CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 3 of 3

_id caadria2020_233
id caadria2020_233
authors Bar-Sinai, Karen Lee, Shaked, Tom and Sprecher, Aaron
year 2020
title Sensibility at Large - A Post-Anthropocene Vision for Architectural Landscape Editing
doi https://doi.org/10.52842/conf.caadria.2020.2.223
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 223-232
summary The irreversible imprint of humankind on Earth calls for revisiting current construction practices. This paper forwards a vision for post-Anthropocene, large-scale, architectural, and landscape construction. This vision relates to transforming natural terrains into architecture using on-site robotic tools and enabling greater sustainability through increased sensibility. Despite advancements in large-scale digital fabrication in architecture, the field still mainly focuses on the production of objects. The proposed vision aims to advance theory and practice towards territorial scale digital fabrication of environments. Three notions are proposed: material-aware construction, large-scale customization, and integrated fabrication. These aspects are demonstrated through research and teaching projects. Using scale models, they explore the deployment of robotic tools toward reforming, stabilizing, and reconstituting soil in an architectural context. Together, they propose a theoretical ground for in situ digital fabrication for a new era, relinking architecture to the terrains upon which it is formed.
keywords Digital Fabrication; territorial scale; on-site robotics; geomaterials; computational design
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2020_230
id caadria2020_230
authors Shaked, Tom, Bar-Sinai, Karen Lee and Sprecher, Aaron
year 2020
title Autonomous in Craft - Embedding Human Sensibility in Architectural Robotic Fabrication
doi https://doi.org/10.52842/conf.caadria.2020.2.243
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 243-252
summary Recent advancements in robotics allow architects to explore the coupling of manual craft with digital tools. However, current methods remain limited in addressing high-skill, custom tasks involving material uncertainty. In this context, the paper presents three capacities that stand at the core of performing autonomous robotic craft. These include documenting the movements and gestures of local stone craftsmen; augmenting the robotic system with a custom end effector and a sensor toolkit; and enhancing the fabrication process through a protocol that translates the documented data to an autonomous process. The three capacities aid in preserving local crafts, expanding robotic tools with new capabilities, and enabling architectural fabrication with a broader range of materials.
keywords Robotic fabrication; simulation; feedback-based automated manufacturing; digital craft; stone carving
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2020_075
id ecaade2020_075
authors Yoffe, Hatzav, Plaut, Pnina, Fried, Shaked and J. Grobman, Yasha
year 2020
title Enriching the Parametric Vocabulary of Urban Landscapes - A framework for computer-aided performance evaluation of sustainable development design models
doi https://doi.org/10.52842/conf.ecaade.2020.1.047
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 47-56
summary Three decades past since the adoption of sustainability rating systems (SRS) by the Architecture Engineering and Construction industry (AEC) as standard methods for sustainable development evaluation. Nevertheless, these methods still suffer from a low adoption and implementation rate due to their manual, labor-intensive, expert dependent, and time-demanding process. The partial success of urban development evaluation puts forth the question: Are there faster, more accurate quantitative methods for advancing sustainability evaluation? The paper describes a prototype workflow for evaluating the performance of urban landscape design in a single digital workflow, based on ecological key indicator criteria. Grasshopper and Python parametric platforms were used to translate the criteria into quantitative spatial metrics. This study demonstrates optimized biomass measurement in two urban scales in line with the SITES rating system for landscape development: (XS) site development and (XL) neighborhood scale. The measured biomass density is used as a positive indication of ecosystem services capacity in the development site. The framework's quantitative workflow contributes to additional spatial feedbacks compared to the original numeric-based rating system method. Through these, composition and configuration metrics such as ecological connectivity, edge contrast, and patch shape can be visualized, measured, and compared. The metrics, which indicate performance characteristics of the design, generate new opportunities for data-rich sustainability evaluations of urban landscapes, using a single computer-aided workflow.
keywords Sustainable development; Urban landscape
series eCAADe
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_973048 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002