CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 5 of 5

_id caadria2020_126
id caadria2020_126
authors Hsiao, Chi-Fu, Lee, Ching-Han, Chen, Chun-Yen and Chang, Teng-Wen
year 2020
title A Co-existing Interactive Approach to Digital Fabrication Workflow
doi https://doi.org/10.52842/conf.caadria.2020.1.105
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 105-114
summary In recent years, digital fabrication projects have explored how to best present complex spatial patterns. These patterns are generated by a series of function clusters and need to be separated into reasonable working sequences for workers. In the stage between design and fabrication, designers and workers typically spend considerable time communicating with each other and prototyping models in order to understand the complex geometry and joint methods of fabrication works. Through the potential of mixed reality technology, this paper proposes a novel form of co-existing interactive workflow that helps designers understand the morphing status of material composition and assists workers in achieving desired results. We establish this co-existing workflow mechanism as an interface between design and reality that includes a HoloLens display, a parametric algorithm, and gesture control identification. This paper challenges the flexibility between the virtual and reality and the interaction between precise parameters and natural gestures within an automation process.
keywords Co-existing interactive workflow; Digital fabrication; HoloLens; Digital twin; Prototype
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2020_214
id ecaade2020_214
authors Chen, Hsien and Hsu, Pei-Hsien
year 2020
title Data Mining as a User-oriented Tool in Participatory Urban Design
doi https://doi.org/10.52842/conf.ecaade.2020.1.011
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 11-18
summary In this research, we did the datamining to the POI(point-of-interest) of the city, and shows how Popular times data and NPL(Natural language processing) analysis transformed user data into new tools of participatory design of urban planning. After analyzing and visualizing the popular time data of the city POI, we showed the city users' preferred place to go at different point in time. And this will figured out that at some time, same type of POI has different using condition. Based on above mentioned, we used NPL to analyze user reviews to find out the causes and provide planning suggestions. This method can offer planner a chance to understand the experience of city user at the planning stage. Comparing to the traditional method, fetching data from the social platform could be able to get the daily preference, perspective and emotion of the users, and these data can make the result of participatory urban planning accord with the demand of the users.
keywords Popular times; NLP; Social Media; Urban Design Tool; Smart Cities
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2020_323
id ecaade2020_323
authors Nan, Mingyue, Chen, Zhenfang, Liu, Liwei and Baharlou, Ehsan
year 2020
title Hygrosensitive Kinetic Facade - A full-scale meteorosensitive shading system based on wood's self-actuated hygroscopic behavior
doi https://doi.org/10.52842/conf.ecaade.2020.1.133
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 133-142
summary This research project presents a meteorosensitive kinetic façade system that passively responds to environmental Relative Humidity (RH) fluctuation by employing wood's natural hygroscopic behavior. The global shape-shifting performance is based on the combination of a series of predetermined local hygroscopic behaviors and modified by designated surface configuration. The façade system will pack itself when the environmental RH increases and unpack itself when the environmental RH decreases. This research project entails five key stages: (1) material system research; (2) development of a computational tool for simulation and iterations; (3) development and examination of joinery system; (4) prototyping with the maple-spruce bilayer in different scales; and (5) the final development and fabrication of a mesoscale hygrosensitive façade.
keywords Building envelope system; hygroscopic behavior; adaptive architecture; bi-laminated wood material; kinetic façade
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2020_284
id ecaade2020_284
authors Tan, Rachel, Patt, Trevor, Koh, Seow Jin and Chen, Edmund
year 2020
title Exploration & Validation - Making sense of generated data in large option sets
doi https://doi.org/10.52842/conf.ecaade.2020.1.653
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 653-662
summary The project is a real-world case study where we advised our client in the selection of a viable and well-performing design from a set of computationally generated options. This process was undertaken while validating the algorithmic generative process and user-defined evaluation criteria through scrutinizing the other alternative options to ensure ample variability was considered. Optimisation algorithms were not ideal as low performing options were not visible to validate variability. We established variability by extracting the different groups of options, proving to the client that various operational behaviours were present and accounted for. In order to sieve through the noise and derive meaningful results, we employed methods to filter through thousands of options, including: k-means clustering, archetypal labelling and analysis, pareto front analysis and visualisation overlays. We present a sense-making and decision-making process that utilizes principles of genetic algorithms and analysis of multi-dimensional user-derived evaluation scores. To enable the client's confidence in the computational model, we proved the effectiveness of the generative model through communicating and visualizing the impact of different criterias. This ensured that operational needs were considered. The visualization methods we employed, including pareto front extraction and analysis eventually helped our clients to arrive at a decision.
keywords generative design; validation; multi-objective optimisation; k-means; pareto front; decision-making
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2020_298
id ecaade2020_298
authors Zhang, Ye, Zhang, Kun, Chen, KaiDi and Xu, Zhen
year 2020
title Source Material Oriented Computational Design and Robotic Construction
doi https://doi.org/10.52842/conf.ecaade.2020.2.443
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 443-452
summary The disconnection between architectural form and materiality has become an important issue in recent years. Architectural form is mainly decided by the designer, while material data, for example, the natural shape of source materials, is often treated as an afterthought which doesn't factor in decision-making directly. This study proposes a new, real-time scanning-modeling system for obtaining material information, and incorporating the data into a continuous digital chain of computational design and robotic construction. After collecting and visualizing the data, the calculation portion of the chain processes the selection of source materials and generates architectural geometry based on both human-designed rules and various shapes of materials. Finally, at the action end of the chain, an industry robot is used to fabricate the design. End-effector is designed for tightly gripping the irregular source materials. Scripts is written in Grasshopper for positioning the components and assemble them into configurations. This study also shows a pavilion developing with the continuous digital chain
keywords scanning-modeling system; source material information; computational design; robotic construction
series eCAADe
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_235471 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002