CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 670

_id cdrf2019_3
id cdrf2019_3
authors Andrej Radman
year 2020
title Machinic Phylum and Architecture
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_1
summary The chapter draws on the anti-substantivist and anti-hylomorphic legacy of two significant Deleuze and Guattari’s interlocutors: Raymond Ruyer and Gilbert Simondon. Ruyer vehemently opposed the logic of mechanicism without regressing to (active) vitalism. His masterpiece Neofinalism, yet to be fully appreciated in architectural circles, is an ode to multiplicity or ‘absolute form’. The title is to be read as a challenge to the hegemony of the step-by-step causation and partes-extra-partes mereology. According to Ruyer, non-locality is the key,not only to the question of subjectivity, but to the problem of life itself. Simondon too shies away from the metaphysics of presence. For him, the process of individuation cannot be grasped on the basis of the fully formed individual. In other words, the knowledge of individuation is the individuation of knowledge. Simondon’s highest ambition in On the Mode of Existence of Technical Objects was to integrate culture and technics (tekhne). The conviction that culture need not be antagonistic to technology is particularly pertinent to the ecologies of architecture. In the second half of the chapter, the affordance theory meets contemporary neurosciences.
series cdrf
email
last changed 2022/09/29 07:51

_id ecaade2020_290
id ecaade2020_290
authors Elesawy, Amr Alaaeldin, Signer, Mario, Seshadri, Bharath and Schlueter, Arno
year 2020
title Aerial Photogrammetry in Remote Locations - A workflow for using 3D point cloud data in building energy modeling
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 723-732
doi https://doi.org/10.52842/conf.ecaade.2020.1.723
summary Building energy modelling (BEM) results are highly affected by the surrounding environment, due to the impact of solar radiation on the site. Hence, modelling the context is a crucial step in the design process. This is challenging when access to the geometrical data of the built and natural environment is unavailable as in remote villages. The acquisition of accurate data through conventional surveying proves to be costly and time consuming, especially in areas with a steep and complex terrain. Photogrammetry using drone-captured aerial images has emerged as an innovative solution to facilitate surveying and modeling. Nevertheless, the workflow of translating the photogrammetry output from data points to surfaces readable by BEM tools proves to be tedious and unclear. This paper presents a streamlined and reproducible approach for constructing accurate building models from photogrammetric data points to use for architectural design and energy analysis in early design stage projects.
keywords Building Energy Modeling; Photogrammetry; 3D Point Clouds; Low-energy architecture; Multidisciplinary design; Education
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2020_146
id caadria2020_146
authors Lertsithichai, Surapong
year 2020
title Fantastic Facades and How to Build Them
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 355-364
doi https://doi.org/10.52842/conf.caadria.2020.1.355
summary As part of an ongoing investigation in augmented architecture, the exploration of an architectural facade as a crucial element of architecture is a challenging design experiment. We believe that new architectural facades when seamlessly integrated with augmented architecture, enhanced with multiple functionalities, interactivity and performative qualities can extend a building's use beyond its typical function and limited lifespan. Augmented facades or "Fantastic Facades," can be seen as a separate entity from the internal spaces inside the building but at the same time, can also be seen as an integral part of the building as a whole that connects users, spaces, functions and interactivity between inside and outside. An option design studio for 4th year architecture students was offered to conduct this investigation for a duration of one semester. During the process of form generations, students experimented with various 2D and 3D techniques including biomimicry and generative designs, biomechanics or animal movement patterns, leaf stomata patterns, porous bubble patterns, and origami fold patterns. Eventually, five facade designs were carried on towards the final step of incorporating performative interactions and contextual programs to the facade requirements of an existing building or structure in Bangkok.
keywords Facade Design; Augmented Architecture; Form Generation; Surface System; Performative Interactions
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2020_046
id caadria2020_046
authors Alva, Pradeep, Lee, Han Jie, Lin, Zhuoli, Mehta, Palak, Chen, Jielin and Janssen, Patrick
year 2020
title Geo-computation for District Planning - An Agile Automated Modelling Approach
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 793-802
doi https://doi.org/10.52842/conf.caadria.2020.1.793
summary This paper focuses on developing a novel geo-computational methodology for automating the generation of design options for district planning. The knowledge contribution focuses on the ability of the planners and designers to interact with and override the automated process. This approach is referred to as "agile automated modelling". The approach is demonstrated through a case study in which three adjacent districts are generated with a total area of approximately 1300 hectares. An automated modelling process is implemented based on a set of core planning principles established by the planners. The automated process generates street networks, land parcels, and 3-dimensional urban models. The process is broken down into three steps and users are then able to intervene at the end of every step to override and modify the outputs. This aims to help planners and designers to iteratively generate and assess various planning outcomes.
keywords Geo-computation; procedural modelling; GIS; planning automation; neural network
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2020_193
id ecaade2020_193
authors Alymani, Abdulrahman, Jabi, Wassim and Corcoran, Padraig
year 2020
title Machine Learning Methods for Clustering Architectural Precedents - Classifying the relationship between building and ground
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 643-652
doi https://doi.org/10.52842/conf.ecaade.2020.1.643
summary Every time an object is built, it creates a relationship with the ground. Architects have a full responsibility to design the building by taking the ground into consideration. In the field of architecture, using data mining to identify any unusual patterns or emergent architectural trends is a nascent area that has yet to be fully explored. Clustering techniques are an essential tool in this process for organising large datasets. In this paper, we propose a novel proof-of-concept workflow that enables a machine learning computer system to cluster aspects of an architect's building design style with respect to how the buildings in question relate to the ground. The experimental workflow in this paper consists of two stages. In the first stage, we use a database system to collect, organise and store several significant architectural precedents. The second stage examines the most well-known unsupervised learning algorithm clustering techniques which are: K-Means, K-Modes and Gaussian Mixture Models. Our experiments demonstrated that the K-means clustering algorithm method achieves a level of accuracy that is higher than other clustering methods. This research points to the potential of AI in helping designers identify the typological and topological characteristics of architectural solutions and place them within the most relevant architectural canons
keywords Machine Learning; Building and Ground Relationship; Clustering Algorithms; K-means cluster Algorithms
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_350
id acadia20_350
authors Atanasova, Lidia; Mitterberger, Daniela; Sandy, Timothy; Gramazio, Fabio; Kohler, Matthias; Dörfler, Kathrin
year 2020
title Prototype As Artefact
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 350-359.
doi https://doi.org/10.52842/conf.acadia.2020.1.350
summary In digital design-to-fabrication workflows in architecture, in which digitally controlled machines perform complex fabrication tasks, all design decisions are typically made before production. In such processes, the formal definition of the final shape is explicitly inscribed into the design model by means of corresponding step-by-step machine instructions. The increasing use of augmented reality (AR) technologies for digital fabrication workflows, in which people are instructed to carry out complex fabrication tasks via AR interfaces, creates an opportunity to question and adjust the level of detail and the nature of such explicit formal definitions. People’s cognitive abilities could be leveraged to integrate explicit machine intelligence with implicit human knowledge and creativity, and thus to open up digital fabrication to intuitive and spontaneous design decisions during the building process. To address this question, this paper introduces open-ended Prototype-as-Artefact fabrication workflows that examine the possibilities of designing and creative choices while building in a human-robot collaborative setting. It describes the collaborative assembly of a complex timber structure with alternating building actions by two people and a collaborative robot, interfacing via a mobile device with object tracking and AR visualization functions. The spatial timber assembly being constructed follows a predefined grammar but is not planned at the beginning of the process; it is instead designed during fabrication. Prototype-as-Artefact thus serves as a case study to probe the potential of both intuitive and rational aspects of building and to create new collaborative work processes between humans and machines.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_584
id acadia20_584
authors Brás, Catarina; Castelo-Branco, Renata; Menezes Leitao, António
year 2020
title Parametric Model Manipulation in Virtual Reality
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 584-593.
doi https://doi.org/10.52842/conf.acadia.2020.1.584
summary Algorithmic design (AD) uses algorithms to describe architectural designs, producing results that are visual by nature and greatly benefit from immersive visualization. Having this in mind, several approaches have been developed that allow architects to access and change their AD programs in virtual reality (VR). However, programming in VR introduces a new level of complexity that hinders creative exploration. Solutions based in visual programming offer limited parameter manipulation and do not scale well, particularly when used in a remote collaboration environment, while those based in textual programming struggle to find adequate interaction mechanisms to efficiently modify existing programs in VR. This research proposes to ease the programming task for architects who wish to develop and experiment with collaborative textual-based AD in VR, by bringing together the user-friendly features of visual programming and the flexibility and scalability of textual programming. We introduce an interface for the most common parametric changes that automatically generates the corresponding code in the AD program, and a hybrid programming solution that allows participants in an immersive collaborative design experience to combine textual programming with this new visual alternative for the parametric manipulation of the design. The proposed workflow aims to foster remote collaborative work in architecture studios, offering professionals of different backgrounds the opportunity to parametrically interact with textual-based AD projects while immersed in them.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_017
id ecaade2020_017
authors Chan, Yick Hin Edwin and Spaeth, A. Benjamin
year 2020
title Architectural Visualisation with Conditional Generative Adversarial Networks (cGAN). - What machines read in architectural sketches.
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 299-308
doi https://doi.org/10.52842/conf.ecaade.2020.2.299
summary As a form of visual reasoning, sketching is a human cognitive activity instrumental to architectural design. In the process of sketching, abstract sketches invoke new mental imageries and subsequently lead to new sketches. This iterative transformation is repeated until the final design emerges. Artificial Intelligence and Deep Neural Networks have been developed to imitate human cognitive processes. Amongst these networks, the Conditional Generative Adversarial Network (cGAN) has been developed for image-to-image translation and is able to generate realistic images from abstract sketches. To mimic the cyclic process of abstracting and imaging in architectural concept design, a Cyclic-cGAN that consists of two cGANs is proposed in this paper. The first cGAN transforms sketches to images, while the second from images to sketches. The training of the Cyclic-cGAN is presented and its performance illustrated by using two sketches from well-known architects, and two from architecture students. The results show that the proposed Cyclic-cGAN can emulate architects' mode of visual reasoning through sketching. This novel approach of utilising deep neural networks may open the door for further development of Artificial Intelligence in assisting architects in conceptual design.
keywords visual cognition; design computation; machine learning; artificial intelligence
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2020_348
id ecaade2020_348
authors Chiujdea, Ruxandra Stefania and Nicholas, Paul
year 2020
title Design and 3D Printing Methodologies for Cellulose-based Composite Materials
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 547-554
doi https://doi.org/10.52842/conf.ecaade.2020.1.547
summary A growing awareness of architecture's environmental responsibility is encouraging a shift from an industrial age to an ecological one. This shift emphasises a new era of materiality, characterised by a special focus on bio-polymers. The potential of these materials is to address unsustainable modes of resource consumption, and to rebalance our relationship with the natural. However, bio-polymers also challenge current design and manufacturing practices, which rely on highly manufactured and standardized materials. In this paper, we present material experiments and digital design and fabrication methodologies for cellulose-based composites, to create porous biodegradable panels. Cellulose, the most abundant bio-polymer on Earth, has potential for differentiated architectural applications. A key limit is the critical role of additive fabrication methods for larger scale elements, which are a subject of ongoing research. In this paper, we describe how controlling the interdependent relationship between the additive manufacturing process and the material grading enables the manipulation of the material's performance, and the related control aspects including printing parameters such as speed, nozzle diameter, air flow, etc., as well as tool path trajectory. Our design exploration responds to the emerging fabrication methods to achieve different levels of porosity and depth which define the geometry of a panel.
keywords cellulose-based composite material; additive manufacturing; material grading; digital fabrication; spatial print trajectory; porous panels
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2020_299
id ecaade2020_299
authors Colmo, Claudia and Ayres, Phil
year 2020
title 3d Printed Bio-hybrid Structures - Investigating the architectural potentials of mycoremediation
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 573-582
doi https://doi.org/10.52842/conf.ecaade.2020.1.573
summary In this paper, we present a speculative design concept for a mycelium-based living bio-hybrid architectural system. The system combines inoculated lignocellulosic substrates with soil-based 3d printed structures that function as growth scaffolds, material boundaries and spatial organisers. The primary objective of the system is to exploit mycelium as a living remediator of contaminated sites, in the form of architectural proposition. The feasibility of this concept is investigated in two ways: 1) material composition development and process control parameters for soil-based 3d printing, 2) the synthesis of printed prototypes to determine geometric and environmental parameters for promoting colonisation of mycelium and supporting its role as both structural binder and 'Mycorestoration' agent. This work is contextualised with reference to the state-of-the-art in order to identify the research gap and articulate the contribution of a mycelium-based remediating architecture. The merits and limits of the experimental results are reflected upon and trajectories of further investigation outlined.
keywords mycelium; mycorestoration; soil contamination; 3d printing; bio-hybrid architecture; design based experimentation
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia20_604
id acadia20_604
authors Craney, Ryan; Adel, Arash
year 2020
title Engrained Performance
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 604-613.
doi https://doi.org/10.52842/conf.acadia.2020.1.604
summary This project presents a novel fabrication-aware and performance-driven computational design method that facilitates the design and robotic fabrication of a wood shingle facade system. The research merges computational design, robotic fabrication, and building facade optimization into a seamless digital design-to-fabrication workflow. The research encompasses the following topics: (1) a constructive system integrating the rules, constraints, and dependencies of conventional shingle facades; (2) an integrative computational design method incorporating material, robotic fabrication, and assembly constraints; (3) an optimization method for facade sun shading; and (4) a digital design-to-fabrication workflow informing the robotic fabrication procedures. The result is an integrative computational design method for the design of a wood shingle facade. Environmental analysis and multi-objective optimization are coupled with a variable facade surface to produce several optimal design solutions that conform to the constraints of the robotic setup and constructive system. When applied to architectural design, the proposed integrative computational design method demonstrates significant improvements in facade sun-shading performance while also linking the digital design to the fabrication process.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_564
id acadia20_564
authors Cutajar, Sacha; Costalonga Martins, Vanessa; van der Hoven, Christo; Baszyñski, Piotr; Dahy, Hanaa
year 2020
title Towards Modular Natural Fiber-Reinforced Polymer Architecture
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 564-573.
doi https://doi.org/10.52842/conf.acadia.2020.1.564
summary Driven by the ecological crisis looming over the 21st century, the construction sector must urgently seek alternative design solutions to current building practices. In the wake of emergent digital technologies and novel material strategies, this research proposes a lightweight architectural solution using natural fiber-reinforced polymers (NFRP), which elicit interest for their inherent renewability as compared to high-performance yarns. Two associated fabrication techniques are deployed: tailored fiber placement (TFP) and coreless filament winding (CFW), both favored for their additive efficiencies granted by strategic material placement. A hypothesis is formed, postulating that their combination can leverage the standalone complexities of molds and frames by integrating them as active structural elements. Consequently, the TFP enables the creation of a 2D stiffness-controlled preform to be bent into a permanent scaffold for winding rigid 3D fiber bodies via CFW. A proof of concept is generated via the small-scale prototyping and testing of a stool, with results yielding a design of 1 kg capable of carrying 100 times its weight. Laying the groundwork for a scaled-up architectural proposal, the prototype instigates alterations to the process, most notably the favoring of a modular global design and lapped preform technique. The research concludes with a discussion on the resulting techno-implications for automation, deployment, material life cycle, and aesthetics, rekindling optimism towards future sustainable practices.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_314
id ecaade2020_314
authors Das, Avishek, Worre Foged, Isak and Jensen, Mads Brath
year 2020
title Designing with a Robot - Interactive methods for brick wall design using computer vision
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 605-612
doi https://doi.org/10.52842/conf.ecaade.2020.2.605
summary The deterministic and linear nature of robotic processes in architectural construction often allows no or very little adjustments during the fabrication process. If any need for modification arise the process is usually interrupted, changes are accommodated, and the process is resumed or restarted. The rigidity in this fabrication process leaves little room for creative intervention and human activities and robotic process are often considered as two segregated processes.The paper will present and discuss the methodological and design challenges of interactive robotic fabrication of brickwork with an industrial robotic arm, a webcam and bricks with varying color tones. Emphasis will be on the integration of external computer vision libraries within Rhino Grasshopper to augment the interactive robotic process. The paper will describe and demonstrate a framework comprising (1) robotic pick and place, material selection and evaluation using computer vision, (2) interactive robotic actuation and (3) the role of human input during a probabilistic fabrication-based design process.
keywords interactive robotic fabrication; human robot collaboration; computer vision; masonry; machine learning
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2020_037
id ecaade2020_037
authors Dortheimer, Jonathan, Neuman, Eran and Milo, Tova
year 2020
title A Novel Crowdsourcing-based Approach for Collaborative Architectural Design
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 155-164
doi https://doi.org/10.52842/conf.ecaade.2020.2.155
summary This paper provides an overview of "Architasker", a large-scale crowdsourcing approach, platform, and method that enables a collaborative professional architectural design process in collaboration with a community of stakeholders. The platform includes communicating complex architectural project requirements; solution space exploration using different micro-tasks like sketching, 2D and 3D CAD; design selection; and design review as an evolutionary process. The architectural crowdsourcing model underlying the platform is contextualized in the state-of-the-art research on creative crowdsourcing methods and is supported by relevant evidence from empirical experiments. Experimental results validate the effectiveness of the method to generate architectural artifacts by harnessing the skills, talents, and experience of architects and the opinions and values of the stakeholders.
keywords Crowdsourcing; Participatory Design; Human Computation; Creative Crowdsourcing; Co-Design; Collective Intelligence
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia20_594
id acadia20_594
authors Farahbakhsh, Mehdi; Kalantar, Negar; Rybkowski, Zofia
year 2020
title Impact of Robotic 3D Printing Process Parameters on Bond Strength
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 594-603.
doi https://doi.org/10.52842/conf.acadia.2020.1.594
summary Additive manufacturing (AM), also known as 3D printing, offers advantages over traditional construction technologies, increasing material efficiency, fabrication precision, and speed. However, many AM projects in academia and industrial institutions do not comply with building codes. Consequently, they are not considered safe structures for public utilization and have languished as exhibition prototypes. While three discrete scales—micro, mezzo, and macro—are investigated for AM with paste in this paper, structural integrity has been tackled on the mezzo scale to investigate the impact of process parameters on the bond strength between layers in an AM process. Real-world material deposition in a robotic-assisted AM process is subject to environmental factors such as temperature, humidity, the load of upper layers, the pressure of the nozzle on printed layers, etc. Those factors add a secondary geometric characteristic to the printed objects that was missing in the initial digital model. This paper introduces a heuristic workflow for investigating the impacts of three selective process parameters on the bond strength between layers of paste in the robotic-assisted AM of large-scale structures. The workflow includes a method for adding the secondary geometrical characteristic to the initial 3D model by employing X-ray computerized tomography (CT) scanning, digital image processing, and 3D reconstruction. Ultimately, the proposed workflow offers a pattern library that can be used by an architect or artificial intelligence (AI) algorithms in automated AM processes to create robust architectural forms.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_168
id caadria2020_168
authors Fingrut, Adam
year 2020
title Integrating Design Studio Teaching with Computation and Robotics in Hong Kong
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 343-350
doi https://doi.org/10.52842/conf.caadria.2020.2.343
summary There is a persistent need among Hong Kong Architecture students to develop greater aptitude for critical and design thinking. The mechanics of criticality entail observation, reflection and the development of a knowledgeable response. This important process aligns with a tool-based iterative design research approach, where a cycle of action, observation, reflection, and reaction can take place. In order to complement fundamentals in architectural design, a focus on tools and tool-making approaches toward the development of a critical architectural proposal needs to be incorporated into core curriculum. Through the integration of robotics, automation and computational design approaches into the design studio environment, tool making for producing architectural media (drawings and models) can most effectively be explored. With an emphasis on design and programming tools for component fabrication and assembly, students can develop their own criterion for evaluation as a knowledge-based response to their investigations and proposed architectural systems.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2020_255
id ecaade2020_255
authors Fricker, Pia, Kotnik, Toni and Borg, Kane
year 2020
title Computational Design Pedagogy for the Cognitive Age
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 685-692
doi https://doi.org/10.52842/conf.ecaade.2020.1.685
summary This paper explores and reflects on an integrative computational design thinking approach, which requires the melding of computation, design and theory as a conceptual framework, to be implemented in architectural education. Until now, digital design education is typically based on the introduction of digital tools and plugins at university courses and the subsequent application of these tools to design tasks of limited architectural complexity. At this time, technological advancement has not been matched by a comparable advancement in computational design thinking. The paper describes in detail a novel conceptual framework for course setup that illustrates the using of computational design as a manner of thinking in patterns of interaction across various scales, reaching from building design to regional planning. This approach was subsequently tested in a series of master-level studios, the results of which will be presented as case studies in this paper.
keywords Computational Design Thinking; Architectural Pedagogy and Education; Dynamic Patterns; System Thinking
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2020_361
id caadria2020_361
authors Geht, Alexander, Weizmann, Michael, Grobman, Yasha Jacob and Tarazi, Ezri
year 2020
title Horizontal Forming in Additive Manufacturing: Design and Architecture Perspective
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 203-212
doi https://doi.org/10.52842/conf.caadria.2020.1.203
summary Extrusion based three-dimensional additive manufacturing technology forms objects by driving the material through a nozzle depositing a linear structure through vector-building blocks called roads. In a common 3-axis system, the roads are stacked layer upon layer for forming the final object. However, forming overhanging geometry in this way requires additional support structures increasing material usage and effective printing time. The paper presents a novel Horizontal forming (HF) approach and method for forming overhanging geometry, HF is a new extrusion-based AM approach that allows rapid and stable forming of horizontal structures without additional support in 3-axis systems. This approach can provide new design and manufacturing possibilities for extrusion AM, with emphasis on medium and large-scale AM. HF can affect the outcome's aesthetic and mechanical properties. Moreover, it can significantly accelerate the production process and reduce material waste. The present paper maps the influence of various parameters employed in the HF method, providing a deeper understanding of the printing process. Additionally, it explores and demonstrates the potential functional and aesthetic characteristics that can be achieved with HF for industrial design and architectural products.
keywords Additive manufacturing; Support; Horizontal forming (HF); Extrusion-based system; Fused granulate forming (FGF)
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia20_182p
id acadia20_182p
authors Grasser, Alexander; Parger, Alexandra; Hirschberg, Urs
year 2020
title Realtime Architecture Platform: CollabWood
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 182-187
summary This project presents a Realtime Architecture Platform applied in a telepresence design studio to design and construct the CollabWood prototype. The platform, developed by the authors, enables an open workflow to collaborate and design in unity. It provides a persistent online environment for real-time architectural production. The work method is based on the concept of collaborative objects and distributed designers. These collaborative objects are the shared content: discrete parts, prefabs, or blocks that enable interaction, communication, and collaboration between its users and owners. The distributed designers can contribute by instantiating these collaborative objects. Users placing an object react to the local neighboring conditions and therefore add their embodied design decision to the global architecture. The users get immersed in digital proximity by communicating through the integrated chat or digital calls, discussing strategies, debating design intentions, analyzing the built structure, and scanning for improvements. This pervasive collaboration lays the foundation for a democratization of the design process. As a proof of concept, this method was implemented with 20 students in a telepresence design studio. The participants embraced the real-time workflow and applied the collaborative tool throughout the semester from different locations and time zones. Using the platform to design the CollabWood prototype in real-time collaboratively was realized as a 1:1 project with local, accessible material and AR technology for assembly. The global pandemic accelerated the importance of collaboration. Realtime Architecture Platform’s response of providing an accessible common platform for real-time interaction, design, and collaboration can be regarded as a first step towards how we might work together in the future.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id cdrf2019_297
id cdrf2019_297
authors H. Mohamed, D. W. Bao, and R. Snooks
year 2020
title Super Composite: Carbon Fibre Infused 3D Printed Tectonics
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_28
summary This research posits an innovative process of embedding carbon fibre as the primary structure within large-scale polymer 3D printed intricate architectural forms. The design and technical implications of this research are explored and demonstrated through two proto-architectural projects, Cloud Affects and Unclear Cloud, developed by the RMIT Architecture Snooks Research Lab. These projects are designed through a tectonic approach that we describe as a super composite – an approach that creates a compression of tectonics through algorithmic selforganisation and advanced manufacturing. Framed within a critical view of the lineage of polymer 3D printing and high tech fibres in the field of architectural design, the research outlines the limitations of existing robotic processes employed in contemporary carbon fibre fabrication. In response, the paper proposes an approach we describe asInfused Fibre Reinforced Plastic (IFRP) as a novel fabrication method for intricate geometries. This method involves 3D printing of sacrificial formwork conduits within the skin of complex architectural forms that are infused with continuous carbon fibre structural elements. Through detailed observation and critical review of Cloud Affects and Unclear Cloud (Fig. 2), the paper assesses innovations and challenges of this research in areas including printing, detailing, structural analysis and FEA modelling. The paper notes how these techniques have been refined through the iterative design of the two projects, including the development of fibre distribution mapping to optimise the structural performance.
series cdrf
email
last changed 2022/09/29 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_193297 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002