CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 11 of 11

_id ijac202018404
id ijac202018404
authors Paul Nicholas, Gabriella Rossi, Ella Williams, Michael Bennett and Tim Schork
year 2020
title Integrating real-time multi-resolution scanning and machine learning for Conformal Robotic 3D Printing in Architecture
source International Journal of Architectural Computing vol. 18 - no. 4, 371–384
summary Robotic 3D printing applications are rapidly growing in architecture, where they enable the introduction of new materials and bespoke geometries. However, current approaches remain limited to printing on top of a flat build bed. This limits robotic 3D printing’s impact as a sustainable technology: opportunities to customize or enhance existing elements, or to utilize complex material behaviour are missed. This paper addresses the potentials of conformal 3D printing and presents a novel and robust workflow for printing onto unknown and arbitrarily shaped 3D substrates. The workflow combines dual-resolution Robotic Scanning, Neural Network prediction and printing of PETG plastic. This integrated approach offers the advantage of responding directly to unknown geometries through automated performance design customization. This paper firstly contextualizes the work within the current state of the art of conformal printing. We then describe our methodology and the design experiment we have used to test it. We lastly describe the key findings, potentials and limitations of the work, as well as the next steps in this research.
keywords Conformal printing, robotic fabrication, 3D scanning, neural networks, industry 4.0
series journal
email
last changed 2021/06/03 23:29

_id acadia20_218
id acadia20_218
authors Rossi, Gabriella; Nicholas, Paul
year 2020
title Encoded Images
doi https://doi.org/10.52842/conf.acadia.2020.1.218
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 218-227.
summary In this paper, we explore conditional generative adversarial networks (cGANs) as a new way of bridging the gap between design and analysis in contemporary architectural practice. By substituting analytical finite element analysis (FEA) modeling with cGAN predictions during the iterative design phase, we develop novel workflows that support iterative computational design and digital fabrication processes in new ways. This paper reports two case studies of increasing complexity that utilize cGANs for structural analysis. Central to both experiments is the representation of information within the data set the cGAN is trained on. We contribute a prototypical representational technique to encode multiple layers of geometric and performative description into false color images, which we then use to train a Pix2Pix neural network architecture on entirely digital generated data sets as a proxy for the performance of physically fabricated elements. The paper describes the representational workflow and reports the process and results of training and their integration into the design experiments. Last, we identify potentials and limits of this approach within the design processes.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac202018402
id ijac202018402
authors Mette Ramsgaard Thomsen, Paul Nicholas, Martin Tamke, Sebastian Gatz, Yuliya Sinke and Gabriella Rossi
year 2020
title Towards machine learning for architectural fabrication in the age of industry 4.0
source International Journal of Architectural Computing vol. 18 - no. 4, 335–352
summary Machine Learning (ML) is opening new perspectives for architectural fabrication, as it holds the potential for the profession to shortcut the currently tedious and costly setup of digital integrated design to fabrication workflows and make these more adaptable. To establish and alter these workflows rapidly becomes a main concern with the advent of Industry 4.0 in building industry. In this article we present two projects, which presents how ML can lead to radical changes in generation of fabrication data and linking these directly to design intent. We investigate two different moments of implementation: linking performance to the generation of fabrication data (KnitCone) and integrating the ability to adapt fabrication data in realtime as response to fabrication processes (Neural-Network Steered Robotic Fabrication). Together they examine how models can employ design information as training data and be trained to by step processes within the digital chain. We detail the advantages and limitations of each experiment, we reflect on core questions and perspectives of ML for architectural fabrication: the nature of data to be used, the capacity of these algorithms to encode complexity and generalize results, their task-specificness versus their adaptability and the tradeoffs of using them with respect to conventional explicit analytical modelling.
keywords Machine learning, architectural design, industry 4.0, digital fabrication, robotic fabrication, CNC knit, neural networks
series journal
email
last changed 2021/06/03 23:29

_id ecaade2020_264
id ecaade2020_264
authors Nicholas, Paul, Rossi, Gabriella, Papadopoulou, Iliana, Tamke, Martin, Aalund Brandt, Nikolaj and Jessen Hansen, Leif
year 2020
title Precision Partner - Enhancing GFRC craftsmanship with industry 4.0 factory-floor feedback
doi https://doi.org/10.52842/conf.ecaade.2020.2.631
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 631-640
summary This paper presents a novel human-machine collaborative approach to automatic quality-control of Glass-Fiber Reinforced Concrete (GFRC) molds directly on the factory floor. The framework introduces Industry 4.0 technologies to enhance the ability of skilled craftsmen to make molds through the provision of horizontal feedback regarding dimensional tolerances. Where digital tools are seldom used in the fabrication of GFRC molds, and expert craftsmen are not digital experts, our implementation of automated registration and feedback processes enables craftsmen to be integrated into and gain value from the digital production chain. In this paper, we describe the in-progress framework, Precision Partner, which connects 3d scanning and point cloud registration of geometrically complex and varied one off elements to factory floor dimensional feedback. We firstly introduce the production context of GFRC molds, as well as industry standards for production feedback. We then detail our methods, and report the results of a case study that tests the framework on the case of a balcony element.
keywords 3d Scanning; GFRC; Feedback; Automation; Human in the loop; Digital Chain
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia20_536
id acadia20_536
authors Bruscia, Nicholas
year 2020
title Structural Papercuts
doi https://doi.org/10.52842/conf.acadia.2020.1.536
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 536-545.
summary This paper reviews and explores the topological properties of surface disclinations applied to elastic sheets and suggests how these properties may be reproduced at an architectural scale. A variety of surface disclinations and their translation from digital and physical formfinding processes to thin plywood prototypes are discussed. Initial phases of this research have been focused on the bending behavior of various sheet disclination types and have studied a variety of computational form-finding techniques that demonstrate this behavior in an architectural workflow. Several large-scale prototypes of architectural disclinations were produced to test the scalability of topologically induced surface curvature, discussed within the context of bending-active plate structures.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_060
id caadria2020_060
authors Lesna, Joanna Maria and Nicholas, Paul
year 2020
title De gradus - Programming heterogeneous performance of functionally graded bio-polymers for degradable agricultural shading structures.
doi https://doi.org/10.52842/conf.caadria.2020.2.383
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 383-392
summary This paper presents an holistic approach to the digital design and fabrication of fungi- and algae-based biopolymers, based on studies and simulations of material properties and post-fabrication behavior. The research is motivated by the problem of plastic waste, the need to create more sustainable manufacturing processes, and the opportunity for material composition and organization to be informed by performance, leading to homogenous, complex and integral architectural elements for temporary architecture of agricultural shading systems. The paper details design and specification methods for functionally graded biopolymer panels, as well as fabrication methods through the making of prototypical built elements. The research details parallel trajectories of: material exploration made out of renewable and biodegradable resources available and abundant in every habitat on the earth; advancement in tools and methods for in-situ robotic additive manufacturing of viscous bio-polymers; development of the strategy for functional grading of the material properties to optimize site specificity and material distribution, and to reduce building material waste. It presents comparative material characterizations, an integrated simulation-based approach to support the process of programming localized performance, and architectural application tested via full-scale prototypes.
keywords functionally graded material; bio-polymer; programmable matter; robotic farbication; multiscale modeling
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2020_542
id ecaade2020_542
authors Brown, Andre, Liu, Yisi, Webb, Nicholas and Knight, Mike
year 2020
title Interpreting and exploiting narrative as a sketch design generator for application in VE
doi https://doi.org/10.52842/conf.ecaade.2020.1.449
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 449-458
summary The research in this paper focusses on how a narrative text can be the generator of an architectural drawing, or other architectural representation, such as an Architectural Virtual Environment. The drawn physical sketch has traditionally played that role. A particular approach to narrative has been important for some notable architects and their architecture. Ian Ritchie (2014), for instance, celebrates the use of poetry to describe the essential spirit of a scheme before any drawing is done. The work in the paper here describes the proposition to capture such narrative text in a systematic and structured way. We describe foundational work on how the captured narrative text has been translated into a contemporary, computer-mediated, design development environment. Different narrative accounts recalling a now demolished house form the focus case study. This case study is the vehicle through which the initial principles establishing how best to move from narrative to virtual representation are established and tested.
keywords virtual environment; narrative; sketch; virtual reality
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2020_348
id ecaade2020_348
authors Chiujdea, Ruxandra Stefania and Nicholas, Paul
year 2020
title Design and 3D Printing Methodologies for Cellulose-based Composite Materials
doi https://doi.org/10.52842/conf.ecaade.2020.1.547
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 547-554
summary A growing awareness of architecture's environmental responsibility is encouraging a shift from an industrial age to an ecological one. This shift emphasises a new era of materiality, characterised by a special focus on bio-polymers. The potential of these materials is to address unsustainable modes of resource consumption, and to rebalance our relationship with the natural. However, bio-polymers also challenge current design and manufacturing practices, which rely on highly manufactured and standardized materials. In this paper, we present material experiments and digital design and fabrication methodologies for cellulose-based composites, to create porous biodegradable panels. Cellulose, the most abundant bio-polymer on Earth, has potential for differentiated architectural applications. A key limit is the critical role of additive fabrication methods for larger scale elements, which are a subject of ongoing research. In this paper, we describe how controlling the interdependent relationship between the additive manufacturing process and the material grading enables the manipulation of the material's performance, and the related control aspects including printing parameters such as speed, nozzle diameter, air flow, etc., as well as tool path trajectory. Our design exploration responds to the emerging fabrication methods to achieve different levels of porosity and depth which define the geometry of a panel.
keywords cellulose-based composite material; additive manufacturing; material grading; digital fabrication; spatial print trajectory; porous panels
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2020_421
id caadria2020_421
authors Peters, Brady, Hoban, Nicholas and Kramer, Krystal
year 2020
title Sustainable Sonic Environments - The Robotic Fabrication of Mass Timber Acoustic Surfaces
doi https://doi.org/10.52842/conf.caadria.2020.2.453
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 453-462
summary This research proposes that mass timber panels can not only enable a new type of architecture that is sustainable, but that also sounds better. As mass timber construction often exposes the wood structure, and these panels are carefully constructed in factory settings, these panels have the potential to be built so that the acoustically absorptive, reflective, or sound scattering acoustic properties of surfaces can be integrated into the constructive logic and architectural aesthetic of the building. This paper specifically investigates the potentials of the sound scattering performance of cross laminated timber (CLT) panels. Through design, simulation, and prototyping various surface designs are investigated.
keywords Architectural Acoustics; Robotic Prototyping; Sound Scattering; Acoustic Simulation; Mass Timber
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2020_137
id ecaade2020_137
authors Webb, Nicholas, Hillson, James, Peterson, John Robert, Buchanan, Alexandrina and Duffy, Sarah
year 2020
title Documentation and Analysis of a Medieval Tracing Floor Using Photogrammetry, Reflectance Transformation Imaging and Laser Scanning
doi https://doi.org/10.52842/conf.ecaade.2020.2.209
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 209-218
summary The fifteenth-century tracing floor at Wells cathedral is an extremely rare survival in European architecture. Located in the roof space above the north porch, this plaster floor was used as a drawing and design tool by medieval masons, the lines and arcs inscribed into its surface enabling them to explore their ideas on a 1:1 scale. Many of these marks are difficult to see with the naked eye and existing studies of its geometry are reliant on manual retracing of its lines. This paper showcases the potential of digital surveying and analytical tools, namely photogrammetry, reflectance transformation imaging (RTI) and laser scanning, to extend our knowledge of the tracing floor and its use in the cathedral. It begins by comparing the recording processes and outputs of all three techniques, followed by a description of the digital retracing of the tracing floor to highlight lines and arcs on the surface. Finally, it compares these with digital surveys of the architecture of the cathedral cloister.
keywords digital heritage; photogrammetry; reflectance transformation imaging; laser scanning; medieval design
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2020_395
id ecaade2020_395
authors Xian, Ziju, Hoban, Nicholas and Peters, Brady
year 2020
title Spatial Timber Assembly - Robotically Fabricated Reciprocal Frame Wall
doi https://doi.org/10.52842/conf.ecaade.2020.2.403
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 403-412
summary Though highly robust and economical, traditional lamella and reciprocal structural systems cannot adapt to surfaces with complex double curvature; as the timber members are standardized with no variation. Recent research has explored the use of computation for design, structural optimization, and use of robotic systems for the automated fabrication of timber joints. The disconnection between fabrication and assembly makes the construction of non-uniform double-curved reciprocal frames challenging, due to the required precise placement of discrete members with compound angle butt joints. This project investigates the use of robotic fabrication to cut and assemble a timber reciprocal frame assembly. A computational model was created to generate the double-curved reciprocal frame geometry. Within this computational framework, joint analysis, fabrication, and assembly were monitored and adjusted to meet limiting factors. An industrial robot was implemented as a bridge between the computational model and the physical construction. This paper presents a number of novel computational and robotic fabrication techniques in designing, cutting, and positioning. These techniques were explored through the robotic fabrication and assembly of a demonstrator - a double-curved reciprocal frame wall.
keywords Robotic Fabrication; Reciprocal Frame; Prototyping
series eCAADe
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_234645 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002