CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 6 of 6

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_170p
id acadia20_170p
authors Pawlowska, Gosia
year 2020
title Viscous Catenary
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 170-175
summary Viscous Catenary is a free-form architectural glass structure that embeds material logic in a distributed system. Multi-curved panels are joined in a ‘catenary channel glass’ assembly, expressing the inherent behavior of the material at high temperatures. Float glass will typically achieve a level of viscosity at 1200°F (650°C), formed in a kiln by draping or “slumping. This hybrid fabrication process combines low-tech hardware and modern digital technologies. Glass panels were formed in a traditional kiln over a set of interchangeable waterjet-cut steel profiles or a repositionable tooling system. Parametric design in Grasshopper was essential to establish a discrete number of unique formwork elements and subdivide the overall geometry by panel size. In this case, each panel in the system was draped over four steel profiles. The formwork encourages a specific curvature in the glass, most precisely at the locations of folding. These moments of control allow the panels to align at their folds and join in an assembly by splice-lamination. Between the folds, the material remains free to shape itself, responding to its thickness, span, time, and temperature- into an undetermined “viscous catenary.” Selectively programming the geometry allows for a degree of material agency to remain in the system. This method differs from existing curved architectural glass, which would typically be pressed into a fully deterministic mold, leaving no opportunity for emergent morphologies. A pilot installation joined using transparent silicone adhesive achieved a height of 90cm with overlapping 30cm tall panels. Laser 3-d scanning between fabrication and assembly helped evaluate the fit between adjacent panels, identifying locations that required reinforcement. More research is needed to improve tolerances and overcome limitations in the adhesive before scaling up the fabrication system. Viscous Catenary succeeds in questioning the formal and structural potential of matter-driven curved architectural glass assemblies.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id caadria2020_064
id caadria2020_064
authors Liu, Yige, Chai, Hua and Yuan*, Philip F.
year 2020
title Knitted Composites Tower - Design Research for Knitted Fabric Reinforced Composites Based on Advanced Knitting Technology
doi https://doi.org/10.52842/conf.caadria.2020.1.055
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 55-64
summary Faced with growing urbanization demands of developing countries and global shortages of construction materials, this research looks for an innovative light-weight high-performance material system for architectural applications. The knitted composites tower is a 7.2-meter, 260-kilogram and self-supported prototype that uses 2mm thick knitted fabric reinforced composites. The result is lightweight and strong. It demonstrates the design potentials of knitted fabric reinforced composites. This article takes knitted composites tower as an example to illustrate a design method for knitted fabric reinforced composites. The design method covers three aspects of structural form selection, structure arrangement, and microscopic configuration. At last, the complete fabrication and construction process will be discussed with a full-scale physical prototype.
keywords Knitting; Composites; Architectural Design
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2020_062
id caadria2020_062
authors Lu, Ming and Yuan, Philip F.
year 2020
title A New Algorithm to Get Optimized Target Plane on 6-Axis Robot For Fabrication
doi https://doi.org/10.52842/conf.caadria.2020.2.393
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 393-402
summary In usual robotic fabrication by 6 axis industrial robot such as KUKA ,ABB and other brands ,the usual robot's 4th ,5th and 6th axis is exactly converge in one point .When this type robot (pieper) is doing movement commands ,setting the degree of 4th axis close to zero is an ideal condition for motion stability ,especially for putting device which connect to tool head on 4th axis arm part.In plastic melting or others print which not cares the rotation angle about the printing direction(the printing direction means the effector's output normal direction vector, KUKA is X axis,ABB is Z axis) ,the optimization of 4th axis technology not only makes printing stable but also makes better quality for printing.The paper introduces a new algorithm to get the analytics solution.The algorithm is clear explained by mathematics and geometry ways. At the end of paper, a grasshopper custom plugin is provided ,which contains this new algorithm ,with this plugin, people can get the optimized target path plane more easily.
keywords 3D printing; brick fabrication; robotic; optimization algorithm; grasshopper plugin
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2020_359
id caadria2020_359
authors Vivanco, Tomas, Valencia, Antonia and Yuan, Philip F.
year 2020
title 4D printing: Computational Mechanical Design of Bi-dimensional 3D Printed Patterns over Tensioned Textiles for Low-energy Three-dimensional Volumes.
doi https://doi.org/10.52842/conf.caadria.2020.1.193
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 193-202
summary From the distribution of the embedded energy in materials, can be operated in order to design and produce optimized material systems with minimum use of external energy to achieve its maximum three-dimensional capacity within their mechanical constraints. This research studies the process of 3D printing bidimensional layers over a tensioned fabric to generate three-dimensional shapes. After the tension of the fabric is released, the printed pattern generates tension and compression over the textile, which conduce and distribute the internal forces generating a controlled deformation with a final form. Digital simulation of finite anticlastic shapes and parametric design under mechanical constraints of the material used to predict and compare both physical and digital forms. These allow us to evaluate and optimize the printed pattern in order to decrease the amount of used energy and material to produce a performative shape.
keywords 4d printing; material computation; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2020_177
id caadria2020_177
authors Wortmann, Thomas and Fischer, Thomas
year 2020
title Does Architectural Design Optimization Require Multiple Objectives? - A critical analysis
doi https://doi.org/10.52842/conf.caadria.2020.1.365
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 365-374
summary This paper analyzes eight assumptions that underly the general consensus in the computer-aided architectural design community that multi-objective optimization is more appropriate for and more analogous to architectural design processes than single-objective optimization. The paper discusses whether (a) architectural problems are best formulated as multi-objective optimization problems, (b) architectural design optimization is only about negotiating tradeoffs, (c) multiple objectives require multi-objective optimization, (d) Pareto fronts represent design spaces, (e) Pareto fronts require multi-objective optimization, (f) multi-objective algorithms are efficient and robust, (g) evolutionary operators make multi-objective algorithms efficient and robust and whether (h) computational cost is negligible. The paper presents practical examples of combining multiple objectives into one and concludes with recommendations for when to use single- and multi-objective optimization, respectively, and directions for future research.
keywords Multi-objective optimization; Architectural Design; Scalarization; Pareto front; Evolutionary Optimization
series CAADRIA
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_855710 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002