CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 7 of 7

_id ecaade2020_542
id ecaade2020_542
authors Brown, Andre, Liu, Yisi, Webb, Nicholas and Knight, Mike
year 2020
title Interpreting and exploiting narrative as a sketch design generator for application in VE
doi https://doi.org/10.52842/conf.ecaade.2020.1.449
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 449-458
summary The research in this paper focusses on how a narrative text can be the generator of an architectural drawing, or other architectural representation, such as an Architectural Virtual Environment. The drawn physical sketch has traditionally played that role. A particular approach to narrative has been important for some notable architects and their architecture. Ian Ritchie (2014), for instance, celebrates the use of poetry to describe the essential spirit of a scheme before any drawing is done. The work in the paper here describes the proposition to capture such narrative text in a systematic and structured way. We describe foundational work on how the captured narrative text has been translated into a contemporary, computer-mediated, design development environment. Different narrative accounts recalling a now demolished house form the focus case study. This case study is the vehicle through which the initial principles establishing how best to move from narrative to virtual representation are established and tested.
keywords virtual environment; narrative; sketch; virtual reality
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2020_054
id ecaade2020_054
authors Liu, Yuezhong, Stouffs, Rudi and Theng, Yin Leng
year 2020
title Development of Synthetic Patient Data to Support Urban Planning for Public Health
doi https://doi.org/10.52842/conf.ecaade.2020.1.315
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 315-322
summary Healthy urban planning is about planning for people, considering the needs of people and communities during the planning process and the implications of decisions for human health and well-being. However, access to real electronic health record (EHR) data is hindered by legal, privacy, security, and intellectual property restrictions. The lack of freely distributable health records has become an important issue for healthy urban planning. This research develops a source of synthetic electronic health records based on reviewed and meta-analysed evidence on the association between built environmental characteristics related to lifestyle chronic diseases. This research uses Type 2 Diabetes Mellitus (T2DM) as health for proof of concept. The results roughly approximate age and gender groups at diagnosis curves (R2 = 0.876), and correctly generated more than 90% of patients for the all age group in Singapore. As a summary, these pilot validated synthetic records could be used as a risk-free (no privacy & security issues) data for supporting healthy urban planning.
keywords synthetic patient; urban planning; computer simulation; Type 2 Diabetes Mellitus; GIS
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2020_323
id ecaade2020_323
authors Nan, Mingyue, Chen, Zhenfang, Liu, Liwei and Baharlou, Ehsan
year 2020
title Hygrosensitive Kinetic Facade - A full-scale meteorosensitive shading system based on wood's self-actuated hygroscopic behavior
doi https://doi.org/10.52842/conf.ecaade.2020.1.133
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 133-142
summary This research project presents a meteorosensitive kinetic façade system that passively responds to environmental Relative Humidity (RH) fluctuation by employing wood's natural hygroscopic behavior. The global shape-shifting performance is based on the combination of a series of predetermined local hygroscopic behaviors and modified by designated surface configuration. The façade system will pack itself when the environmental RH increases and unpack itself when the environmental RH decreases. This research project entails five key stages: (1) material system research; (2) development of a computational tool for simulation and iterations; (3) development and examination of joinery system; (4) prototyping with the maple-spruce bilayer in different scales; and (5) the final development and fabrication of a mesoscale hygrosensitive façade.
keywords Building envelope system; hygroscopic behavior; adaptive architecture; bi-laminated wood material; kinetic façade
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2020_023
id caadria2020_023
authors Liu, Chenjun
year 2020
title Double Loops Parametric Design of Surface Steel Structure Based on Performance and Fabrication
doi https://doi.org/10.52842/conf.caadria.2020.1.023
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 23-33
summary In intelligent epoch, automatic parameter design systems reduce the requirements of the skills needed to create objects. The creator only needs to select the most perceptual primitive form to automatically generate the data system that iterates to the most efficient solution. In this paper, a method of combining performance driven optimization with parametric design is proposed. The iterative evolution is under the control of performance loop and fabrication loop, which makes all the data provided by parametric design in a practical project available for exploring structural analysis and digital prefabrication. Related to the case of surface steel structure, parametric optimization is not limited to a set of shape types or design problems, it would be based on the generality and built-in characteristics of parametric modelling environment in the most convenient and flexible way. (Rolvink et al. 2010)And the given parameters would be fed back on geometric structure, performance indicators, and design variables, so that designers can easily and effectively coordinate and try different solutions. The system transforms the generated data into machine language so that the process including design, analysis, manufacturing, and construction can maintain the orthogonal persistence of the data.
keywords parametric design; component prefabrication; curved steel structure; performance driven
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2020_064
id caadria2020_064
authors Liu, Yige, Chai, Hua and Yuan*, Philip F.
year 2020
title Knitted Composites Tower - Design Research for Knitted Fabric Reinforced Composites Based on Advanced Knitting Technology
doi https://doi.org/10.52842/conf.caadria.2020.1.055
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 55-64
summary Faced with growing urbanization demands of developing countries and global shortages of construction materials, this research looks for an innovative light-weight high-performance material system for architectural applications. The knitted composites tower is a 7.2-meter, 260-kilogram and self-supported prototype that uses 2mm thick knitted fabric reinforced composites. The result is lightweight and strong. It demonstrates the design potentials of knitted fabric reinforced composites. This article takes knitted composites tower as an example to illustrate a design method for knitted fabric reinforced composites. The design method covers three aspects of structural form selection, structure arrangement, and microscopic configuration. At last, the complete fabrication and construction process will be discussed with a full-scale physical prototype.
keywords Knitting; Composites; Architectural Design
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2020_054
id caadria2020_054
authors Shen, Jiaqi, Liu, Chuan, Ren, Yue and Zheng, Hao
year 2020
title Machine Learning Assisted Urban Filling
doi https://doi.org/10.52842/conf.caadria.2020.2.679
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 679-688
summary When drawing urban scale plans, designers should always define the position and the shape of each building. This process usually costs much time in the early design stage when the condition of a city has not been finally determined. Thus the designers spend a lot of time working forward and backward drawing sketches for different characteristics of cities. Meanwhile, machine learning, as a decision-making tool, has been widely used in many fields. Generative Adversarial Network (GAN) is a model frame in machine learning, specially designed to learn and generate image data. Therefore, this research aims to apply GAN in creating urban design plans, helping designers automatically generate the predicted details of buildings configuration with a given condition of cities. Through the machine learning of image pairs, the result shows the relationship between the site conditions (roads, green lands, and rivers) and the configuration of buildings. This automatic design tool can help release the heavy load of urban designers in the early design stage, quickly providing a preview of design solutions for urban design tasks. The analysis of different machine learning models trained by the data from different cities inspires urban designers with design strategies and features in distinct conditions.
keywords Artificial Intelligence; Urban Design; Generative Adversarial Networks; Machine Learning
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2020_193
id caadria2020_193
authors Wang, Sihan, Liu, Chi, Zhang, Guo Li, Luo, Qi Huan, Xu, Weishun and Raspall, Felix
year 2020
title Digital Planting - Fabrication of Integrated Concrete Green Wall via Additive Manufacturing
doi https://doi.org/10.52842/conf.caadria.2020.1.145
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 145-151
summary Green walls are becoming a symbol of modern architecture representing sustainability and aesthetics. However, the fabrication of wall components that can nurture the growth of plants and other living creatures requires components to locate soil and other substrates, a controlled rugosity for plants and moss to grip, and conduits to distribute water and nutrients. This is normally done by adding extra attachments to the façade. In this paper, we introduce a digital approach to design and produce architectural components that can integrate green wall's functional requirements into the wall itself. Such components are fabricated via Additive Manufacturing (AM) extrusion with the assists of robotic arms.
keywords Green Wall; Additive Manufacturing; Robotic Fabrication; Clay Printing
series CAADRIA
email
last changed 2022/06/07 07:58

No more hits.

HOMELOGIN (you are user _anon_630368 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002