a physically deployed structure and its occupants.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ecaade2023_259
id ecaade2023_259
authors Sonne-Frederiksen, Povl Filip, Larsen, Niels Martin and Buthke, Jan
year 2023
title Point Cloud Segmentation for Building Reuse - Construction of digital twins in early phase building reuse projects
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 327–336
doi https://doi.org/10.52842/conf.ecaade.2023.2.327
summary Point cloud processing has come a long way in the past years. Advances in computer vision (CV) and machine learning (ML) have enabled its automated recognition and processing. However, few of those developments have made it through to the Architecture, Engineering and Construction (AEC) industry. Here, optimizing those workflows can reduce time spent on early-phase projects, which otherwise could be spent on developing innovative design solutions. Simplifying the processing of building point cloud scans makes it more accessible and therefore, usable for design, planning and decision-making. Furthermore, automated processing can also ensure that point clouds are processed consistently and accurately, reducing the potential for human error. This work is part of a larger effort to optimize early-phase design processes to promote the reuse of vacant buildings. It focuses on technical solutions to automate the reconstruction of point clouds into a digital twin as a simplified solid 3D element model. In this paper, various ML approaches, among others KPConv Thomas et al. (2019), ShapeConv Cao et al. (2021) and Mask-RCNN He et al. (2017), are compared in their ability to apply semantic as well as instance segmentation to point clouds. Further it relies on the S3DIS Armeni et al. (2017), NYU v2 Silberman et al. (2012) and Matterport Ramakrishnan et al. (2021) data sets for training. Here, the authors aim to establish a workflow that reduces the effort for users to process their point clouds and obtain object-based models. The findings of this research show that although pure point cloud-based ML models enable a greater degree of flexibility, they incur a high computational cost. We found, that using RGB-D images for classifications and segmentation simplifies the complexity of the ML model but leads to additional requirements for the data set. These can be mitigated in the initial process of capturing the building or by extracting the depth data from the point cloud.
keywords Point Clouds, Machine Learning, Segmentation, Reuse, Digital Twins
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaadesigradi2019_068
id ecaadesigradi2019_068
authors Agirbas, Asli
year 2019
title The Effect of Complex Wall Forms on the Room Acoustics - An experimental case study
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 97-102
doi https://doi.org/10.52842/conf.ecaade.2019.2.097
summary The complexity of the wall form affects the acoustics of the space. In this study, the effect of the complex form walls produced by nCloth dynamic simulation on the acoustics of an office space was investigated. In this research, reverberation time and Speech Transmission Index (STI) values of the pilot office space with one wall having complex form and the office space with all of the walls as flat were measured by acoustic simulation. As a result of the comparison, it has been found that, within speech intelligibility and reverberation time, the acoustics of the space with one wall having complex form is better than the acoustics of the space with all the walls as flat.
keywords nCloth; Acoustics; Complex forms; Modeling & simulation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_452
id caadria2019_452
authors Choi, Minkyu, Yi, Taeha, Kim, Meereh and Lee, Ji-Hyun
year 2019
title Land Price Prediction System Using Case-based Reasoning
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 767-774
doi https://doi.org/10.52842/conf.caadria.2019.1.767
summary Real estate price prediction is very complex process. Big data and machine learning technology have been introduced in many research areas, and they are also making such an attempt in the real estate market. Although real estate price forecasting studies is actively conducted, using support vector machine, machine learning algorithm, AHP method, and so on, validity and accuracy are still not reliable.In this research, we propose a Case-Based Reasoning system using regression analysis to allocate weight of attributes. This proposed system can support to predict the real estate price based on collecting public data and easily update the knowledge about real estate. Since the result shows error rate less than 30% through the experiment, this algorithm gives better performance than previous one. By this research, it is possible for help decision-makers to expect the real estate price of interested area.
keywords Artificial intelligence; Case-based reasoning; Land price prediction; Regression
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_309
id ecaadesigradi2019_309
authors Dokonal, Wolfgang and Medeiros, Marina Lima
year 2019
title I Want To Ride My Bicycle – I Want To Ride My Bike - Using low cost interfaces for Virtual reality
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 465-472
doi https://doi.org/10.52842/conf.ecaade.2019.2.465
summary The paper will give an overview of our experiments in the past years in developing different interfaces and workflows for the use of low cost Head Mounted Displays (HMD) for Virtual Reality solution. We are mainly interested in using VR tools for designers in the early phases of their design. In our opinion VR tools can help to bring back a better understanding of space and scale which have been lost a little bit in the last century with the change from analogue to digital tools. After teaching architectural and urban design for many years we can clearly say that this effect is still ongoing and it is time that we develop digital tools that try to reverses thi effect. We will then concentrate within this paper on discussing some aspects of data reduction that are important to be able to use these tools in the design process. We are also showing how we use our interfaces presenting some results of student projects for a design in Hong Kong and the strategies and methods for using VR for a ongoing work on a project about the establishment of a so called "bicycle highway" in the city of Graz in Austria.
keywords Virtual Reality; Head Mounted Displays; Low Cost Interfaces; EeZee click
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_671
id ecaadesigradi2019_671
authors Jabi, Wassim, Chatzivasileiadi, Aikaterini, Wardhana, Nicholas Mario, Lannon, Simon and Aish, Robert
year 2019
title The synergy of non-manifold topology and reinforcement learning for fire egress
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 85-94
doi https://doi.org/10.52842/conf.ecaade.2019.2.085
summary This paper illustrates the synergy of non-manifold topology (NMT) and a branch of artificial intelligence and machine learning (ML) called reinforcement learning (RL) in the context of evaluating fire egress in the early design stages. One of the important tasks in building design is to provide a reliable system for the evacuation of the users in emergency situations. Therefore, one of the motivations of this research is to provide a framework for architects and engineers to better design buildings at the conceptual design stage, regarding the necessary provisions in emergency situations. This paper presents two experiments using different state models within a simplified game-like environment for fire egress with each experiment investigating using one vs. three fire exits. The experiments provide a proof-of-concept of the effectiveness of integrating RL, graphs, and non-manifold topology within a visual data flow programming environment. The results indicate that artificial intelligence, machine learning, and RL show promise in simulating dynamic situations as in fire evacuations without the need for advanced and time-consuming simulations.
keywords Non-manifold topology; Topologic; Reinforcement Learning; Fire egress
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_143
id caadria2019_143
authors Kato, Yuri and Matsukawa, Shohei
year 2019
title Development of Generating System for Architectural Color Icons Using Google Map Platform and Tensorflow-Segmentation
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 81-90
doi https://doi.org/10.52842/conf.caadria.2019.2.081
summary In this research, the goal is to develop a generating system for architectural color icons using Google Map Platform and Tensorflow-Segmentation. There has been no case of developing a system that allows users to visualize the color tendency of buildings as architectural color icons for each building element from images of various regions. It is considered meaningful to be able to create criteria for decision making in architecture and the urban design by developing a system to clarify the current state of the architectural colors. It will contribute a rise in the consciousness of landscape conservation and be essential for the design of architectures and public objects. This paper includes the explanation of development method, use experiments, and consideration of five problems among architectural color icons creation. It is assumed that the accuracy of the present system will be better as the technology improves.
keywords Google street view; machine learning; image segmentation; color palette; color analysis
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_625
id caadria2019_625
authors Konieva, Kateryna, Knecht, Katja and Koenig, Reinhard
year 2019
title Collaborative Large-Scale Urban Design with the Focus on the Agent-Based Traffic Simulation
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 221-230
doi https://doi.org/10.52842/conf.caadria.2019.2.221
summary The better integration of the knowledge and expertise from different disciplines into urban design and the creation of more interdisciplinary and collaborative work processes to accommodate this have been under discussion in related research for decades. Nevertheless, many barriers preventing a seamless collaborative work flow still persist. In this paper we present an experiment taking place under real-world conditions, which outlines an alternative way for more efficient collaboration by focusing on the design process rather than the result and thus providing additional insights for all parties involved. A parametric design approach was chosen to help mediate between the areas of expertise involved supporting the smooth transition of data, the mutual translation of design feedback and better informed design decisions as an outcome. The case study presented in this paper exemplifies the application of the approach in a design project on masterplan scale integrating inputs from urban design, economics and mobility experts; and shows the opportunity for transforming the formerly segregated design process into a platform for transparent negotiations.
keywords parametric urban design; urban mobility; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_084
id ecaadesigradi2019_084
authors Lima, Fernando, Vallone, Luiza, Costa, Carlos Frederico and Rosa, Ashiley
year 2019
title (Para)metric Evaluation of Walkability, Diversity and Density in Low-income Neighborhoods - Using the CityMetrics toolbox
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 257-266
doi https://doi.org/10.52842/conf.ecaade.2019.3.257
summary This paper describes an implementation of the CityMetrics toolbox, in order to provide a dynamic assessment of metrics related to walkability, diversity and density in remote and low-income urban areas. The applied methodology was used in two remote neighborhoods of Juiz de Fora, which is a Brazilian city, in a case study. The objective was to identify and to evaluate a set of weaknesses in the addressed areas and to propose some improvements in the neighborhoods´ arrangements. The ultimate goal is to contribute to a better understanding of urban problems according to walkability, diversity and density, as well as to contribute to the discussion on the design and implementation of low-income real estate developments, facilitating the management of solutions in urban planning processes in this context.
keywords Urban analysis; Low-income urban areas; CityMetrics; Walkability; Diversity; Density
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_370
id ecaadesigradi2019_370
authors Sperling, David, Vizioli, Simone Helena Tanoue, Botasso, Gabriel Braulio, Tiberti, Mateus Segnini, Santana, Eduardo Felipe Zambom and Sígolo, Brianda de Oliveira Ordonho
year 2019
title Crossing Timelines - Main research topics in the histories of eCAADe and SIGraDi
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 407-416
doi https://doi.org/10.52842/conf.ecaade.2019.1.407
summary Being in tune with the joint eCAADe and SIGraDi conference, this paper systematizes and analyzes data related to the set of papers presented in the history of the conferences of both societies. Which paths traced from eCAADe and SIGraDi brought us to the "architecture in the age of the fourth industrial revolution"? This paper describes a bibliometric study focused on eCCADe and SIGraDi papers from 2003 to 2018 retrieved from CumInCad by using an open source software developed by the team for this research. The most used keywords and most cited authors, cross-citations between societies and time series about this data were synthesized, recovering part of the histories of these societies. Some similarities and differences between them are pointed out allowing to understand their past for better drawing their future.
keywords CAAD; History; Bibliometrics; Cumincad; eCAADe; SIGraDi
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id cf2019_012
id cf2019_012
authors Su, Zhouzhou
year 2019
title Optimizing Spatial Adjacency in Hospital Master Planning
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 101
summary Hospitals are one of the most complex building types. Each is comprised of a wide range of service areas and functional spaces. Spatial relationships comprise one of the most critical design criteria, to be considered early-on in the master planning stage. Proper adjacency contributes to shorter travel distances, better wayfinding, improved patient care, higher satisfaction, and reduced overall cost. However, there is a lack of research on the automatic generation of design solutions that can be applied to real-world hospital master planning projects. Moreover, given the complexity of hospital design, an optimization tool is needed that is capable of evaluating both machine- and human-generated solutions. This study proposes a rating system for evaluating existing plans and proposed designs in hospital master planning, and explores optimal design solutions through rapid computational simulations. The first stage of this work presents interviews with senior professionals in the industry to explore best practices regarding spatial relationships in hospital planning. The second stage describes an automatic analysis tool for ranking the design options generated by healthcare planners and examining optimal design solutions that feature the best spatial adjacencies. This tool was employed in a recent master planning project with over fifty programming spaces, in order to test its validity.
keywords Optimization, Spatial Adjacency, Hospital Master Planning
series CAAD Futures
email
last changed 2019/07/29 14:08

_id cf2019_037
id cf2019_037
authors Aljammaz, Mohammed ; Tsung-Hsien Wang and Chengzhi Peng
year 2019
title The influence of Saudi Arabian culture on energy use: Improving the time-use schedules in energy simulation for houses in Riyadh
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 273-289
summary Culture influences the way that people act and behave in all societies. In Saudi Arabia, culture and beliefs directly influence the lifestyle and behaviour of its citizens. Culture also impacts on energy usage of buildings, but this factor is often excluded from energy use simulations. A consequence of this is a mismatch between energy prediction and real energy usage. This paper demonstrates how a time-use data (TUD) model can be used to create a more realistic estimate of energy consumption in Saudi Arabia. TUD has been collected through a survey of 300 people living in Riyadh. The performance of the computational TUD model is cross-referenced with empirical data and the outcomes are used to discuss how the TUD model can be applied more effectively in energy use simulations.
keywords time-use data, energy simulation, energy use prediction, load schedules, occupant behaviours,
series CAAD Futures
email
last changed 2019/07/29 14:15

_id acadia19_338
id acadia19_338
authors Aviv, Dorit; Houchois, Nicholas; Meggers, Forrest
year 2019
title Thermal Reality Capture
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 338-345
doi https://doi.org/10.52842/conf.acadia.2019.338
summary Architectural surfaces constantly emit radiant heat fluxes to their surroundings, a phenomenon that is wholly dependent on their geometry and material properties. Therefore, the capacity of 3D scanning techniques to capture the geometry of building surfaces should be extended to sense and capture the surfaces’ thermal behavior in real time. We present an innovative sensor, SMART (Spherical-Motion Average Radiant Temperature Sensor), which captures the thermal characteristics of the built environment by coupling laser geometry scanning with infrared surface temperature detection. Its novelty lies in the combination of the two sensor technologies into an analytical device for radiant temperature mapping. With a sensor-based dynamic thermal-surface model, it is possible to achieve representation and control over one of the major factors affecting human comfort. The results for a case-study of a 3D thermal scan conducted in the recently completed Lewis Center for the Arts at Princeton University are compared with simulation results based on a detailed BIM model of the same space.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2019_647
id caadria2019_647
authors Camacho, Daniel, Dobbs, Tiara, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Hands On Design - Integrating haptic interaction and feedback in virtual environments for enhanced immersive experiences in design practice.
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 563-572
doi https://doi.org/10.52842/conf.caadria.2019.1.563
summary The usability of virtual reality (VR) controller interfaces are often complex and difficult for first time users. Most controllers provide minimal feedback which relegates the potential for heightened interaction and feedback within virtual experiences. This research explores how haptic technology systems partnered with VR can deliver immersive interactions between user and virtual environment (VE). This research involves the development of a haptic glove interface prototype that incorporates a force feedback and vibrotactile feedback system. It focuses on determining a workflow that communicates in real-time user interaction and environmental feedback using Unreal Engine and the produced haptic glove system. Testing and calibrating the prototype feedback system provided a baseline for developers to rationalise and improve accuracy of current real-time virtual feedback systems. The evaluation of this research in industry unfolds new technical knowledge for implementing a wider range of haptic technologies within VR. This further development would involve reviewing the usability and interaction standards for VR users in the design process.
keywords Virtual Environments; Haptic Technologies; Feedback; Interaction; Usability
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_567669 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002