CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 618

_id ecaade2020_120
id ecaade2020_120
authors Ishikawa, Daichi, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2020
title A Mixed Reality Coordinate System for Multiple HMD Users Manipulating Real-time Point Cloud Objects - Towards virtual and interactive 3D synchronous sharing of physical objects in teleconference during design study
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 197-206
doi https://doi.org/10.52842/conf.ecaade.2020.1.197
summary Teleconferences without travel costs are useful for building a consensus in design. However, conventional teleconferencing using computer displays and web cameras is well known to have performance problems due to the lack of co-presence feeling with remote participants and the difficulty in sharing three dimensional (3D) information intuitively. This research proposes a method to share the mixed reality (MR) coordinate system for multiple head-mounted display (HMD) users manipulating real-time point cloud objects for the virtual and interactive 3D synchronous sharing in teleconferences. In our proposed method, the reference point of the virtual world coordinate system called world anchor and local coordinates of segmented point cloud objects in real-time are shared among HMDs via a server PC to share the same MR coordinate system. Using this method, the result of moving and rotating manipulation using hand gestures for segmented point cloud objects by an HMD user are reflected in the other HMD users. We developed a prototype system and evaluated the performance of the system when multiple users used this system. Future works include adapting this system to multiple RGB-D cameras and the internet environment.
keywords Mixed reality coordinate system; Real-time point clouds; Multiple User Interaction; Teleconference; 3D Synchronous Physical Object Sharing
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2020_254
id caadria2020_254
authors Pei, Wanyu, LO, TianTian and Guo, Xiangmin
year 2020
title A Biofeedback Process: Detecting Architectural Space with the Integration of Emotion Recognition and Eye-tracking Technology
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 263-272
doi https://doi.org/10.52842/conf.caadria.2020.2.263
summary This paper coincides with the conference theme that people have gradually become a vital force influencing the environmental system. In the future, it is necessary to study the influence of not only the built environment on people but also people's feedback on environmental design. This study explores the ‎processes of interactive design using both emotion recognition and eye-tracking of users. By putting on wearable devices to roam and perceive in a virtual reality space, the physiological data of the users are collected in real-time and used to analyze their emotional responses and visual attention to the spaces. This method will provide an auxiliary way for non-architectural professional users to participate in architectural space design. At present, there is a lack of research on the comprehensive application of eye movement knowledge and emotional feedback in architectural space design. This integration will help professional designers to optimize the design of architectural space. For this paper, we review existing research and proposing an interactive design workflow that integrates eye tracking and emotion recognition. This workflow will help with the next stage of research to understand the design of a new International School of Design building.
keywords Perception detection; Architectural space environment; Interactive design; Virtual reality
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2020_215
id ecaade2020_215
authors Zhu, Yuehan, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2020
title Integrated Co-designing Using Building Information Modeling and Mixed Reality with Erased Backgrounds for Stock Renovation
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 153-160
doi https://doi.org/10.52842/conf.ecaade.2020.1.153
summary The stock renovation has become an important area of study. As customized design becomes increasingly popular, the design methods with occupants' participation are increasingly valued. The designers need an intuitive, understandable design method that allows non-professional occupants can also participate in the design process. Therefore, the proposed system explores the applicability of integrating the Building Information Modeling (BIM) model into the Mixed Reality (MR) environment to display realistic and interactive design plans. Occupants who involved in the renovation design wearing head mounted display (HMD) would experience the same MR environment. All of them can use gestures to interact with each other and control all the virtual structures and objects. This MR experience can help users to better understand other's intentions, and they can evaluate the design plans more easily. This paper will introduce a prototype of the integrated co-designing system using multiple HMDs connected in a local area network (LAN).
keywords Mixed Reality; Diminished Reality; Building Information Modeling; Co-Designing; Stock Renovation
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2020_031
id caadria2020_031
authors Kim, Nayeon and Lee, Hyunsoo
year 2020
title Visual Attention in Retail Environments - Design Analysis using HMD based VR System Integrated Eye-Tracking
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 631-640
doi https://doi.org/10.52842/conf.caadria.2020.1.631
summary The goal of this study is to understand the spatial experience of users in retail environments in an immersive virtual reality setting. This study measures the visual attention and visual merchandising cognition of users via a quantitative method. The study was conducted to assess users' visual perception arising from the visual merchandising in-store environment during virtual reality experiences. The experiment was conducted using eye-tracking methodology in a virtual reality environment. After the experiment, participants responded to questionnaire surveys to assess visual merchandising cognition in retail environments. The experiment stimuli were provided in the virtual simulation of a retail store. During the experiment, each participant wearing a head-mounted display device was asked to experience the virtual retail space. The result shows the quantitative analysis of user behavior in the retail space and which design elements attract their attention. Unlike the precedent eye-tracking studies, this research analyzes visual attention during the spatial experience of retailing in its use of virtual reality technology. The approach and findings of this research provide useful information and practical guidelines to retailers and designers who are interested in improving the retail environment in consideration of customer visual attention and spatial elements.
keywords Visual Attention; Retail Environment; Eye-tracking ; Virtual Reality; HMD (Head-Mounted Display)
series CAADRIA
email
last changed 2022/06/07 07:49

_id acadia20_108p
id acadia20_108p
authors Akbarzadeh, Masoud; Ghomi, Ali Tabatabaie; Bolhassani, Mohammad; Akbari, Mostafa; Seyedahmadian, Alireza; Papalexiou, Konstantinos
year 2020
title Saltatur
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 108-113.
summary The Saltatur (Dancer in Latin) demonstrates innovative research in the design and fabrication of a prefab structure consisting of spatial concrete nodes assembled in a compression-only configuration. The compression-only body is kept in equilibrium using the post-tensioning steel rods at the top and the bottom of the structure, supporting an ultra-thin glass structure on its top. A node-based assembly was considered as a method of construction. An innovative detailing was developed that allows locking each member in its exact location in the body, obviating the need for a particular assembly sequence. A bespoke steel connection transfers the tensile forces between the concrete members effectively. Achieving a high level of efficiency in utilizing concrete for spatial systems requires a robust and powerful structural design and fabrication approach that has been meticulously exhibited in this project. The structural form of the project was developed using a three-dimensional geometry-based structural design method known as 3D Graphic Statics with precise control over the magnitude of the lateral forces in the system. The entire concrete body of the structure is held in compression by the tension ties at the top and bottom of the structure with no horizontal reactions at the supports. This particular internal distribution of forces in the form of the compression-only body reduces the bending moment in the system and, therefore, the required mass to span such a distance.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id acadia20_236p
id acadia20_236p
authors Anton, Ana; Jipa, Andrei; Reiter, Lex; Dillenburger, Benjamin
year 2020
title Fast Complexity
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 236-241
summary The concrete industry is responsible for 8% of the global CO2 emissions. Therefore, using concrete in more complex and optimized shapes can have a significant benefit to the environment. Digital fabrication with concrete aims to overcome the geometric limitations of standardized formworks and thereby reduce the ecological footprint of the building industry. One of the most significant material economy potentials is in structural slabs because they represent 85% of the weight of multi-story concrete structures. To address this opportunity, Fast Complexity proposes an automated fabrication process for highly optimized slabs with ornamented soffits. The method combines reusable 3D-printed formwork (3DPF) and 3D concrete printing (3DCP). 3DPF uses binder-jetting, a process with submillimetre resolution. A polyester coating is applied to ensure reusability and smooth concrete surfaces otherwise not achievable with 3DCP alone. 3DPF is selectively used only where high-quality finishing is necessary, while all other surfaces are fabricated formwork-free with 3DCP. The 3DCP process was developed interdisciplinary at ETH Zürich and employs a two-component material system consisting of Portland cement mortar and calcium aluminate cement accelerator paste. This fabrication process provides a seamless transition from digital casting to 3DCP in a continuous automated process. Fast Complexity selectively uses two complementary additive manufacturing methods, optimizing the fabrication speed. In this regard, the prototype exhibits two different surface qualities, reflecting the specific resolutions of the two digital processes. 3DCP inherits the fine resolution of the 3DPF strictly for the smooth, visible surfaces of the soffit, for which aesthetics are essential. In contrast, the hidden parts of the slab use the coarse resolution specific to the 3DCP process, not requiring any formwork and implicitly achieving faster fabrication. In the context of an increased interest in construction additive manufacturing, Fast Complexity explicitly addresses the low resolution, lack of geometric freedom, and limited reinforcement options typical to layered extrusion 3DCP, as well as the limited customizability in concrete technology.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id sigradi2020_349
id sigradi2020_349
authors González-Böhme, Luis Felipe; García-Alvarado, Rodrigo; Quitral-Zapata, Francisco Javier; Valenzuela-Astudillo, Eduardo Antonio
year 2020
title SISCOM: Cooperative Multi-Robot Systems in Construction
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 349-356
summary We present an ongoing research project focused on the development of more efficient setups for cooperative multi-robot systems in 3D-printed construction. Early kinematic simulations of a mobile robotic cell prototype with two ceiling-mounted orbiting manipulators have provided new insights into 3D printing topology. An extrusion nozzle is mounted on each collaborative robot whose primary function is to match the extrusion path to the print contour while they move along a circular path. The challenge of setting up on site a semi-structured environment for cooperative multi-robot 3D printing led us to think up a new species of construction 3D printer.
keywords 3D-Printed construction, Cooperative multi-robot system, Mobile robotic cell, Collaborative robot, Robots in architecture
series SIGraDi
email
last changed 2021/07/16 11:49

_id ecaade2020_053
id ecaade2020_053
authors Ren, Yue, Chu, Jie and Zheng, Hao
year 2020
title Dynamic Symbiont - An Interactive Urban Design Method Combining Swarm Intelligence and Human Decisions
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 383-392
doi https://doi.org/10.52842/conf.ecaade.2020.1.383
summary Can a virtual city game be built by both the public and computer-based on real-site data? In the current process of deepening global connectivity, requirements for an effective urban design are no longer limited to functions or aesthetics, but a smart, dynamic complex with multi-interactions of data, group behaviours, and physical space. This paper introduces the logic of swarm intelligence and particle system for proposing a new urban design methodology. The platforms range from simulations that quantify the impact of the disruptive interventions of city activities to communicable collaboration between different users in a UI system, which creates virtual connections between optimized urbanscape and users. In the design system, based on the context data, the computer firstly simulates and optimizes the existing 2D activity joints between the people and analyzed the current spatial connection nodes into certain design rules. Through optimal programming for spatial connection and data iterations, the activity connection structures in the second simulation are abstracted into a set of interactive 3D topographic. The final data-visualization results are presented as a co-building megacity in a virtual construction game. Users can choose the virtual building unit types and intuitively influence the future urbanscape decision through virtual construction.
keywords Swarm Intelligence; Particle System; Digital Simulation; Human-Machine Interaction; Data Visualization
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia20_220p
id acadia20_220p
authors Rieger, Uwe; Liu, Yinan
year 2020
title LightWing II
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 220-225
summary LightWing II is an immersive XR installation that explores hybrid design strategies equally addressing physical and digital design parameters. The interactive project links a kinetic structure with dynamic digital information in the form of 3D projected imagery and spatial sound. A key component of the project was the development of a new rendering principle that allows the accurate projection of stereoscopic images on a moving target screen. Using simple red/cyan cardboard glasses, the system expands the applications of contemporary AR headsets beyond an isolated viewing towards a communal multi-viewer event. LightWing`s construction consists of thin flexible carbon fibre rods used to tension an almost invisible mesh screen. The structure is asymmetrically balanced on a single pin joint and monitored by an IMU. A light touch sets the delicate wing-like object into a rotational oscillation. As a ‘hands-on’ experience, LightWing II creates a mysterious sensation of tactile data and enables the user to navigate through holographic narratives assembled in four scenes, including the interaction with swarms of three winged creatures, being immersed in a silky bubble, and a journey through a velvet wormhole. The user interface is dissolved through the direct linkage between the physical construction and the dynamic digital content. The project was developed at the arc/sec Lab at the University of Auckland. The Lab explores user responsive constructions where dynamic properties of the virtual world influence the material world and vice versa. The Lab’s vision is to re-connect the intangible computer world to the multisensory qualities of architecture and urban spaces. With a focus on intuitive forms of user interaction, the arc/sec Lab uses large-scale prototypes and installations as the driving method for both the development and the demonstration of new cyber-physical design principles.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_120
id acadia20_120
authors Barsan-Pipu, Claudiu; Sleiman, Nathalie; Moldovan, Theodor
year 2020
title Affective Computing for Generating Virtual Procedural Environments Using Game Technologies
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 120-129.
doi https://doi.org/10.52842/conf.acadia.2020.2.120
summary Architects have long sought to create spaces that can relate to or even induce specific emotional conditions in their users, such as states of relaxation or engagement. Dynamic or calming qualities were given to these spaces by controlling form, perspective, lighting, color, and materiality. The actual impact of these complex design decisions has been challenging to assess, from both quantitative and qualitative standpoints, because neural empathic responses, defined in this paper by feature indexes (FIs) and mind indexes (MIs), are highly subjective experiences. Recent advances in the fields of virtual procedural environments (VPEs) and virtual reality (VR), supported by powerful game engine (GE) technologies, provide computational designers with a new set of design instruments that, when combined with brain-computing interfacing (BCI) and eye-tracking (E-T) hardware, can be used to assess complex empathic reactions. As the COVID-19 health crisis showed, virtual social interaction becomes increasingly relevant, and the social catalytic potential of VPEs can open new design possibilities. The research presented in this paper introduces the cyber-physical design of such an affective computing system. It focuses on how relevant empathic data can be acquired in real time by exposing subjects within a dynamic VR-based VPE and assessing their emotional responses while controlling the actual generative parameters via a live feedback loop. A combination of VR, BCI, and E-T solutions integrated within a GE is proposed and discussed. By using a VPE inside a BCI system that can be accurately correlated with E-T, this paper proposes to identify potential morphological and lighting factors that either alone or combined can have an empathic effect expressed by the relevant responses of the MIs.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_516
id acadia20_516
authors Aghaei Meibodi, Mania; Voltl, Christopher; Craney, Ryan
year 2020
title Additive Thermoplastic Formwork for Freeform Concrete Columns
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 516-525.
doi https://doi.org/10.52842/conf.acadia.2020.1.516
summary The degree of geometric complexity a concrete element can assume is directly linked to our ability to fabricate its formwork. Additive manufacturing allows fabrication of freeform formwork and expands the design possibilities for concrete elements. In particular, fused deposition modeling (FDM) 3D printing of thermoplastic is a useful method of formwork fabrication due to the lightweight properties of the resulting formwork and the accessibility of FDM 3D printing technology. The research in this area is in early stages of development, including several existing efforts examining the 3D printing of a single material for formwork— including two medium-scale projects using PLA and PVA. However, the performance of 3D printed formwork and its geometric complexity varies, depending on the material used for 3D printing the formwork. To expand the existing research, this paper reviews the opportunities and challenges of using 3D printed thermoplastic formwork for fabricating custom concrete elements using multiple thermoplastic materials. This research cross-references and investigates PLA, PVA, PETG, and the combination of PLA-PVA as formwork material, through the design and fabrication of nonstandard structural concrete columns. The formwork was produced using robotic pellet extrusion and filament-based 3D printing. A series of case studies showcase the increased geometric freedom achievable in formwork when 3D printing with multiple materials. They investigate the potential variations in fabrication methods and their print characteristics when using different 3D printing technologies and printing materials. Additionally, the research compares speed, cost, geometric freedom, and surface resolution.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_484
id ecaade2020_484
authors Aguilar, Pavel, Borunda, Luis and Pardal, Cristina
year 2020
title Additive Manufacturing of Variable-Density Ceramics, Photocatalytic and Filtering Slats
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 97-106
doi https://doi.org/10.52842/conf.ecaade.2020.1.097
summary Additive Manufacturing (AM) offers the potential development of novel architectural applications of ceramic building components that can be engineered at the level of material to the extent of designing its performance and properties by density variations. This research presents a computational method and fabrication technique emulating complex material behavior via AM of intricate geometries and presents components with photocatalytic and climatic properties. It proposes an innovative application of AM of ceramic components in architecture to explore potential bioclimatic and antipollution performative use. Lattices are defined and manufactured with density variation gradients by tracing rectilinear clay deposition toolpaths that induce porosity intended for fluid filtering and to maximize sun exposure. The design method for photocatalytic, particle filtration and evaporative cooling local characterization introduced by complex patterning elements in architectural envelope slat components processed with radiation analysis influenced design are validated by simulation and experimental testing on specimens manufactured by paste extrusion.
keywords Ceramic 3D Printing; Paste Extrusion; Photocatalytic Filter; Performative Design
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_208p
id acadia20_208p
authors Bernier-Lavigne, Samuel
year 2020
title Object-Field
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 208-213
summary This project aims to continue the correlative study between two fundamental entities of digital architecture: the object and the field. Following periods of experimentations on the ""field"" (materialization of flows of data through animation), the ""field of objects"" (parametricism), the ""object"" (OOO), we investigate the last possible interaction remaining: the ""object-field,"" by merging the formal characteristics of the object with the structural flow of its internal field. This investigation is achieved by exploring the high-resolution features of 3d printing in the design of autonomous architectural objects expressing materiality through topological optimization. The objects are generated by an iterative process of volumetric reduction, resulting in an ensemble of monoliths. Four of them are selected and analyzed through topological optimization in order to extract their internal fields. Next, a series of high-resolution algorithmic systems translate the structural information into 3d printed materiality. Of the four object-fields, one materializes, close to identical, the result of the optimization, giving the keystone to understanding the others. The second one expresses the structural flow through a 1mm voxel system, informed by the optimization, having the effect of stiffening the structure where it is needed and thus generating a new topography on the object. The last two explore the blur that this high-resolution can paradoxically create, with complete integration of the optimal structure in a transparent monolith. This is achieved by a vertex displacement algorithm, and the dissolution of the formal data of the monolith and the structural flows, through the mereological assembly of simple linear elements. For each object-field, a series of drawings was developed using specific algorithmic procedures derived from the peculiarities of their complex geometry. The drawings aim to catalyze coherence throughout the project, where similarities, hitherto kept apart by the multiple materialities, begin to dialogue.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2020_160
id caadria2020_160
authors Bruce, Caitlin, Sweet, Kevin and Ok, Jeongbin
year 2020
title Closing the Loop - Recycling Waste Plastic
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 135-144
doi https://doi.org/10.52842/conf.caadria.2020.1.135
summary Worldwide we produce billions of tonnes of waste per year, including a million tonnes of plastic waste. Currently, there are methods for recycling plastic, but these methods can be expensive and time-consuming, resulting in most of the plastic being thrown into the landfill. Because plastic does not fully degrade, it ends up in the ocean and other waterways, poisoning the water with toxins. The purpose of this research is to provide a solution to reducing plastic waste by creating an alternative method of recycling that utilises new technologies such as additive manufacturing, to create a building material that fits into the concept of the circular economy. The findings of this research explored the recycling of plastic by collecting plastic waste such as PLA (Polylactic Acid) from old 3D printed models and other sources. The plastic was recycled into filament for additive manufacturing (AM) and used to print a building component, establishing a foundational proof of concept for the use of recycled plastic as a potential building material.
keywords Additive Manufacturing; 3D Printing; Recycling Plastic ; Recycled Filament ; Waste Plastic
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2020_412
id caadria2020_412
authors Capunaman, Ozguc Bertug
year 2020
title CAM as a Tool for Creative Expression - Informing Digital Fabrication through Human Interaction
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 243-252
doi https://doi.org/10.52842/conf.caadria.2020.1.243
summary Contemporary digital design and fabrication tools often present deterministic and pre-programmed workflows. This limits the potential for developing a deeper understanding of materials within the process. This paper presents an interactive and adaptive design-fabrication workflow where the user can actively take turns in the fabrication process. The proposed experimental setup utilizes paste extrusion additive manufacturing in tandem with real-time control of an industrial robotic arm. By incorporating a computer-vision based feedback loop, it captures momentary changes in the fabricated artifact introduced by the users to inform the digital representation. Using the updated digital representation, the proposed system can offer simple design hypotheses for the user to evaluate and adapt future toolpaths accordingly. This paper presents the development of the experimental setup and delineates critical concepts and their motivation.
keywords Computer-Aided Design (CAD) and Manufacturing (CAM); Human Computer Interaction; 3D Printing; Interactive Digital Fabrication; Robotic Fabrication
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia20_436
id acadia20_436
authors Chun Hin Fong, Jacky; Long Wun Poon, Adabelle; Sze Ngan, Wing; Hei Ho, Chung; Goepel, Garvin; Crolla, Kristof
year 2020
title Augmenting Craft with Mixed Reality
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 436-444.
doi https://doi.org/10.52842/conf.acadia.2020.1.436
summary This paper discusses novel methods for and advantages of integrating augmented reality (AR) and photogrammetry in hand clay-sculpting workflows. These techniques permit nontrained users to achieve higher precision during the sculpting process by holographically overlaying instructions from digital 3D source geometry on top of the sculpting material. By employing alternative notational systems in design implementation methods, the research positions itself in a postdigital context aimed at humanizing digital technologies. Throughout history, devices have been developed to increase production, such as Henry Dexter’s 1842 “Apparatus for Sculptors” for marble sculpting. Extrapolating from this, the workflow presented in this paper uses AR to overlay extracted information from 3D models directly onto the sculptor’s field of vision. This information can then become an AR-driven guidance system that assists the sculptor. Using the Microsoft HoloLens, holographic instructions are introduced in the production sequence, connecting the analog sculpture fabrication directly with a digital environment, thus augmenting the craftspeople’s agency. A series of AR-aided sculpting methods were developed and tested in a demonstrator case study project that created a small-scale clay copy of Henry Moore’s Sheep Piece (1971–1972). This paper demonstrates how user-friendly software and hardware tools have lowered the threshold for end users to develop new methods that straightforwardly facilitate and improve their crafts’ effectiveness and agency. This shows that the fusion of computational design technology and AR visualization technology can innovate a specific craft’s design and production workflow, opening the door for further application developments in more architecture-specific fabrication contexts.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_299
id ecaade2020_299
authors Colmo, Claudia and Ayres, Phil
year 2020
title 3d Printed Bio-hybrid Structures - Investigating the architectural potentials of mycoremediation
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 573-582
doi https://doi.org/10.52842/conf.ecaade.2020.1.573
summary In this paper, we present a speculative design concept for a mycelium-based living bio-hybrid architectural system. The system combines inoculated lignocellulosic substrates with soil-based 3d printed structures that function as growth scaffolds, material boundaries and spatial organisers. The primary objective of the system is to exploit mycelium as a living remediator of contaminated sites, in the form of architectural proposition. The feasibility of this concept is investigated in two ways: 1) material composition development and process control parameters for soil-based 3d printing, 2) the synthesis of printed prototypes to determine geometric and environmental parameters for promoting colonisation of mycelium and supporting its role as both structural binder and 'Mycorestoration' agent. This work is contextualised with reference to the state-of-the-art in order to identify the research gap and articulate the contribution of a mycelium-based remediating architecture. The merits and limits of the experimental results are reflected upon and trajectories of further investigation outlined.
keywords mycelium; mycorestoration; soil contamination; 3d printing; bio-hybrid architecture; design based experimentation
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2020_037
id ecaade2020_037
authors Dortheimer, Jonathan, Neuman, Eran and Milo, Tova
year 2020
title A Novel Crowdsourcing-based Approach for Collaborative Architectural Design
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 155-164
doi https://doi.org/10.52842/conf.ecaade.2020.2.155
summary This paper provides an overview of "Architasker", a large-scale crowdsourcing approach, platform, and method that enables a collaborative professional architectural design process in collaboration with a community of stakeholders. The platform includes communicating complex architectural project requirements; solution space exploration using different micro-tasks like sketching, 2D and 3D CAD; design selection; and design review as an evolutionary process. The architectural crowdsourcing model underlying the platform is contextualized in the state-of-the-art research on creative crowdsourcing methods and is supported by relevant evidence from empirical experiments. Experimental results validate the effectiveness of the method to generate architectural artifacts by harnessing the skills, talents, and experience of architects and the opinions and values of the stakeholders.
keywords Crowdsourcing; Participatory Design; Human Computation; Creative Crowdsourcing; Co-Design; Collective Intelligence
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia20_192p
id acadia20_192p
authors Doyle, Shelby; Hunt, Erin
year 2020
title Melting 2.0
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 192-197
summary This project presents computational design and fabrication methods for locating standard steel reinforcement within 3D printed water-soluble PVA (polyvinyl alcohol) molds to create non-standard concrete columns. Previous methods from “Melting: Augmenting Concrete Columns with Water Soluble 3D Printed Formwork” and “Dissolvable 3D Printed Formwork: Exploring Additive Manufacturing for Reinforced Concrete” (Doyle & Hunt 2019) were adapted for larger-scale construction, including the introduction of new hardware, development of custom programming strategies, and updated digital fabrication techniques. Initial research plans included 3D printing continuous PVA formwork with a KUKA Agilus Kr10 R1100 industrial robotic arm. However, COVID-19 university campus closures led to fabrication shifting to the author’s home, and this phase instead relied upon a LulzBot TAZ 6 (build volume of 280 mm x 280 mm x 250 mm) with an HS+ (Hardened Steel) tool head (1.2 mm nozzle diameter). Two methods were developed for this project phase: new 3D printing hardware and custom GCode production. The methods were then evaluated in the fabrication of three non-standard columns designed around five standard reinforcement bars (3/8-inch diameter): Woven, Twisted, Aperture. Each test column was eight inches in diameter (the same size as a standard Sonotube concrete form) and 4 feet tall, approximately half the height of an architecturally scaled 8-foot-tall column. Each column’s form was generated from combining these diameter and height restrictions with the constraints of standard reinforcement placement and minimum concrete coverage. The formwork was then printed, assembled, cast, and then submerged in water to dissolve the molds to reveal the cast concrete. This mold dissolving process limits the applicable scale for the work as it transitions from the research lab to the construction site. Therefore, the final column was placed outside with its mold intact to explore if humidity and water alone can dissolve the PVA formwork in lieu of submersion.
series ACADIA
type project
email
last changed 2021/10/26 08:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_602771 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002