CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 12 of 12

_id acadia20_360
id acadia20_360
authors Schneider, Maxie; Fransén Waldhör, Ebba; Denz, Paul-Rouven; Vongsingha, Puttakhun; Suwannapruk, Natchai; Sauer, Christiane
year 2020
title Adaptive Textile Facades Through the Integration of Shape Memory Alloy
doi https://doi.org/10.52842/conf.acadia.2020.1.360
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 360-370.
summary The R&D project ADAPTEX showcases a material-driven and computationally informed design approach to adaptive textile facades through the integration of shape memory alloy (SMA) as an actuator. The results exhibit thermally responsive and self-sufficient sun-shading solutions with innovative design potential that enhance the energy performance of the built environment. With regard to climate targets, an environmentally viable concept is proposed that reduces the energy required for climatization, is lightweight, and can function as a refurbishment system. Two concepts—ADAPTEX Wave and ADAPTEX Mesh—are being developed to be tested as full-scale demonstrators for facade deployment by an interdisciplinary team from architecture, textile design, facade engineering, and material research. The two concepts follow a material-driven, low-complexity design strategy and differ in type of kinetic movement, textile construction, integration of the SMA, reset force, and scale of permeability. In this paper, we describe the computational design process and tools to develop and design current and future prototypes and demonstrators, providing insights on the challenges and potentials of developing textiles with integrated shape memory alloys for architectural applications.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_208
id acadia20_208
authors Zheng, Hao; Wang, Xinyu; Qi, Zehua; Sun, Shixuan; Akbarzadeh, Masoud
year 2020
title Generating and Optimizing a Funicular Arch Floor Structure
doi https://doi.org/10.52842/conf.acadia.2020.2.208
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 208-217.
summary In this paper, we propose a geometry-based generative design method to generate and optimize a floor structure with funicular building members. This method challenges the antiquated column system, which has been used for more than a century. By inputting the floor plan with the positions of columns, designers can generate a variety of funicular supporting structures, expanding the choice of floor structure designs beyond simply columns and beams and encouraging the creation of architectural spaces with more diverse design elements. We further apply machine learning techniques (artificial neural networks) to evaluate and optimize the structural performance and constructability of the funicular structure, thus finding the optimal solutions within the almost infinite solution space. To achieve this, a machine learning model is trained and used as a fast evaluator to help the evolutionary algorithm find the optimal designs. This interdisciplinary method combines computer science and structural design, providing flexible design choices for generating floor structures.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_604
id acadia20_604
authors Craney, Ryan; Adel, Arash
year 2020
title Engrained Performance
doi https://doi.org/10.52842/conf.acadia.2020.1.604
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 604-613.
summary This project presents a novel fabrication-aware and performance-driven computational design method that facilitates the design and robotic fabrication of a wood shingle facade system. The research merges computational design, robotic fabrication, and building facade optimization into a seamless digital design-to-fabrication workflow. The research encompasses the following topics: (1) a constructive system integrating the rules, constraints, and dependencies of conventional shingle facades; (2) an integrative computational design method incorporating material, robotic fabrication, and assembly constraints; (3) an optimization method for facade sun shading; and (4) a digital design-to-fabrication workflow informing the robotic fabrication procedures. The result is an integrative computational design method for the design of a wood shingle facade. Environmental analysis and multi-objective optimization are coupled with a variable facade surface to produce several optimal design solutions that conform to the constraints of the robotic setup and constructive system. When applied to architectural design, the proposed integrative computational design method demonstrates significant improvements in facade sun-shading performance while also linking the digital design to the fabrication process.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_38
id acadia20_38
authors Mueller, Stephen
year 2020
title Irradiated Shade
doi https://doi.org/10.52842/conf.acadia.2020.1.038
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 38-46.
summary The paper details computational mapping and modeling techniques from an ongoing design research project titled Irradiated Shade, which endeavors to develop and calibrate a computational toolset to uncover, represent, and design for the unseen dangers of ultraviolet radiation, a growing yet underexplored threat to cities, buildings, and the bodies that inhabit them. While increased shade in public spaces has been advocated as a strategy for “mitigation [of] climate change” (Kapelos and Patterson 2014), it is not a panacea to the threat. Even in apparent shade, the body is still exposed to harmful, ambient, or “scattered” UVB radiation. The study region is a binational metroplex, a territory in which significant atmospheric pollution and the effects of climate change (reduced cloud cover and more “still days” of stagnant air) amplify the “scatter” of ultraviolet wavelengths and UV exposure within shade, which exacerbates urban conditions of shade as an “index of inequality” (Bloch 2019) and threatens public health. Exposure to indirect radiation correlates to the amount of sky visible from the position of an observer (Gies and Mackay 2004). The overall size of a shade structure, as well as the design of openings along its sides, can greatly impact the UV protection factor (UPF) (Turnbull and Parisi 2005). Shade, therefore, is more complex than ubiquitous urban and architectural “sun” and “shadow studies” are capable of representing, as such analyses flatten the three-dimensional nature of radiation exposure and are “blind” to the ultraviolet spectrum. “Safe shade” is contingent on the nuances of the surrounding built environment, and designers must be empowered to observe and respond to a wider context than current representational tools allow.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_160
id acadia20_160
authors Sun, Yunjuan; Jiang, Lei; Zheng, Hao
year 2020
title A Machine Learning Method of Predicting Behavior Vitality Using Open Source Data
doi https://doi.org/10.52842/conf.acadia.2020.2.160
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 160-168.
summary The growing popularity of machine learning has provided new opportunities to predict certain behaviors precisely by utilizing big data. In this research, we use an image-based neural network to explore the relationship between the built environment and the activity of bicyclists in that environment. The generative model can produce heat maps that can be used to predict quantitatively the cycling and running activity in a given area, and then use urban design to enhance urban vitality in that area. In the machine learning model, the input image is a plan view of the built environment, and the output image is a heat map showing certain activities in the corresponding area. After it is trained, the model yields output (the predicted heat map) at an acceptable level of accuracy. The heat map shows the levels and conditions of the subject activity in different sections of the built environment. Thus, the predicted results can help identify where regional vitality can be improved. Using this method, designers can not only predict the behavioral heat distribution but also examine the different interactions between behaviors and aspects of the environment. The extent to which factors might influence behaviors is also studied by generating a heat map of the modified plan. In addition to the potential applications of this approach, its limitations and areas for improvement are also proposed.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_484
id ecaade2020_484
authors Aguilar, Pavel, Borunda, Luis and Pardal, Cristina
year 2020
title Additive Manufacturing of Variable-Density Ceramics, Photocatalytic and Filtering Slats
doi https://doi.org/10.52842/conf.ecaade.2020.1.097
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 97-106
summary Additive Manufacturing (AM) offers the potential development of novel architectural applications of ceramic building components that can be engineered at the level of material to the extent of designing its performance and properties by density variations. This research presents a computational method and fabrication technique emulating complex material behavior via AM of intricate geometries and presents components with photocatalytic and climatic properties. It proposes an innovative application of AM of ceramic components in architecture to explore potential bioclimatic and antipollution performative use. Lattices are defined and manufactured with density variation gradients by tracing rectilinear clay deposition toolpaths that induce porosity intended for fluid filtering and to maximize sun exposure. The design method for photocatalytic, particle filtration and evaporative cooling local characterization introduced by complex patterning elements in architectural envelope slat components processed with radiation analysis influenced design are validated by simulation and experimental testing on specimens manufactured by paste extrusion.
keywords Ceramic 3D Printing; Paste Extrusion; Photocatalytic Filter; Performative Design
series eCAADe
email
last changed 2022/06/07 07:54

_id cdrf2019_217
id cdrf2019_217
authors Jinghua Song and Sirui Sun
year 2020
title Research on Architectural Form Optimization Method Based on Environmental Performance-Driven Design
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_21
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary In the context of contemporary environment and society, the architectural form optimization based on Environmental performance-driven design is a method by using environmental performance data to optimize the architectural form. Its value lies in dealing with the interaction between architecture and environment, and developing architecture with environmental sustainability. This thesis summarizes the similarities and differences between performance-driven form design and traditional bionic form design. The traditional bionic design separates the bionic object from its complex living environment, and its simple imitation tends to fall into the local rather than the global optimum. However, performancedriven design is different from bionic design. It advocates environmental factors as a driving factor rather than a confrontational factor. It is a systematic global optimal method for studying architectural form. This paper puts forward the specific architectural form optimization simulation process based on the performance-driven thought. Taking the multilayer parking building design of the riparian zone on the south bank of Chongqing as an example, the parametric design method is used to obtain architectural optimization form adapted to the environment.
series cdrf
email
last changed 2022/09/29 07:51

_id ecaade2020_165
id ecaade2020_165
authors Salland, Ida Neel, Pajuste, Mihkel and Hansen, Ellen Kathrine
year 2020
title Sunlight Qualities in Dwellings - A new computational analysis tool
doi https://doi.org/10.52842/conf.ecaade.2020.1.333
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 333-342
summary "Architectural harmony with natural systems - including natural light - is essential to the wellbeing of building occupants" (Shrum, 2017). A preliminary study of existing daylight recommendations in standards and sustainability certificates, applied in Denmark, revealed a neglectance of the importance of receiving direct sunlight in dwellings. The qualities of sunlight were defined through a modest qualitative analysis, resulting in five parameters: Sunlight Hours, Winter Sun, Morning Sun, Golden Hours and Magic Moments. These were defined as specific time periods supported by research on the visual and non-visual effects on well-being. The parameters were subsequently translated into a parametric analysis tool, using design application Rhinoceros 3D and elaborating on a new usage of the design software Ladybug Tools. This analysis tool is predicted to be of high use to identify problematic apartments in the architectural design phase, to compare different design proposals and to meet the individual needs of new occupants.
keywords Nordic daylighting; sunlight in dwellings; sunlight qualities; parametric design; daylight design
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2020_222
id caadria2020_222
authors Sun, Chengyu and Hu, Wei
year 2020
title A Rapid Building Density Survey Method Based on Improved Unet
doi https://doi.org/10.52842/conf.caadria.2020.2.649
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 649-658
summary How to rapidly obtain building density information in a large range is a key problem for architecture and planning. This is because architectural design or urban planning is not isolated, and the environment of the building is influenced by the distribution of other buildings in a larger area. For areas where building density data are not readily available, the current methods to estimate building density are more or less inadequate. For example, the manual survey method is relatively slow and expensive, the traditional satellite image processing method is not very accurate or needs to purchase high-precision multispectral remote sensing image from satellite companies. Based on the deep neural network, this paper proposes a method to quickly extract large-scale building density information by using open satellite images platforms such as Baidu map, Google Earth, etc., and optimizes the application in the field of building and planning. Compared with the traditional method, it has the advantages of less time and money, higher precision, and can provide data support for architectural design and regional planning rapidly and conveniently.
keywords building density; rapidly and conveniently; neural network
series CAADRIA
email
last changed 2022/06/07 07:56

_id ascaad2022_102
id ascaad2022_102
authors Turki, Laila; Ben Saci, Abdelkader
year 2022
title Generative Design for a Sustainable Urban Morphology
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 434-449
summary The present work concerns the applications of generative design for sustainable urban fabric. This represents an iterative process that involves an algorithm for the generation of solar envelopes to satisfy solar and density constraints. We propose in this paper to explore a meta-universe of human-machine interaction. It aims to design urban forms that offer solar access. This being to minimize heating energy expenditure and provide solar well-being. We propose to study the impact of the solar strategy of building morphosis on energy exposure. It consists of determining the layout and shape of the constructions based on the shading cut-off time. This is a period of desirable solar access. We propose to define it as a balance between the solar irradiation received in winter and that received in summer. We rely on the concept of the solar envelope defined since the 1970s by Knowles and its many derivatives (Koubaa Turki & al., 2020). We propose a parametric model to generate solar envelopes at the scale of an urban block. The generative design makes it possible to create a digital model of the different density solutions by varying the solar access duration. The virtual environment created allows exploring urban morphologies resilient both to urban densification and better use of the context’s resources. The seasonal energy balance, between overexposure in summer and access to the sun in winter, allows reaching high energy and environmental efficiency of the buildings. We have developed an algorithm on Dynamo for the generation of the solar envelope by shading exchange. The program makes it possible to detect the boundaries of the parcels imported from Revit, establish the layout of the building, and generate the solar envelopes for each variation of the shading cut-off time. It also calculates the FAR1 and the FSI2 from the variation of the shading cut-off time for each parcel of the island. We compare the solutions generated according to the urban density coefficients and the solar access duration. Once the optimal solution has been determined, we export the results back into Revit environment to complete the BIM modelling for solar study. This article proposes a method for designing buildings and neighbourhoods in a virtual environment. The latter acts upstream of the design process and can be extended to the different phases of the building life cycle: detailed design, construction, and use.
series ASCAAD
email
last changed 2024/02/16 13:38

_id sigradi2022_51
id sigradi2022_51
authors Varsami, Constantina; Tsamis, Alexandros; Logan, Timothy
year 2022
title Gaming Engine as a Tool for Designing Smart, Interactive, Light-Sculpting Systems
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 617–628
summary Even though interactive (Offermans et.al., 2013), adaptive (Viani et.al., 2017), and self-optimizable (Sun et.al., 2020) lighting systems are becoming readily available, designing system automations, and evaluating their impact on user experience significantly challenges designers. In this paper we demonstrate the use of a gaming engine as a platform for designing, simulating, and evaluating autonomous smart lighting behaviors. We establish the Human - Lighting System Interaction Framework, a computational framework for developing a Light Sculpting Engine and for designing occupant-system interactions. Our results include a. a method for combining in real-time lighting IES profiles into a single ‘combined’ profile - b. algorithms that optimize in real-time, lighting configurations - c. direct glare elimination algorithms, and d. system energy use optimization algorithms. Overall, the evolution from designing static building components to designing interactive systems necessitates the reconsideration of methods and tools that allow user experience and system performance to be tuned by design.
keywords User Experience, Human-Building Interaction, Smart Lighting, Lighting Simulation, Gaming Engine
series SIGraDi
email
last changed 2023/05/16 16:56

_id ecaade2024_60
id ecaade2024_60
authors Wan, Zijun; Sun, Shuaibing; Meng, Fanjing; Yan, Yu
year 2024
title How Augment Reality Support Public Participation in the Urban Design Decision-Making: A ten - year literature review
doi https://doi.org/10.52842/conf.ecaade.2024.2.455
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 455–464
summary Emerging applications of AR have demonstrated its powerful visualization capabilities, which is a potential solution to enhance public participation in the urban design process. However, there is still a lack of complete understanding of how AR gets involved in this decision-making process. Therefore, this paper reviews 33 empirical studies relating to the topic through the four steps of “PRISMA”. The results indicate that the quantity and quality of research is increasing yearly. As AR technology progresses, the techniques and research methods used in those studies show a trend toward diversification and customization; this has also led to a shift in the scale of urban design from large and abstract to small and concrete. In terms of content, the topics have gradually changed from “people group” to “technology”, and then to “environment”. Notably, a small number of cases in tangible interaction and multi-user collaboration have emerged from 2020 — areas showing great promise. In terms of user assessments, most studies give positive feedback, but there are currently concerns about problems in poor AR visualizations, privacy risks, and the social inequality caused by technical affordance.
keywords Augment reality, Urban design and planning, Public participation, Collaborative and participative design, Design decision-making
series eCAADe
email
last changed 2024/11/17 22:05

No more hits.

HOMELOGIN (you are user _anon_660376 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002