CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id ijac202018403
id ijac202018403
authors Dagmar Reinhardt, Matthias Hank Haeusler, Kerry London, Lian Loke, Yingbin Feng, Eduardo De Oliveira Barata, Charlotte Firth, Kate Dunn, Nariddh Khean, Alessandra Fabbri, Dylan Wozniak-O’Connor and Rin Masuda
year 2020
title CoBuilt 4.0: Investigating the potential of collaborative robotics for subject matter experts
source International Journal of Architectural Computing vol. 18 - no. 4, 353–370
summary Human-robot interactions can offer alternatives and new pathways for construction industries, industrial growth and skilled labour, particularly in a context of industry 4.0. This research investigates the potential of collaborative robots (CoBots) for the construction industry and subject matter experts; by surveying industry requirements and assessments of CoBot acceptance; by investing processes and sequences of work protocols for standard architecture robots; and by exploring motion capture and tracking systems for a collaborative framework between human and robot co-workers. The research investigates CoBots as a labour and collaborative resource for construction processes that require precision, adaptability and variability.Thus, this paper reports on a joint industry, government and academic research investigation in an Australian construction context. In section 1, we introduce background data to architecture robotics in the context of construction industries and reports on three sections. Section 2 reports on current industry applications and survey results from industry and trade feedback for the adoption of robots specifically to task complexity, perceived safety, and risk awareness. Section 3, as a result of research conducted in Section 2, introduces a pilot study for carpentry task sequences with capture of computable actions. Section 4 provides a discussion of results and preliminary findings. Section 5 concludes with an outlook on how the capture of computable actions provide the foundation to future research for capturing motion and machine learning.
keywords Industry 4.0, collaborative robotics, on-site robotic fabrication, industry research, machine learning
series journal
email
last changed 2021/06/03 23:29

_id caadria2020_132
id caadria2020_132
authors Dąbrowska-Żółtak, Karolina, Wojtowicz, Jerzy and Wrona, Stefan
year 2020
title Robotown
doi https://doi.org/10.52842/conf.caadria.2020.2.413
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 413-422
summary The potential robotization of architecture, its fabrication and assembly impacts design education today. In the near future it will contribute to the emergence of the new forms of urbanization. Our design research is focusing on the small scale urban conditions and build fragments that make up intelligent city. It is undertaken by the multidisciplinary team of architects and mechatronics engineers in academic context. The ROBOtown is understood as an urban structure containing intelligent town fragments. It has to consider the participatory design process involving architecture, mechatronic, robotics and lessons derived from Industry 4.0.
keywords Design; Internet of Things; Architectronics; Mechatronics; Robotics
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2020_264
id ecaade2020_264
authors Nicholas, Paul, Rossi, Gabriella, Papadopoulou, Iliana, Tamke, Martin, Aalund Brandt, Nikolaj and Jessen Hansen, Leif
year 2020
title Precision Partner - Enhancing GFRC craftsmanship with industry 4.0 factory-floor feedback
doi https://doi.org/10.52842/conf.ecaade.2020.2.631
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 631-640
summary This paper presents a novel human-machine collaborative approach to automatic quality-control of Glass-Fiber Reinforced Concrete (GFRC) molds directly on the factory floor. The framework introduces Industry 4.0 technologies to enhance the ability of skilled craftsmen to make molds through the provision of horizontal feedback regarding dimensional tolerances. Where digital tools are seldom used in the fabrication of GFRC molds, and expert craftsmen are not digital experts, our implementation of automated registration and feedback processes enables craftsmen to be integrated into and gain value from the digital production chain. In this paper, we describe the in-progress framework, Precision Partner, which connects 3d scanning and point cloud registration of geometrically complex and varied one off elements to factory floor dimensional feedback. We firstly introduce the production context of GFRC molds, as well as industry standards for production feedback. We then detail our methods, and report the results of a case study that tests the framework on the case of a balcony element.
keywords 3d Scanning; GFRC; Feedback; Automation; Human in the loop; Digital Chain
series eCAADe
email
last changed 2022/06/07 07:58

_id ijac202018404
id ijac202018404
authors Paul Nicholas, Gabriella Rossi, Ella Williams, Michael Bennett and Tim Schork
year 2020
title Integrating real-time multi-resolution scanning and machine learning for Conformal Robotic 3D Printing in Architecture
source International Journal of Architectural Computing vol. 18 - no. 4, 371–384
summary Robotic 3D printing applications are rapidly growing in architecture, where they enable the introduction of new materials and bespoke geometries. However, current approaches remain limited to printing on top of a flat build bed. This limits robotic 3D printing’s impact as a sustainable technology: opportunities to customize or enhance existing elements, or to utilize complex material behaviour are missed. This paper addresses the potentials of conformal 3D printing and presents a novel and robust workflow for printing onto unknown and arbitrarily shaped 3D substrates. The workflow combines dual-resolution Robotic Scanning, Neural Network prediction and printing of PETG plastic. This integrated approach offers the advantage of responding directly to unknown geometries through automated performance design customization. This paper firstly contextualizes the work within the current state of the art of conformal printing. We then describe our methodology and the design experiment we have used to test it. We lastly describe the key findings, potentials and limitations of the work, as well as the next steps in this research.
keywords Conformal printing, robotic fabrication, 3D scanning, neural networks, industry 4.0
series journal
email
last changed 2021/06/03 23:29

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id acadia20_236p
id acadia20_236p
authors Anton, Ana; Jipa, Andrei; Reiter, Lex; Dillenburger, Benjamin
year 2020
title Fast Complexity
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 236-241
summary The concrete industry is responsible for 8% of the global CO2 emissions. Therefore, using concrete in more complex and optimized shapes can have a significant benefit to the environment. Digital fabrication with concrete aims to overcome the geometric limitations of standardized formworks and thereby reduce the ecological footprint of the building industry. One of the most significant material economy potentials is in structural slabs because they represent 85% of the weight of multi-story concrete structures. To address this opportunity, Fast Complexity proposes an automated fabrication process for highly optimized slabs with ornamented soffits. The method combines reusable 3D-printed formwork (3DPF) and 3D concrete printing (3DCP). 3DPF uses binder-jetting, a process with submillimetre resolution. A polyester coating is applied to ensure reusability and smooth concrete surfaces otherwise not achievable with 3DCP alone. 3DPF is selectively used only where high-quality finishing is necessary, while all other surfaces are fabricated formwork-free with 3DCP. The 3DCP process was developed interdisciplinary at ETH Zürich and employs a two-component material system consisting of Portland cement mortar and calcium aluminate cement accelerator paste. This fabrication process provides a seamless transition from digital casting to 3DCP in a continuous automated process. Fast Complexity selectively uses two complementary additive manufacturing methods, optimizing the fabrication speed. In this regard, the prototype exhibits two different surface qualities, reflecting the specific resolutions of the two digital processes. 3DCP inherits the fine resolution of the 3DPF strictly for the smooth, visible surfaces of the soffit, for which aesthetics are essential. In contrast, the hidden parts of the slab use the coarse resolution specific to the 3DCP process, not requiring any formwork and implicitly achieving faster fabrication. In the context of an increased interest in construction additive manufacturing, Fast Complexity explicitly addresses the low resolution, lack of geometric freedom, and limited reinforcement options typical to layered extrusion 3DCP, as well as the limited customizability in concrete technology.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id sigradi2020_608
id sigradi2020_608
authors Costa, Eduardo; Duarte, José; Bilén, Sven G.
year 2020
title Robotic Apprentices: Leveraging Augmented Reality for Robot Training in Manufacturing Automation
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 608-614
summary In the scope of Industry 4.0, a framework is proposed to leverage the potential of articulating Augmented Reality and Robotic Manufacturing in the construction industry. The objective of such framework is to enable robots to learn how to perform tasks using direct interaction with human operators. As a first step, we established a connection between a robot and its trainer— or controller—in which the robot mirrors the operator’s actions. Augmented Reality hardware is used for capturing the trainer’s gestures and the surrounding environment. A digital tool was implemented using Grasshopper and additional plugins to control the process.
keywords Augmented reality, Robotic arm, Programming by demonstration, Human–Robot Collaboration, Industry 4.0
series SIGraDi
email
last changed 2021/07/16 11:52

_id caadria2020_456
id caadria2020_456
authors Halin, Gilles, Bolshakova, Veronika, Hochsheid, Elodie, Gless, Henri-Jean and Aida, Siala
year 2020
title Four Approaches for Integration of Digital BIM Practices in AEC Projects
doi https://doi.org/10.52842/conf.caadria.2020.1.883
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 883-892
summary The newest information and communication technologies bring a major shift to the AEC sector and foster it towards the new digital globalized economy. The last decades witnessed many changes in the AEC industry brought in by digital tools and by the adoption of Building Information Modeling/Management (BIM). The changes had influenced the common practices of design, construction and management, they have also fostered new digital practices into AEC. Innovative digital project management becomes a base element of an effective BIM project management. The project teams' collective competencies and skills contribute to design development and value engineering of the project. In this context, four approaches: BIM adoption, agile BIM, 4D digital decision-making, qualitative requirements to BIM, which are resulting from the research are presented in this article whose objective is to assist and facilitate the integration of digital in AEC specific professional practices.
keywords Digital Practice; BIM Process; Adoption; 4D; Agility
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia20_154p
id acadia20_154p
authors Josephson, Alex; Friedman, Jonathan; Salance, Benjamin; Vasyliv, Ivan; Melnichuk, Tim
year 2020
title Gusto: Rationalizing Computational Masonry Design
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 154-159
summary Gusto 501 is a multi-level Infill Building on the footprint of an old car garage. Surrounded by an overpass and former factories, the restaurant and event spaces take the form of a ‘Hyper garage’ as a nod to its urban context. The interior is punctuated with standard terracotta blocks formed to create an intricate play of shadows during the day and embedded with LEDs to provide atmospheric illumination at night. The client's vision, our narrative, and the program demanded an innovative use of the primal material: terracotta. The scale of the project required the use of 3,700 blocks. Within the array wrapped around a 50ft tall interior volume, each block needed to be formed and sequenced uniquely to maintain structural integrity and interface with building systems, and express the sculptural qualities our team had designed. Standard approaches to the masonry could not achieve the effects our team was striving for - we had to develop our ground-up process to manufacture and install mass-customized masonry. The design process involved an algorithmic approach to a series of cuts and geometric manipulations to the blocks that allowed for near-endless combinations/configurations to create a dynamic interior facade system. Partisans, partnering with a terracotta block manufacturer, a local mason, and a masonry engineer, pursued simplifying production using wire cutter systems. Digital and physical mock-ups were then used to create a robust library of parameterized design criteria that optimized corbelling, grout thickness, weight, and fabrication complexity. Working sets of drawings were automated through a fully integrated BIM model, simplifying and speeding up installation. The challenge of marrying these processes with the physical realities of installation required another level of collaboration that included the masons themselves and the electricians who would eventually combine lighting systems into the sculpted block array.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id acadia20_178
id acadia20_178
authors Meeran, Ahmed; Conrad Joyce, Sam
year 2020
title Machine Learning for Comparative Urban Planning at Scale: An Aviation Case Study
doi https://doi.org/10.52842/conf.acadia.2020.1.178
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 178-187.
summary Aviation is in flux, experiencing 5.4% yearly growth over the last two decades. However, with COVID-19 aviation was hard hit. This, along with its contribution to global warming, has led to louder calls to limit its use. This situation emphasizes how urban planners and technologists could contribute to understanding and responding to this change. This paper explores a novel workflow of performing image-based machine learning (ML) on satellite images of over 1,000 world airports that were algorithmically collated using European Space Agency Sentinel2 API. From these, the top 350 United States airports were analyzed with land use parameters extracted around the airport using computer vision, which were mapped against their passenger footfall numbers. The results demonstrate a scalable approach to identify how easy and beneficial it would be for certain airports to expand or contract and how this would impact the surrounding urban environment in terms of pollution and congestion. The generic nature of this workflow makes it possible to potentially extend this method to any large infrastructure and compare and analyze specific features across a large number of images while being able to understand the same feature through time. This is critical in answering key typology-based urban design challenges at a higher level and without needing to perform on-ground studies, which could be expensive and time-consuming.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac202018402
id ijac202018402
authors Mette Ramsgaard Thomsen, Paul Nicholas, Martin Tamke, Sebastian Gatz, Yuliya Sinke and Gabriella Rossi
year 2020
title Towards machine learning for architectural fabrication in the age of industry 4.0
source International Journal of Architectural Computing vol. 18 - no. 4, 335–352
summary Machine Learning (ML) is opening new perspectives for architectural fabrication, as it holds the potential for the profession to shortcut the currently tedious and costly setup of digital integrated design to fabrication workflows and make these more adaptable. To establish and alter these workflows rapidly becomes a main concern with the advent of Industry 4.0 in building industry. In this article we present two projects, which presents how ML can lead to radical changes in generation of fabrication data and linking these directly to design intent. We investigate two different moments of implementation: linking performance to the generation of fabrication data (KnitCone) and integrating the ability to adapt fabrication data in realtime as response to fabrication processes (Neural-Network Steered Robotic Fabrication). Together they examine how models can employ design information as training data and be trained to by step processes within the digital chain. We detail the advantages and limitations of each experiment, we reflect on core questions and perspectives of ML for architectural fabrication: the nature of data to be used, the capacity of these algorithms to encode complexity and generalize results, their task-specificness versus their adaptability and the tradeoffs of using them with respect to conventional explicit analytical modelling.
keywords Machine learning, architectural design, industry 4.0, digital fabrication, robotic fabrication, CNC knit, neural networks
series journal
email
last changed 2021/06/03 23:29

_id acadia20_290
id acadia20_290
authors Stuart-Smith, Robert; Danahy, Patrick; Revelo La Rotta, Natalia
year 2020
title Topological and Material Formation
doi https://doi.org/10.52842/conf.acadia.2020.1.290
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 290-299.
summary Extrusion-based additive manufacturing (AM) is gaining traction in the construction industry, offering lower environmental and economic costs through reductions in material and production time. AM designs achieve these reductions by increasing topological and geometric complexity, and through variable material distribution via custom-programmed robot tool paths. Limited approaches are available to develop AM building designs within a topologically free design search or to leverage material affects relative to structural performance. Established methods such as topological structural optimization (TSO) operate primarily within design rationalization, demonstrating less formal or aesthetic diversity than agent-based methods that exhibit behavioral character. While material-extrusion gravitational affects have been explored in AM research using viscous materials such as concrete and ceramics, established methods are not sufficiently integrated into simulation and structural analysis workflows. A novel three-part method is proposed for the design and simulation of extrusion-based AM that includes topoForm, an evolutionary multi-agent software capable of generating diverse topological designs; matForm, an agent-based AM robot tool-path generator that is geometrically agnostic and adapts material effects to local structural and geometric data; and matSim, a material-physics simulation environment that enables high-resolution AM material effects to be simulated and structurally and aesthetically analyzed. The research enables designers to incorporate and simulate material behavior prior to fabrication and produce instructions suitable for industrial robot AM. The approach is demonstrated in the generative design of four AM column-like elements.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_614
id acadia20_614
authors Xi Han, Isla; P.G. Bruun, Edvard; Marsh, Stuart; Tavano, Matteo; Adriaessens, Sigrid; Parascho, Stefana
year 2020
title From Concept to Construction - A Transferable Design and Robotic Fabrication Method for a Building-Scale Vault
doi https://doi.org/10.52842/conf.acadia.2020.1.614
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 614-623.
summary The LightVault project demonstrates a novel robotic construction method for masonry vaults, developed in a joint effort between Princeton University and the global architecture and engineering firm Skidmore, Owings & Merrill (SOM). Using two cooperating robotic arms, a full-scale vault (plan: 3.6 × 6.5 m, height: 2.2 m) made up of 338 glass bricks was built live at the “Anatomy of Structure: The Future of Art + Architecture” exhibition. A major component of the project was developing a fabrication method that could be easily adapted to different robotic setups since the research, prototyping, and final exhibition occurred on different continents. This called for approaches that balanced the generic and the specific, allowing for quick and flexible construction staging and execution. The paper is structured as follows. First, we introduce the notion of transferability in robotic construction and then elaborate on this concept through the four major challenges in the LightVault project development: (1) prototype scalability, (2) end-effector design, (3) path planning and sequencing, and (4) fabrication tolerances. To develop and test solutions for these challenges, we iterated through several prototypes at multiple scales, with different materials for the standardized bricks, and at three distinct locations: Embodied Computation Lab, Princeton, US; Global Robots Ltd., Bedford, UK; and Ambika P3 gallery, London, UK. While this paper is specifically tailored to the construction of masonry structures, our long-term goal is to enable more robotic fabrication projects that consider the topic of transferability as a means to develop more robust and broadly applicable techniques.
series ACADIA
type normal paper
email
last changed 2024/03/11 06:44

_id caadria2020_281
id caadria2020_281
authors Abdelmohsen, Sherif and Hassab, Ahmed
year 2020
title A Computational Approach for the Mass Customization of Materially Informed Double Curved A Computational Approach for the Mass Customization of Materially Informed Double Curved Façade Panels
doi https://doi.org/10.52842/conf.caadria.2020.1.163
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 163-172
summary Despite recent approaches to enable the mass customization of double curved façade panels, there still exist challenges including waste reduction, accuracy, surface continuity, economic feasibility, and workflow disintegration. This paper proposes a computational approach for the design and fabrication of materially informed double curved façade panels with complex geometry. This approach proposes an optimized workflow to generate customizable double curved panels with complex geometry and different material properties, and optimize fabrication workflow for waste reduction. This workflow is applied to four different fabrication techniques: (1) vacuum forming, (2) clay extrusion, (3) sectioning, and (4) tessellation. Four experiments are introduced to apply surface rationalization and optimization using Rhino and Grasshopper scripting. Upon simulating each of the four design-to-fabrication techniques through different iterations, the experiment results demonstrated how the proposed workflows produced optimized surfaces with higher levels of accuracy and reduced waste material, customized per type of material and surface complexity.
keywords Digital fabrication; Double curved facades; Mass customization; Design-to-fabrication
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2020_260
id sigradi2020_260
authors Bhattacharya, Maharshi; Jung, Francisco
year 2020
title Multi-Mission Space Exploration Vehicle (MMSEV) Nosecone Design Optimization
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 260-266
summary This paper addresses ergonomic drawbacks in NASA’s modular Multi-Mission Space Exploration Vehicle’s (MMSEV) latest prototype, 2B’s nosecone, to propose new iteration based on considerations such as mass minimization, visibility maximization, and structural integrity. With 2B as a benchmark, and using computational tools typically used in the AEC industry to carry out FEA analysis, comparisons are made with potential design changes. The numerical and visual data such as weight, and stress distribution, provided by the benchmark analysis, served as metrics for comparison and redesign. In turn, this design development exercise attempts to bring together the different design approaches to design, held by human- factors designers and structural engineers.
keywords Form, Optimization, Finite Element Analysis, Space-Exploration Vehicle, Stress-Analysis
series SIGraDi
email
last changed 2021/07/16 11:49

_id ecaade2020_180
id ecaade2020_180
authors Bolshakova, Veronika, Besançon, Franck, Guerriero, Annie and Halin, Gilles
year 2020
title Use of a Digital Collaboration Tool for Project Review - A pedagogical experiment with multidisciplinary teams
doi https://doi.org/10.52842/conf.ecaade.2020.2.651
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 651-660
summary This paper emphasizes feedback from a pedagogical experiment in the context of teaching collaboration and design to multidisciplinary teams. A digital collaboration tool, a multi-touch table and collaboration software, was used as a support for discussion and decision-making for weekly project review meetings. The experiment participants' feedback on the use and usability of the digital collaboration tool highlights the potential for the use of synchronous collaboration technology and project-based learning for higher-level education. It also highlights the need for a transition towards implementation of digital tools at project review sessions.
keywords : Synchronous collaboration; Pedagogical experiment; Project-based learning; CSCW; NUI; BIM
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_536
id acadia20_536
authors Bruscia, Nicholas
year 2020
title Structural Papercuts
doi https://doi.org/10.52842/conf.acadia.2020.1.536
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 536-545.
summary This paper reviews and explores the topological properties of surface disclinations applied to elastic sheets and suggests how these properties may be reproduced at an architectural scale. A variety of surface disclinations and their translation from digital and physical formfinding processes to thin plywood prototypes are discussed. Initial phases of this research have been focused on the bending behavior of various sheet disclination types and have studied a variety of computational form-finding techniques that demonstrate this behavior in an architectural workflow. Several large-scale prototypes of architectural disclinations were produced to test the scalability of topologically induced surface curvature, discussed within the context of bending-active plate structures.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_584
id acadia20_584
authors Brás, Catarina; Castelo-Branco, Renata; Menezes Leitao, António
year 2020
title Parametric Model Manipulation in Virtual Reality
doi https://doi.org/10.52842/conf.acadia.2020.1.584
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 584-593.
summary Algorithmic design (AD) uses algorithms to describe architectural designs, producing results that are visual by nature and greatly benefit from immersive visualization. Having this in mind, several approaches have been developed that allow architects to access and change their AD programs in virtual reality (VR). However, programming in VR introduces a new level of complexity that hinders creative exploration. Solutions based in visual programming offer limited parameter manipulation and do not scale well, particularly when used in a remote collaboration environment, while those based in textual programming struggle to find adequate interaction mechanisms to efficiently modify existing programs in VR. This research proposes to ease the programming task for architects who wish to develop and experiment with collaborative textual-based AD in VR, by bringing together the user-friendly features of visual programming and the flexibility and scalability of textual programming. We introduce an interface for the most common parametric changes that automatically generates the corresponding code in the AD program, and a hybrid programming solution that allows participants in an immersive collaborative design experience to combine textual programming with this new visual alternative for the parametric manipulation of the design. The proposed workflow aims to foster remote collaborative work in architecture studios, offering professionals of different backgrounds the opportunity to parametrically interact with textual-based AD projects while immersed in them.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2022_246
id sigradi2022_246
authors Bustos Lopez, Gabriela; Aguirre, Erwin
year 2022
title Walking the Line: UX-XR Design Experiment for Ephemeral Installations in Pandemic Times
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 699–710
summary Throughout COVID 19 Pandemic since 2020, it was necessary to generate instructional strategies including digital platforms for creative processes in architecture. This article exposes an experience that integrates pedagogical, operational, and technical dimensions in architecture virtual teaching. A pedagogical methodology was designed and implemented, fusing User Experience (UX) and Extended Reality (XR) during the architectural design process in a virtual experimental studio. The use of UX-XR as a designing-reviewing strategy in architecture, positively impacted the creative experience of both students and reviewers by enriching the perception of the space and interactively simulating the user experience. A friendly, fun, and socially inclusive environment was generated for learning architecture using synthetic media and Multiuser Virtual Environments (MUVEs). The successful results of the students’ projects by phase are shown, revealing the significance of combining UX and XR, incorporating the metaverse as a canvas to review, recreate, interact, and assess architectural designs.
keywords User Experience (UX), Extended Reality (XR), Multiuser Virtual Environments (MUVE), Virtual Campus, Usability
series SIGraDi
email
last changed 2023/05/16 16:56

_id caadria2020_071
id caadria2020_071
authors Carroll, Stan
year 2020
title Managing Risk in a Research-Based Practice as Projects Scale To Construction:A Case Study
doi https://doi.org/10.52842/conf.caadria.2020.1.065
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 65-74
summary Research-based architectural practices often experiment along the bleeding edge of the new frontier of design and include developing methodologies unfamiliar to the construction industry. Successfully implementing the resulting research methodologies to an architectural scale requires careful consideration of risk management within a Design-Bid-Build construction project. How a firm manages the risk when scaling a research conclusion to an architectural scale is an essential aspect of assuring the success of the project. These considerations are particularly acute within firms whose research involves convoluted geometry. In the field of doubly-curved geometric material systems, the level of precision required to manage professional risk is commensurate with the level of geometric complexity. Adopting the mindset of a Medieval master mason's process within the context of twenty-first-century materials and processes can be a method toward a successful project. By performing well thought-out transfer procedures of digital data, resolving the fundamental challenges of fabrication, and including structural analysis as a part of the early design phases, experimental architectural expressions can be realized without extra financial risk to the designer.
keywords Risk Management; Research-Based Practice; Complex Geometry; Digital Fabrication; Computational Design
series CAADRIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_23864 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002