CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 14 of 14

_id cdrf2019_199
id cdrf2019_199
authors Ana Herruzo and Nikita Pashenkov
year 2020
title Collection to Creation: Playfully Interpreting the Classics with Contemporary Tools
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_19
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary This paper details an experimental project developed in an academic and pedagogical environment, aiming to bring together visual arts and computer science coursework in the creation of an interactive installation for a live event at The J. Paul Getty Museum. The result incorporates interactive visuals based on the user’s movements and facial expressions, accompanied by synthetic texts generated using machine learning algorithms trained on the museum’s art collection. Special focus is paid to how advances in computing such as Deep Learning and Natural Language Processing can contribute to deeper engagement with users and add new layers of interactivity.
series cdrf
email
last changed 2022/09/29 07:51

_id ecaade2020_133
id ecaade2020_133
authors Andrade Zandavali, Barbara, Paul Anderson, Joshua and Patel, Chetan
year 2020
title Embodied Learning through Fabrication Aware Design
doi https://doi.org/10.52842/conf.ecaade.2020.2.145
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 145-154
summary The contemporary culture of geometry-driven design stands as consequence of an institutionalised segregation between the fields of architecture, structure and construction. In turn, digital design methods that are both material and fabrication aware from the outset create space for uncertainty and the potential for embodied learning. Following this principle, this paper summarises the outcomes of a workshop developed to investigate the contribution of fabrication aware design methods in the production of a masonry block using both analogue and digital manufacturing. Students were to develop and investigate a design, through assembly techniques and configurations orientated around manual hot wire cutting, robotic tooling and three-dimensional printing. Outcomes were manufactured and compared regarding work precision, production time, material efficiency, cost and scalability. The analysis indicated that the most accurate results yielded from the robotic tooling system, and simultaneously exhibited the most efficient use of time, while the three-dimensional printer generated the least material waste, due to the nature of additive production. Fabrication aware design and comparative analysis enabled students to make more informed decisions while the use of rapid prototyping facilitated a relationship between digitalization and materiality allowing for a space in which uncertainty and reflection could be fostered. Reinforcing that fabrication aware design methods can unify the field and provide guidance to designers over multi-lateral aspects of a project.
keywords Fabrication-Aware Design; Rapid Prototyping; Embodiment
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2020_348
id ecaade2020_348
authors Chiujdea, Ruxandra Stefania and Nicholas, Paul
year 2020
title Design and 3D Printing Methodologies for Cellulose-based Composite Materials
doi https://doi.org/10.52842/conf.ecaade.2020.1.547
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 547-554
summary A growing awareness of architecture's environmental responsibility is encouraging a shift from an industrial age to an ecological one. This shift emphasises a new era of materiality, characterised by a special focus on bio-polymers. The potential of these materials is to address unsustainable modes of resource consumption, and to rebalance our relationship with the natural. However, bio-polymers also challenge current design and manufacturing practices, which rely on highly manufactured and standardized materials. In this paper, we present material experiments and digital design and fabrication methodologies for cellulose-based composites, to create porous biodegradable panels. Cellulose, the most abundant bio-polymer on Earth, has potential for differentiated architectural applications. A key limit is the critical role of additive fabrication methods for larger scale elements, which are a subject of ongoing research. In this paper, we describe how controlling the interdependent relationship between the additive manufacturing process and the material grading enables the manipulation of the material's performance, and the related control aspects including printing parameters such as speed, nozzle diameter, air flow, etc., as well as tool path trajectory. Our design exploration responds to the emerging fabrication methods to achieve different levels of porosity and depth which define the geometry of a panel.
keywords cellulose-based composite material; additive manufacturing; material grading; digital fabrication; spatial print trajectory; porous panels
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2020_254
id sigradi2020_254
authors Costa, Eduardo; Shepherd, Paul; Velasco, Rodrigo; Hudson, Roland
year 2020
title Automating Concrete Construction: Sustainable social housing in Colombia
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 254-259
summary The construction industry is a major source of carbon, and the main culprit is concrete. In addition, productivity for the construction sector is poor, and concrete construction in particular is labour intensive, slow, and costly. This paper introduces ongoing research addressing these two fundamental issues. First, by developing an integrated framework for automating manufacturing of reinforced concrete building elements through computation and robotic technology, and second by adapting such framework to the specific technical and socio- economic contexts of Colombian construction, specifically for social housing.
keywords Non-prismatic concrete elements, Reinforced concrete, Flexible formwork, Parametric modelling, Construction in Colombia
series SIGraDi
email
last changed 2021/07/16 11:48

_id caadria2020_427
id caadria2020_427
authors Holzer, Dominik and Loh, Paul
year 2020
title Digital Stupefaction - Seduction and Complacency of Digital Techniques
doi https://doi.org/10.52842/conf.caadria.2020.2.351
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 351-360
summary Digital design techniques have saturated architectural discourse in the past forty-plus years from modelling to simulation and fabrication. Digital or Computational Design now forms part of the standard architectural curriculum, promising efficiency in modelling, design, advancing site analysis and ease of fabrication. Alongside these promises, we as educators begin to witness a new level of complacency governed by the use of the digital tools; we call this Digital Stupefaction. With the increasing 'smartness' of digital tools, what is the risk of shifting away from the focus of what students should/could know, and what information they embody? Is it still relevant to be able to draw on intrinsic background knowledge, or tacit knowledge in action, when everything can be analysed and verified on the fly (or even pre-selected via AI)? How can educators respond to these challenges by adjusting the way they deliver subjects associated with digital design?
keywords Digital; Education; Critical; Pedagogy; Knowledge
series CAADRIA
email
last changed 2022/06/07 07:50

_id ijac202018106
id ijac202018106
authors Koronaki, Antiopi; Paul Shepherd and Mark Evernden
year 2020
title Rationalization of freeform space-frame structures: Reducing variability in the joints
source International Journal of Architectural Computing vol. 18 - no. 1, 84-99
summary In recent years, the application of space-frame structures on large-scale freeform designs has significantly increased due to their lightweight configuration and the freedom of design they offer. However, this has introduced a level of complexity into their construction, as doubly curved designs require non-uniform configurations. This article proposes a novel computational workflow that reduces the construction complexity of freeform space-frame structures, by minimizing variability in their joints. Space-frame joints are evaluated according to their geometry and clustered for production in compliance with the tolerance requirements of the selected fabrication process. This provides a direct insight into the level of customization required and the associated construction complexity. A subsequent geometry optimization of the space-frame’s depth minimizes the number of different joint groups required. The variables of the optimization are defined in relation to the structure’s curvature, providing a direct link between the structure’s geometry and the optimization process. Through the application of a control surface, the dimensionality of the design space is drastically reduced, rendering this method applicable to large-scale projects. A case study of an existing structure of complex geometry is presented, and this method achieves a significant reduction in the construction complexity in a robust and computationally efficient way.
keywords Geometry optimization, space-frame structures, joint, fabrication process, construction, cost, clustering, control surface
series journal
email
last changed 2020/11/02 13:34

_id caadria2020_060
id caadria2020_060
authors Lesna, Joanna Maria and Nicholas, Paul
year 2020
title De gradus - Programming heterogeneous performance of functionally graded bio-polymers for degradable agricultural shading structures.
doi https://doi.org/10.52842/conf.caadria.2020.2.383
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 383-392
summary This paper presents an holistic approach to the digital design and fabrication of fungi- and algae-based biopolymers, based on studies and simulations of material properties and post-fabrication behavior. The research is motivated by the problem of plastic waste, the need to create more sustainable manufacturing processes, and the opportunity for material composition and organization to be informed by performance, leading to homogenous, complex and integral architectural elements for temporary architecture of agricultural shading systems. The paper details design and specification methods for functionally graded biopolymer panels, as well as fabrication methods through the making of prototypical built elements. The research details parallel trajectories of: material exploration made out of renewable and biodegradable resources available and abundant in every habitat on the earth; advancement in tools and methods for in-situ robotic additive manufacturing of viscous bio-polymers; development of the strategy for functional grading of the material properties to optimize site specificity and material distribution, and to reduce building material waste. It presents comparative material characterizations, an integrated simulation-based approach to support the process of programming localized performance, and architectural application tested via full-scale prototypes.
keywords functionally graded material; bio-polymer; programmable matter; robotic farbication; multiscale modeling
series CAADRIA
email
last changed 2022/06/07 07:52

_id ijac202018402
id ijac202018402
authors Mette Ramsgaard Thomsen, Paul Nicholas, Martin Tamke, Sebastian Gatz, Yuliya Sinke and Gabriella Rossi
year 2020
title Towards machine learning for architectural fabrication in the age of industry 4.0
source International Journal of Architectural Computing vol. 18 - no. 4, 335–352
summary Machine Learning (ML) is opening new perspectives for architectural fabrication, as it holds the potential for the profession to shortcut the currently tedious and costly setup of digital integrated design to fabrication workflows and make these more adaptable. To establish and alter these workflows rapidly becomes a main concern with the advent of Industry 4.0 in building industry. In this article we present two projects, which presents how ML can lead to radical changes in generation of fabrication data and linking these directly to design intent. We investigate two different moments of implementation: linking performance to the generation of fabrication data (KnitCone) and integrating the ability to adapt fabrication data in realtime as response to fabrication processes (Neural-Network Steered Robotic Fabrication). Together they examine how models can employ design information as training data and be trained to by step processes within the digital chain. We detail the advantages and limitations of each experiment, we reflect on core questions and perspectives of ML for architectural fabrication: the nature of data to be used, the capacity of these algorithms to encode complexity and generalize results, their task-specificness versus their adaptability and the tradeoffs of using them with respect to conventional explicit analytical modelling.
keywords Machine learning, architectural design, industry 4.0, digital fabrication, robotic fabrication, CNC knit, neural networks
series journal
email
last changed 2021/06/03 23:29

_id ecaade2020_264
id ecaade2020_264
authors Nicholas, Paul, Rossi, Gabriella, Papadopoulou, Iliana, Tamke, Martin, Aalund Brandt, Nikolaj and Jessen Hansen, Leif
year 2020
title Precision Partner - Enhancing GFRC craftsmanship with industry 4.0 factory-floor feedback
doi https://doi.org/10.52842/conf.ecaade.2020.2.631
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 631-640
summary This paper presents a novel human-machine collaborative approach to automatic quality-control of Glass-Fiber Reinforced Concrete (GFRC) molds directly on the factory floor. The framework introduces Industry 4.0 technologies to enhance the ability of skilled craftsmen to make molds through the provision of horizontal feedback regarding dimensional tolerances. Where digital tools are seldom used in the fabrication of GFRC molds, and expert craftsmen are not digital experts, our implementation of automated registration and feedback processes enables craftsmen to be integrated into and gain value from the digital production chain. In this paper, we describe the in-progress framework, Precision Partner, which connects 3d scanning and point cloud registration of geometrically complex and varied one off elements to factory floor dimensional feedback. We firstly introduce the production context of GFRC molds, as well as industry standards for production feedback. We then detail our methods, and report the results of a case study that tests the framework on the case of a balcony element.
keywords 3d Scanning; GFRC; Feedback; Automation; Human in the loop; Digital Chain
series eCAADe
email
last changed 2022/06/07 07:58

_id cdrf2019_280
id cdrf2019_280
authors Paul Loh, Yuhan Hou, Chun Tung Tse, Jiaqi Mo, and David Leggett
year 2020
title Freeform Volumetric Fabrication Using Actuated Robotic Hot Wire Cutter
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_26
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary This paper discusses the design, fabrication and operational workflow of a novel hot-wire cutter used as an end effector for a robotic arm. Typically, hot wire cutters used a linear cutting element which results in ruled surfaces geometry. While several researchers have examined the use of hot wire cutter with cooperative robotic arms to create non-ruled surface geometry, this research explores the use of an actuated hot wire cutter manoeuver by a single robotic arm to produce similar form. The paper outlines the machine making process and its workflow resulting in a 1:1 scale prototype. The paper concludes by examining how the novel tool can be applied to an urban stage design. The research set up a fabrication procedure that has the potential to be deployed as an on-site fabrication methodology.
series cdrf
email
last changed 2022/09/29 07:51

_id ijac202018404
id ijac202018404
authors Paul Nicholas, Gabriella Rossi, Ella Williams, Michael Bennett and Tim Schork
year 2020
title Integrating real-time multi-resolution scanning and machine learning for Conformal Robotic 3D Printing in Architecture
source International Journal of Architectural Computing vol. 18 - no. 4, 371–384
summary Robotic 3D printing applications are rapidly growing in architecture, where they enable the introduction of new materials and bespoke geometries. However, current approaches remain limited to printing on top of a flat build bed. This limits robotic 3D printing’s impact as a sustainable technology: opportunities to customize or enhance existing elements, or to utilize complex material behaviour are missed. This paper addresses the potentials of conformal 3D printing and presents a novel and robust workflow for printing onto unknown and arbitrarily shaped 3D substrates. The workflow combines dual-resolution Robotic Scanning, Neural Network prediction and printing of PETG plastic. This integrated approach offers the advantage of responding directly to unknown geometries through automated performance design customization. This paper firstly contextualizes the work within the current state of the art of conformal printing. We then describe our methodology and the design experiment we have used to test it. We lastly describe the key findings, potentials and limitations of the work, as well as the next steps in this research.
keywords Conformal printing, robotic fabrication, 3D scanning, neural networks, industry 4.0
series journal
email
last changed 2021/06/03 23:29

_id caadria2020_089
id caadria2020_089
authors Poinet, Paul, Stefanescu, Dimitrie and Papadonikolaki, Eleni
year 2020
title Web-Based Distributed Design to Fabrication Workflows
doi https://doi.org/10.52842/conf.caadria.2020.1.095
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 95-104
summary As architectural design projects tend to tackle larger scales and become more complex, multiple involved actors often need to work from different remote locations. This increased complexity impacts the digital design-to-fabrication workflows that become more challenging, as each actor involved in a project operates on different software environments and needs to access precise fabrication data of specific design components. Consequently, managing and keeping track of design changes throughout the design-to-fabrication workflow still remains a challenge for all actors involved. This paper discusses how this challenge can be tackled through both Speckle, a complete open source data platform for the Architecture, Engineering and Construction (AEC), and SpeckleViz, a custom web-based interactive Activity Network Diagram (AND) built upon Speckle. SpeckleViz continuously maps data transfers across design and building processes, enabling the end-users to explore, interact and get a better understanding of the constantly evolving digital design workflows. This is demonstrated in this paper through a computational design and digital fabrication workshop conducted at the Centro de Estudios Superiores de Diseño de Monterrey (CEDIM), during which an integrative, file-less collaborative design workflow has been set through Speckle, connecting different Rhino-Grasshopper sessions acting as discrete computational design pipelines.
keywords Collaborative Workflows; Distributed Design; Activity Network Diagram; Data Flow
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia20_218
id acadia20_218
authors Rossi, Gabriella; Nicholas, Paul
year 2020
title Encoded Images
doi https://doi.org/10.52842/conf.acadia.2020.1.218
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 218-227.
summary In this paper, we explore conditional generative adversarial networks (cGANs) as a new way of bridging the gap between design and analysis in contemporary architectural practice. By substituting analytical finite element analysis (FEA) modeling with cGAN predictions during the iterative design phase, we develop novel workflows that support iterative computational design and digital fabrication processes in new ways. This paper reports two case studies of increasing complexity that utilize cGANs for structural analysis. Central to both experiments is the representation of information within the data set the cGAN is trained on. We contribute a prototypical representational technique to encode multiple layers of geometric and performative description into false color images, which we then use to train a Pix2Pix neural network architecture on entirely digital generated data sets as a proxy for the performance of physically fabricated elements. The paper describes the representational workflow and reports the process and results of training and their integration into the design experiments. Last, we identify potentials and limits of this approach within the design processes.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_360
id acadia20_360
authors Schneider, Maxie; Fransén Waldhör, Ebba; Denz, Paul-Rouven; Vongsingha, Puttakhun; Suwannapruk, Natchai; Sauer, Christiane
year 2020
title Adaptive Textile Facades Through the Integration of Shape Memory Alloy
doi https://doi.org/10.52842/conf.acadia.2020.1.360
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 360-370.
summary The R&D project ADAPTEX showcases a material-driven and computationally informed design approach to adaptive textile facades through the integration of shape memory alloy (SMA) as an actuator. The results exhibit thermally responsive and self-sufficient sun-shading solutions with innovative design potential that enhance the energy performance of the built environment. With regard to climate targets, an environmentally viable concept is proposed that reduces the energy required for climatization, is lightweight, and can function as a refurbishment system. Two concepts—ADAPTEX Wave and ADAPTEX Mesh—are being developed to be tested as full-scale demonstrators for facade deployment by an interdisciplinary team from architecture, textile design, facade engineering, and material research. The two concepts follow a material-driven, low-complexity design strategy and differ in type of kinetic movement, textile construction, integration of the SMA, reset force, and scale of permeability. In this paper, we describe the computational design process and tools to develop and design current and future prototypes and demonstrators, providing insights on the challenges and potentials of developing textiles with integrated shape memory alloys for architectural applications.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

No more hits.

HOMELOGIN (you are user _anon_227951 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002