CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 69

_id acadia20_130
id acadia20_130
authors Newton, David
year 2020
title Anxious Landscapes
doi https://doi.org/10.52842/conf.acadia.2020.2.130
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 130-137.
summary Advances in the field of machine learning over the last decade have revolutionized artificial intelligence by providing a flexible means to build analytic, predictive, and generative models from large datasets, but the allied design disciplines have yet to apply these tools at the urban level to draw analytic insights on how the built environment might impact human health. Previous research has found numerous correlations between the built environment and both physical and mental health outcomes—suggesting that the design of our cities may have significant impacts on human health. Developing methods of analysis that can provide insight on the correlations between the built environment and human health could help the allied design disciplines shape our cities in ways that promote human health. This research addresses these issues and contributes knowledge on the use of deep learning (DL) methods for urban analysis and mental health, specifically anxiety. Mental health disorders, such as anxiety, have been estimated to account for the largest proportion of global disease burden. The methods presented allow architects, planners, and urban designers to make use of large remote-sensing datasets (e.g., satellite and aerial images) for design workflows involving analysis and generative design tasks. The research also contributes insight on correlations between anxiety prevalence and specific urban design features—providing actionable intelligence for the planning and design of the urban fabric.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id ecaade2020_390
id ecaade2020_390
authors Ahmadzadeh Bazzaz, Siamak, Fioravanti, Antonio and Coraglia, Ugo Maria
year 2020
title Depth and Distance Perceptions within Virtual Reality Environments - A Comparison between HMDs and CAVEs in Architectural Design
doi https://doi.org/10.52842/conf.ecaade.2020.1.375
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 375-382
summary The Perceptions of Depth and Distance are considered as two of the most important factors in Virtual Reality Environments, as these environments inevitability impact the perception of the virtual content compared with the one of real world. Many studies on depth and distance perceptions in a virtual environment exist. Most of them were conducted using Head-Mounted Displays (HMDs) and less with large screen displays such as those of Cave Automatic Virtual Environments (CAVEs). In this paper, we make a comparison between the different aspects of perception in the architectural environment between CAVE systems and HMD. This paper clarifies the Virtual Object as an entity in a VE and also the pros and cons of using CAVEs and HMDs are explained. Eventually, just a first survey of the planned case study of the artificial port of the Trajan emperor near Fiumicino has been done as for COVID-19 an on-field experimentation could not have been performed.
keywords Visual Perception; Depth and Distance Perception; Virtual Reality; HMD; CAVE; Trajan’s port
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_228
id acadia20_228
authors Alawadhi, Mohammad; Yan, Wei
year 2020
title BIM Hyperreality
doi https://doi.org/10.52842/conf.acadia.2020.1.228
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 228-236.
summary Deep learning is expected to offer new opportunities and a new paradigm for the field of architecture. One such opportunity is teaching neural networks to visually understand architectural elements from the built environment. However, the availability of large training datasets is one of the biggest limitations of neural networks. Also, the vast majority of training data for visual recognition tasks is annotated by humans. In order to resolve this bottleneck, we present a concept of a hybrid system—using both building information modeling (BIM) and hyperrealistic (photorealistic) rendering—to synthesize datasets for training a neural network for building object recognition in photos. For generating our training dataset, BIMrAI, we used an existing BIM model and a corresponding photorealistically rendered model of the same building. We created methods for using renderings to train a deep learning model, trained a generative adversarial network (GAN) model using these methods, and tested the output model on real-world photos. For the specific case study presented in this paper, our results show that a neural network trained with synthetic data (i.e., photorealistic renderings and BIM-based semantic labels) can be used to identify building objects from photos without using photos in the training data. Future work can enhance the presented methods using available BIM models and renderings for more generalized mapping and description of photographed built environments.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia23_v1_136
id acadia23_v1_136
authors Alima, Natalia
year 2023
title InterspeciesForms
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 136-143.
summary The hybridization of architectural, biological and robotic agencies Situated in the field of architectural biodesign, InterspeciesForms explores a closer relationship between the fungus Pleurotus ostreatus and the designer in the creation of form. The intention of hybridizing mycelia’s agency of growth with architectural design intention is to generate novel, non-indexical crossbred designed outcomes that evolve preconceived notions of architectural form. Mycelium are threadlike fibrous root systems made up of hyphae, that form the vegetative part of a fungus (Jones 2020). Known as the hackers of the wood wide web (Simard 1997) mycelia form complex symbiotic relationships with other species that inhabit our earth. Michael Lim states “Fungi redefine resourcefulness, collaboration, resilience and symbiosis” (Lim 2022, p. 14). When wandering around the forest to connect with other species or searching for food, fungi form elaborate and entangled networks by spreading their hyphal tips. Shown in Figure 1, this living labyrinth results in the aesthetic formation of an intricate web. Due to the organisms ability to determine the most effective direction of growth, communicate with its surrounding ecosystem, and connect with other species, fungi are indeed an intelligent species with a unique aesthetic that must not be ignored. In drawing on these concepts, I refer to the organism’s ability to search for, tangle, and digest its surroundings as ‘mycelia agency of growth’. It is this specific behavioral characteristic that is the focus of this research, with which I, as the architect, set out to co-create and hybridize with.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2020_193
id ecaade2020_193
authors Alymani, Abdulrahman, Jabi, Wassim and Corcoran, Padraig
year 2020
title Machine Learning Methods for Clustering Architectural Precedents - Classifying the relationship between building and ground
doi https://doi.org/10.52842/conf.ecaade.2020.1.643
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 643-652
summary Every time an object is built, it creates a relationship with the ground. Architects have a full responsibility to design the building by taking the ground into consideration. In the field of architecture, using data mining to identify any unusual patterns or emergent architectural trends is a nascent area that has yet to be fully explored. Clustering techniques are an essential tool in this process for organising large datasets. In this paper, we propose a novel proof-of-concept workflow that enables a machine learning computer system to cluster aspects of an architect's building design style with respect to how the buildings in question relate to the ground. The experimental workflow in this paper consists of two stages. In the first stage, we use a database system to collect, organise and store several significant architectural precedents. The second stage examines the most well-known unsupervised learning algorithm clustering techniques which are: K-Means, K-Modes and Gaussian Mixture Models. Our experiments demonstrated that the K-means clustering algorithm method achieves a level of accuracy that is higher than other clustering methods. This research points to the potential of AI in helping designers identify the typological and topological characteristics of architectural solutions and place them within the most relevant architectural canons
keywords Machine Learning; Building and Ground Relationship; Clustering Algorithms; K-means cluster Algorithms
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2020_133
id ecaade2020_133
authors Andrade Zandavali, Barbara, Paul Anderson, Joshua and Patel, Chetan
year 2020
title Embodied Learning through Fabrication Aware Design
doi https://doi.org/10.52842/conf.ecaade.2020.2.145
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 145-154
summary The contemporary culture of geometry-driven design stands as consequence of an institutionalised segregation between the fields of architecture, structure and construction. In turn, digital design methods that are both material and fabrication aware from the outset create space for uncertainty and the potential for embodied learning. Following this principle, this paper summarises the outcomes of a workshop developed to investigate the contribution of fabrication aware design methods in the production of a masonry block using both analogue and digital manufacturing. Students were to develop and investigate a design, through assembly techniques and configurations orientated around manual hot wire cutting, robotic tooling and three-dimensional printing. Outcomes were manufactured and compared regarding work precision, production time, material efficiency, cost and scalability. The analysis indicated that the most accurate results yielded from the robotic tooling system, and simultaneously exhibited the most efficient use of time, while the three-dimensional printer generated the least material waste, due to the nature of additive production. Fabrication aware design and comparative analysis enabled students to make more informed decisions while the use of rapid prototyping facilitated a relationship between digitalization and materiality allowing for a space in which uncertainty and reflection could be fostered. Reinforcing that fabrication aware design methods can unify the field and provide guidance to designers over multi-lateral aspects of a project.
keywords Fabrication-Aware Design; Rapid Prototyping; Embodiment
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2020_499
id ecaade2020_499
authors Ashour, Ziad and Yan, Wei
year 2020
title BIM-Powered Augmented Reality for Advancing Human-Building Interaction
doi https://doi.org/10.52842/conf.ecaade.2020.1.169
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 169-178
summary The shift from computer-aided design (CAD) to building information modeling (BIM) has made the adoption of augmented reality (AR) promising in the field of architecture, engineering and construction. Despite the potential of AR in this field, the industry and professionals have still not fully adopted it due to registration and tracking limitations and visual occlusions in dynamic environments. We propose our first prototype (BIMxAR), which utilizes existing buildings' semantically rich BIM models and contextually aligns geometrical and non-geometrical information with the physical buildings. The proposed prototype aims to solve registration and tracking issues in dynamic environments by utilizing tracking and motion sensors already available in many mobile phones and tablets. The experiment results indicate that the system can support BIM and physical building registration in outdoor and part of indoor environments, but cannot maintain accurate alignment indoor when relying only on a device's motion sensors. Therefore, additional computer vision and AI (deep learning) functions need to be integrated into the system to enhance AR model registration in the future.
keywords Augmented Reality; BIM; BIM-enabled AR; GPS; Human-Building Interactions; Education
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2020_233
id caadria2020_233
authors Bar-Sinai, Karen Lee, Shaked, Tom and Sprecher, Aaron
year 2020
title Sensibility at Large - A Post-Anthropocene Vision for Architectural Landscape Editing
doi https://doi.org/10.52842/conf.caadria.2020.2.223
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 223-232
summary The irreversible imprint of humankind on Earth calls for revisiting current construction practices. This paper forwards a vision for post-Anthropocene, large-scale, architectural, and landscape construction. This vision relates to transforming natural terrains into architecture using on-site robotic tools and enabling greater sustainability through increased sensibility. Despite advancements in large-scale digital fabrication in architecture, the field still mainly focuses on the production of objects. The proposed vision aims to advance theory and practice towards territorial scale digital fabrication of environments. Three notions are proposed: material-aware construction, large-scale customization, and integrated fabrication. These aspects are demonstrated through research and teaching projects. Using scale models, they explore the deployment of robotic tools toward reforming, stabilizing, and reconstituting soil in an architectural context. Together, they propose a theoretical ground for in situ digital fabrication for a new era, relinking architecture to the terrains upon which it is formed.
keywords Digital Fabrication; territorial scale; on-site robotics; geomaterials; computational design
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia20_208p
id acadia20_208p
authors Bernier-Lavigne, Samuel
year 2020
title Object-Field
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 208-213
summary This project aims to continue the correlative study between two fundamental entities of digital architecture: the object and the field. Following periods of experimentations on the ""field"" (materialization of flows of data through animation), the ""field of objects"" (parametricism), the ""object"" (OOO), we investigate the last possible interaction remaining: the ""object-field,"" by merging the formal characteristics of the object with the structural flow of its internal field. This investigation is achieved by exploring the high-resolution features of 3d printing in the design of autonomous architectural objects expressing materiality through topological optimization. The objects are generated by an iterative process of volumetric reduction, resulting in an ensemble of monoliths. Four of them are selected and analyzed through topological optimization in order to extract their internal fields. Next, a series of high-resolution algorithmic systems translate the structural information into 3d printed materiality. Of the four object-fields, one materializes, close to identical, the result of the optimization, giving the keystone to understanding the others. The second one expresses the structural flow through a 1mm voxel system, informed by the optimization, having the effect of stiffening the structure where it is needed and thus generating a new topography on the object. The last two explore the blur that this high-resolution can paradoxically create, with complete integration of the optimal structure in a transparent monolith. This is achieved by a vertex displacement algorithm, and the dissolution of the formal data of the monolith and the structural flows, through the mereological assembly of simple linear elements. For each object-field, a series of drawings was developed using specific algorithmic procedures derived from the peculiarities of their complex geometry. The drawings aim to catalyze coherence throughout the project, where similarities, hitherto kept apart by the multiple materialities, begin to dialogue.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_226p
id acadia20_226p
authors Borhani, Alireza; Kalantar, Negar
year 2020
title Interlocking Shell
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 226-231
summary With a specific focus on robotic stereotomy, two full-scale vault structures were designed to explore the potential of self-standing building structures made from interlocking components; these structures were fabricated with a track-mounted industrial-scale robot (ABB 4600). To respond to the economic affordances of robotic subtractive cutting, all uniquely shaped structural modules came from one block of material (48"" x96"" x36""). Through the discretization of curvilinear tessellated vault surfaces into a limited number of uniquely shaped modules with embedded form-fitting connectors, the project exhibited the potential for programming a robot to cut ruled surfaces to produce freeform shells of any kind. Representing nearly zero-waste construction, the developed technology can potentially be used for self-supporting emergency shelters and field medical clinics, facilitating easy shipping and speedy assembly. Without using any scaffolding, a few people can erect and dismantle an entire mortar-free structure at the construction site. The disassembled structure occupies minimal space in storage, and the structure’s pieces can be transported to the site in stacks. Robot milling is a common technique for removing material to transform a block into a sculptural shape. Unlike milling techniques that produce significant waste, we used a hotwire that sliced through a Geofoam block to create almost no waste pieces. Since the front side of every module was concurrent with the backside of the next one, such a decision allowed to operate just one cut per front side of each module. In this case, by having three cuts, two neighboring modules were fabricated. The form of the structure and its modules emerged from the constraints of the fabrication technique, aiming to establish a feedback loop between geometry, material, simulation, and tool. By cross-referencing geometric data across Grasshopper, a customized tessellation script was made to breakdown a vault into its modular ruled surface constructs.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2020_071
id caadria2020_071
authors Carroll, Stan
year 2020
title Managing Risk in a Research-Based Practice as Projects Scale To Construction:A Case Study
doi https://doi.org/10.52842/conf.caadria.2020.1.065
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 65-74
summary Research-based architectural practices often experiment along the bleeding edge of the new frontier of design and include developing methodologies unfamiliar to the construction industry. Successfully implementing the resulting research methodologies to an architectural scale requires careful consideration of risk management within a Design-Bid-Build construction project. How a firm manages the risk when scaling a research conclusion to an architectural scale is an essential aspect of assuring the success of the project. These considerations are particularly acute within firms whose research involves convoluted geometry. In the field of doubly-curved geometric material systems, the level of precision required to manage professional risk is commensurate with the level of geometric complexity. Adopting the mindset of a Medieval master mason's process within the context of twenty-first-century materials and processes can be a method toward a successful project. By performing well thought-out transfer procedures of digital data, resolving the fundamental challenges of fabrication, and including structural analysis as a part of the early design phases, experimental architectural expressions can be realized without extra financial risk to the designer.
keywords Risk Management; Research-Based Practice; Complex Geometry; Digital Fabrication; Computational Design
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2020_668
id sigradi2020_668
authors Cenci, Laline Elisangela; Pires, Júlio César Pinheiro; Vieira, Stéphane Soares
year 2020
title Measuring the experience of algorithmic thought digital analogue design in architecture teaching
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 668-675
summary Due to constant technological developments, society’s priorities and cultural perspectives have changed, requiring a redefinition of experiences in education. In the field of architecture teaching, the transition from CAD (Computer-Aided Design) to the design systems in other digital media, such as the parametric design, can be observed. This article aims to demonstrate two analog-digital experiences in an architecture school. The methodology consisted of dividing the activities into three stages: analog, logical, and digital. The results are described through quantitative and qualitative data acquired in the experiences. The data allowed toreflect on the strategies adopted, lessons learned, and futures challenges.
keywords Teaching-learning, Parametric Design, Design Script, Dynamo Studio
series SIGraDi
email
last changed 2021/07/16 11:52

_id caadria2020_118
id caadria2020_118
authors Chow, Ka Lok and van Ameijde, Jeroen
year 2020
title Generative Housing Communities - Design of Participatory Spaces in Public Housing Using Network Configurational Theories
doi https://doi.org/10.52842/conf.caadria.2020.2.283
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 283-292
summary This research-by-design project explores how public housing estates can accommodate social diversity and the appropriation of shared spaces, using qualitative and quantitative analysis of circulation networks. A case study housing estate in Hong Kong was analysed through field observations of movements and activities and as a site for the speculative re-design of shared spaces. Generative design processes were developed based on several parameters, including shortest paths, visibility integration and connectivity integration (Hillier & Hanson, 1984). Additional tools were developed to combine these techniques with optimisation of sunlight access, maximisation of views for residential towers and the provision of permeability of ground level building volumes. The project demonstrates how flexibility of use and social engagement can constitute a platform for self-organisation, similar to Jane Jacobs' notion of vibrant streets leading to active and progressive communities. It shows how computational design and configurational theories can promote a bottom-up approach for generating new types of residential environments that support participatory and diverse communities, rather than a conventional top-down approach that is perceived to embody mechanisms of social regimentation.
keywords Urban Planning and Design; Network Configuration; Community Space and Social Interaction; Hong Kong Public Housing
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia20_436
id acadia20_436
authors Chun Hin Fong, Jacky; Long Wun Poon, Adabelle; Sze Ngan, Wing; Hei Ho, Chung; Goepel, Garvin; Crolla, Kristof
year 2020
title Augmenting Craft with Mixed Reality
doi https://doi.org/10.52842/conf.acadia.2020.1.436
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 436-444.
summary This paper discusses novel methods for and advantages of integrating augmented reality (AR) and photogrammetry in hand clay-sculpting workflows. These techniques permit nontrained users to achieve higher precision during the sculpting process by holographically overlaying instructions from digital 3D source geometry on top of the sculpting material. By employing alternative notational systems in design implementation methods, the research positions itself in a postdigital context aimed at humanizing digital technologies. Throughout history, devices have been developed to increase production, such as Henry Dexter’s 1842 “Apparatus for Sculptors” for marble sculpting. Extrapolating from this, the workflow presented in this paper uses AR to overlay extracted information from 3D models directly onto the sculptor’s field of vision. This information can then become an AR-driven guidance system that assists the sculptor. Using the Microsoft HoloLens, holographic instructions are introduced in the production sequence, connecting the analog sculpture fabrication directly with a digital environment, thus augmenting the craftspeople’s agency. A series of AR-aided sculpting methods were developed and tested in a demonstrator case study project that created a small-scale clay copy of Henry Moore’s Sheep Piece (1971–1972). This paper demonstrates how user-friendly software and hardware tools have lowered the threshold for end users to develop new methods that straightforwardly facilitate and improve their crafts’ effectiveness and agency. This shows that the fusion of computational design technology and AR visualization technology can innovate a specific craft’s design and production workflow, opening the door for further application developments in more architecture-specific fabrication contexts.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_478
id sigradi2020_478
authors Costa, Phillipe Cunha da
year 2020
title Grey Boxes to Control? Cybernetic Surveillance in Urban Design
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 478-483
summary This paper is a critical essay on the role of intelligent systems in the 21st century and their usage in city optimization that planners and urban designers objectified control. Promulgated in the 2000s in urban design as a form of control, cybernetics became a useful tool and, today, with metropolitan epidemics, transportation, and information fluxes, this field became more visible in the expansion of parametric actions to control and surveil. This evidence had a clear paradox between the determinism of a transparent city and behaviorism of a black-box design, which is commonly sold – and controlled – as a smart city.
keywords Grey Box, Surveillance System, Box Theory, Smart City, Cybernetics
series SIGraDi
email
last changed 2021/07/16 11:49

_id caadria2020_237
id caadria2020_237
authors Dai, Sida and Kleiss, Michael
year 2020
title Shape Grammars in Computational Generative Design for Origami
doi https://doi.org/10.52842/conf.caadria.2020.2.557
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 557-566
summary This article presents a method to introduce the concept of computer-generated design into origami design through shape grammar. In the previous origami design method, rigorous and complicated mathematical calculations takes a lot of energy from the designers. This research simplifies the design process of crease pattern into the generating and applying shape grammar rules. As a blank space in the current design field, the generative design of origami greatly expands the possibility of origami design and also provides the basis for the further use of computer technology in origami design
keywords Shape Grammars; Generative Design; Origami
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2020_141
id caadria2020_141
authors Dezen-Kempter, Eloisa, Mezencio, Davi Lopes, Miranda, Erica De Matos, De Sá, Danilo Pico and Dias, Ulisses
year 2020
title Towards a Digital Twin for Heritage Interpretation - from HBIM to AR visualization
doi https://doi.org/10.52842/conf.caadria.2020.2.183
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 183-191
summary Data-driven Building Information Modelling (BIM) technology has brought new tools to efficiently deal with the tension between the real and the virtual environments in the field of Architecture, Engineering, Construction, and Operation (AECO). For historic assets, BIM represents a paradigm shift, enabling better decision-making about preventive maintenance, heritage management, and interpretation. The potential application of the Historic-BIM is creating a digital twin of the asset. This paper deals with the concept of a virtual environment for the consolidation and dissemination of heritage information. Here we show the process of creating interactive virtual environments for the Pampulha Modern Ensemble designed by Oscar Niemeyer in the 1940s, and the workflow to their dissemination in an AR visualization APP. Our results demonstrate the APP feasibility to the Pampulha's building interpretation.
keywords Augmented Reality (AR); Historic Building Information Modelling (HBIM); Heritage Interpretation; Modern Architecture
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2020_713
id sigradi2020_713
authors Faria, Paula Lemos Vilaça
year 2020
title Do humans dream of android houses? Science fiction architecture as a symbol of rise and fall of Modernism
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 713-719
summary This research project is about valuing the interdisciplinarity of architecture, using sources from different areas, from fiction and from the imaginary, but which are consistent with the discussions of production and criticism of current architecture. The article is based on the analysis of two short stories, one by the author Ray Bradbury and the other by the author PhilipK. Dick as guiding the parallels made with the historiographic theoretical field and the current context, in order to relate the themes and leave gaps for future discussions and possible future alternatives through architecture.
keywords Architecture, Science Fiction, Technology, Literature
series SIGraDi
email
last changed 2021/07/16 11:52

_id sigradi2021_354
id sigradi2021_354
authors Ferreira, Julio César and Ferreira, Claudio Lima
year 2021
title Emotion, Cognition, and The Practice of Teaching Architectural Design
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 435–450
summary From the view of concepts related to emotions and feelings treated in the field of cognitive - behavioral neuroscience and its relation with the teaching-learning processes, this paper searches to analyze educational strategies that can contribute to the field of emergency synchronous remote teaching architectural design. Methodologically, the bibliographical research of exploratory nature is related to an experience of investigation about pedagogical methods of teaching architectural design in a postgraduate course, developed, in the second semester of 2020, during the period of emergency synchronous remote teaching due to the SARS-Cov-2 coronavirus.We seek to comprehend the benefits and limits of remote emergency teaching practices of architectural design, looking at factors such as emotions and feelings as important mediation tools on teaching-learning processes.
keywords Neurociencias, Fatores emocionais, Cogniçao em projeto, Ensino-aprendizado de projeto de arquitetura, Pensamento complexo.
series SIGraDi
email
last changed 2022/05/23 12:11

For more results click below:

this is page 0show page 1show page 2show page 3HOMELOGIN (you are user _anon_406969 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002