CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id sigradi2020_516
id sigradi2020_516
authors Lima, Mariana Quezado Costa; Moreira, Eugenio; Farias, Sarah; Freitas, Clarissa Figueiredo Sampaio
year 2020
title A data-driven approach to inform planning process in informal settlements
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 516-521
summary Official data on informal settlements are outdated, scarce, and sometimes nonexistent. Also, existing digital tools to produce spatial data on urban form are not prepared to deal with their degree of heterogeneity. We then propose a method to obtain, structure and analyze georeferenced data, aiming to support participatory planning of precarious settlements in Brazil. The results include mapping basic elements of urban form and also automatic extraction of urban parameters. The method proved relevant to allow not only the collaboration between team members but also the dialogue with community members, revealing its role in fostering a transformative design process.
keywords City Information Modeling, Parametric modeling, Informal settlements, Geographic Information System
series SIGraDi
email
last changed 2021/07/16 11:52

_id ecaade2020_084
id ecaade2020_084
authors Grisiute, Ayda and Fricker, Pia
year 2020
title From Systems to Patterns and Back - Exploring the spatial potential of dynamic patterns in the area of regional planning
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 95-104
doi https://doi.org/10.52842/conf.ecaade.2020.2.095
summary The main goal of this paper is to present a decision support tool that translates systemic thinking and dynamic patterns into an immersive computational design method and through improved communication and simulation of abstract and complex urban data enhances the planning processes dialogue between different stakeholders and supports decision-making processes. The author presents a multi-level immersive and tangible interface setup consisting of technical and conceptual elements that, as a whole, through the use of dynamic patterns visualise the interaction of distinctive agents in the Finnish Lapland. It addresses the lack of a holistic approach and incorporation of dynamic patterns in the planning process by proposing a decision support tool that uses the results from these investigations to inform decision-making in planning and design tasks.
keywords System Thinking, Dynamic Patterns, Large-scale Planning Methods, Immersive Data-Interaction
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2024_222
id ecaade2024_222
authors Bindreiter, Stefan; Sisman, Yosun; Forster, Julia
year 2024
title Visualise Energy Saving Potentials in Settlement Development: By linking transport and energy simulation models for municipal planning
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 79–88
doi https://doi.org/10.52842/conf.ecaade.2024.2.079
summary To achieve Sustainable Development Goals, in addition to the switch to sustainable energy sources and energy-efficient buildings, transport offers a major lever for reducing energy consumption and greenhouse gases. The increasing demand for emission-free mobility (e.g. through electromobility) but also heat pumps has a direct impact on the electricity consumption of buildings and settlements. It is still difficult to simulate the effects and interactions of different measures as sector coupling concepts require comprehensible tools for ex ante evaluation of planning measures at the community level and the linking of domain-specific models (energy, transport). Using the municipality of Bruck an der Leitha (Austria) as an example, a digital twin based on an open data model (Bednar et al., 2020) is created for the development of methods, which can be used to simulate measures to improve the settlement structure within the municipality. Forecast models for mobility (Schmaus, 2019; Ritz, 2019) and the building stock are developed or applied and linked via the open data model to be able to run through development scenarios and variants. The forecasting and visualisation options created in the project form the basis for the ex-ante evaluation of measures and policies on the way to a Positive-Energy-District. By identifying and collecting missing data, data gaps are filled for the simulation of precise models in the specific study area. A digital, interactive 3D model is created to examine the forecast results and the different scenarios.
keywords visualisation, decision support, sector coupling, holistic spatial energy models for municipal planning, (energy) saving potentials in settlement development
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2020_156
id ecaade2020_156
authors Hemmerling, Marco and Maris, Simon
year 2020
title INTERCOM - A platform for collaborative design processes
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 173-180
doi https://doi.org/10.52842/conf.ecaade.2020.2.173
summary The INTERCOM project propounds a cloud-based collaboration platform for digital planning processes in architecture. The concept is based on an openBIM approach and ensures open access for all partners involved. At its core it provides IFC-based and model-related online tools for planning, communication and collaboration. The interaction with the model and the exchange with other project partners takes place in real-time via a model-related chat and BCF exports. In addition, the integration of e-learning modules (e.g. video tutorials, wikis, project documents) encourages problem solving through further education. Especially the integration of communication and collaboration tools is supposed to enhance the decision making throughout the design process and become a key factor for a successful and coordinated BIM process. Primarily INTERCOM has been developed as a prototype for teaching BIM in interdisciplinary teams. Subsequently, the application can also be adopted for professional practice. The paper evaluates previous experiences from BIM cloud teaching and discusses the conception and development of the proposed collaborative platform.
keywords architecture curriculum; didactics; building information modeling (BIM); collaborative design process; common data environment (CDE)
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2024_4
id ecaade2024_4
authors Irodotou, Louiza; Gkatzogiannis, Stefanos; Phocas, Marios C.; Tryfonos, George; Christoforou, Eftychios G.
year 2024
title Application of a Vertical Effective Crank–Slider Approach in Reconfigurable Buildings through Computer-Aided Algorithmic Modelling
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 421–430
doi https://doi.org/10.52842/conf.ecaade.2024.1.421
summary Elementary robotics mechanisms based on the effective crank–slider and four–bar kinematics methods have been applied in the past to develop architectural concepts of reconfigurable structures of planar rigid-bar linkages (Phocas et al., 2020; Phocas et al., 2019). The applications referred to planar structural systems interconnected in parallel to provide reconfigurable buildings with rectangular plan section. In enabling structural reconfigurability attributes within the spatial circular section buildings domain, a vertical setup of the basic crank–slider mechanism is proposed in the current paper. The kinematics mechanism is integrated on a column placed at the middle of an axisymmetric circular shaped spatial linkage structure. The definition of target case shapes of the structure is based on a series of numerical geometric analyses that consider certain architectural and construction criteria (i.e., number of structural members, length, system height, span, erectability etc.), as well as structural objectives (i.e., structural behavior improvement against predominant environmental actions) aiming to meet diverse operational requirements and lightweight construction. Computer-aided algorithmic modelling is used to analyze the system's kinematics, in order to provide a solid foundation and enable rapid adaptation for mechanisms that exhibit controlled reconfigurations. The analysis demonstrates the implementation of digital parametric design tools for the investigation of the kinematics of the system at a preliminary design stage, in avoiding thus time-demanding numerical analysis processes. The design process may further provide enhanced interdisciplinary performance-based design outcomes.
keywords Reconfigurable Structures, Spatial Linkage Structures, Kinematics, Parametric Associative Design
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2024_60
id ecaade2024_60
authors Wan, Zijun; Sun, Shuaibing; Meng, Fanjing; Yan, Yu
year 2024
title How Augment Reality Support Public Participation in the Urban Design Decision-Making: A ten - year literature review
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 455–464
doi https://doi.org/10.52842/conf.ecaade.2024.2.455
summary Emerging applications of AR have demonstrated its powerful visualization capabilities, which is a potential solution to enhance public participation in the urban design process. However, there is still a lack of complete understanding of how AR gets involved in this decision-making process. Therefore, this paper reviews 33 empirical studies relating to the topic through the four steps of “PRISMA”. The results indicate that the quantity and quality of research is increasing yearly. As AR technology progresses, the techniques and research methods used in those studies show a trend toward diversification and customization; this has also led to a shift in the scale of urban design from large and abstract to small and concrete. In terms of content, the topics have gradually changed from “people group” to “technology”, and then to “environment”. Notably, a small number of cases in tangible interaction and multi-user collaboration have emerged from 2020 — areas showing great promise. In terms of user assessments, most studies give positive feedback, but there are currently concerns about problems in poor AR visualizations, privacy risks, and the social inequality caused by technical affordance.
keywords Augment reality, Urban design and planning, Public participation, Collaborative and participative design, Design decision-making
series eCAADe
email
last changed 2024/11/17 22:05

_id caadria2020_115
id caadria2020_115
authors Zhong, Jia Ding, Chao, Sara, Ming Chun and Tsou, Jin Yeu
year 2020
title Establishing a Prediction Model for Better Decision Making Regarding Urban Green Planning in a High-density Urban Context
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 517-526
doi https://doi.org/10.52842/conf.caadria.2020.1.517
summary This paper presents a prototype of a prediction model. The model helps to improve decision making regarding urban green patch planning. This process is achieved by the model predicting the response of thermal comfort conditions in an urban green patch to different planning decisions. This process is demonstrated via an investigation of variations in urban density. The model features a surface temperature mapping approach, which assigns surface temperature data acquired through field-measurement to solid surfaces in CFD simulations based on the shading state. Besides, trees are simulated in a systematic way, and the model combines CFD simulations with PET values, the processes of which are also demonstrated in this paper.
keywords Urban Green Planning; Decision Making; Thermal Comfort; CFD
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2020_443
id caadria2020_443
authors Abuzuraiq, Ahmed M. and Erhan, Halil
year 2020
title The Many Faces of Similarity - A Visual Analytics Approach for Design Space Simplification
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 485-494
doi https://doi.org/10.52842/conf.caadria.2020.1.485
summary Generative design methods may involve a complex design space with an overwhelming number of alternatives with their form and design performance data. Existing research addresses this complexity by introducing various techniques for simplification through clustering and dimensionality reduction. In this study, we further analyze the relevant literature on design space simplification and exploration to identify their potentials and gaps. We find that the potentials include: alleviating the choice overload problem, opening up new venues for interrelating design forms and data, creating visual overviews of the design space and introducing ways of creating form-driven queries. Building on that, we present the first prototype of a design analytics dashboard that combines coordinated and interactive visualizations of design forms and performance data along with the result of simplifying the design space through hierarchical clustering.
keywords Visual Analytics; Design Exploration; Dimensionality Reduction; Clustering; Similarity-based Exploration
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2020_306
id caadria2020_306
authors Akizuki, Yuta, Bernhard, Mathias, Kakooee, Reza, Kladeftira, Marirena and Dillenburger, Benjamin
year 2020
title Generative Modelling with Design Constraints - Reinforcement Learning for Object Generation
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 445-454
doi https://doi.org/10.52842/conf.caadria.2020.1.445
summary Generative design has been explored to produce unprecedented geometries, nevertheless design constraints are, in most cases, second-graded in the computational process. In this paper, reinforcement learning is deployed in order to explore the potential of generative design satisfying design objectives. The aim is to overcome the three issues identified in the state of the art: topological inconsistency, less variations in style and unpredictability in design. The goal of this paper is to develop a machine learning framework, which works as an intellectual design interpreter capable of codifying an input geometry to form a new geometry. Experiments demonstrate that the proposed method can generate a family of tables of unique aesthetics, satisfying topological consistency under given constraints.
keywords generative design; computational design; data-driven design; reinforcement learning; machine learning
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2020_046
id caadria2020_046
authors Alva, Pradeep, Lee, Han Jie, Lin, Zhuoli, Mehta, Palak, Chen, Jielin and Janssen, Patrick
year 2020
title Geo-computation for District Planning - An Agile Automated Modelling Approach
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 793-802
doi https://doi.org/10.52842/conf.caadria.2020.1.793
summary This paper focuses on developing a novel geo-computational methodology for automating the generation of design options for district planning. The knowledge contribution focuses on the ability of the planners and designers to interact with and override the automated process. This approach is referred to as "agile automated modelling". The approach is demonstrated through a case study in which three adjacent districts are generated with a total area of approximately 1300 hectares. An automated modelling process is implemented based on a set of core planning principles established by the planners. The automated process generates street networks, land parcels, and 3-dimensional urban models. The process is broken down into three steps and users are then able to intervene at the end of every step to override and modify the outputs. This aims to help planners and designers to iteratively generate and assess various planning outcomes.
keywords Geo-computation; procedural modelling; GIS; planning automation; neural network
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2020_089
id ecaade2020_089
authors Ardic, Sabiha Irem, Kirdar, Gulce and Lima, Angela Barros
year 2020
title An Exploratory Urban Analysis via Big Data Approach: Eindhoven Case - Measuring popularity based on POIs, accessibility and perceptual quality parameters
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 309-318
doi https://doi.org/10.52842/conf.ecaade.2020.2.309
summary The cities are equipped with the data as a result of the individuals' sharings and application usage. This significant amount of data has the potential to reveal relations and support user-centric decision making. The focus of the research is to examine the relational factors of the neighborhoods' popularity by implementing a big data approach to contribute to the problem of urban areas' degradation. This paper presents an exploratory urban analysis for Eindhoven at the neighborhood level by considering variables of popularity: density and diversity of points of interest (POI), accessibility, and perceptual qualities. The multi-sourced data are composed of geotagged photos, the location and types of POIs, travel time data, and survey data. These different datasets are evaluated using BBN (Bayesian Belief Network) to understand the relationships between the parameters. The results showed a positive and relatively high connection between popularity - population change, accessibility by walk - density of POIs, and the feeling of safety - social cohesion. For further studies, this approach can contribute to the decision-making process in urban development, specifically in real estate and tourism development decisions to evaluate the land prices or the hot-spot touristic places.
keywords big data approach; neighborhood analysis; popularity; point of interest (POI); accessibility; perceptual quality
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2020_149
id sigradi2020_149
authors Canestrino, Giuseppe; Laura, Greco; Spada, Francesco; Lucente, Roberta
year 2020
title Generating architectural plan with evolutionary multiobjective optimization algorithms: a benchmark case with an existent construction system
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 149-156
summary In architectural design, evolutionary multiobjective optimization algorithms (EMOA) have found use in numerous practical applications in which qualitative and quantitative aspects can be transformed into fitness functions to be optimized. This paper shows that they can be used in an architectural plan design process that starts from a more traditional approach. The benchmark case uses a novel construction system, called Ac.Ca. Building, with a vast architectural and technological database, arleady validated, to generate architectural plan for a residential towerbuilding with a parametric approach and EMOA. The proposed framework differs from past research because uses spatial units with high level of architectural and tecnological definition.
keywords Architectural design, Parametric architecture, Performance-driven design, architectural layout, evolutionary multiobjective optimization
series SIGraDi
email
last changed 2021/07/16 11:48

_id caadria2020_141
id caadria2020_141
authors Dezen-Kempter, Eloisa, Mezencio, Davi Lopes, Miranda, Erica De Matos, De Sá, Danilo Pico and Dias, Ulisses
year 2020
title Towards a Digital Twin for Heritage Interpretation - from HBIM to AR visualization
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 183-191
doi https://doi.org/10.52842/conf.caadria.2020.2.183
summary Data-driven Building Information Modelling (BIM) technology has brought new tools to efficiently deal with the tension between the real and the virtual environments in the field of Architecture, Engineering, Construction, and Operation (AECO). For historic assets, BIM represents a paradigm shift, enabling better decision-making about preventive maintenance, heritage management, and interpretation. The potential application of the Historic-BIM is creating a digital twin of the asset. This paper deals with the concept of a virtual environment for the consolidation and dissemination of heritage information. Here we show the process of creating interactive virtual environments for the Pampulha Modern Ensemble designed by Oscar Niemeyer in the 1940s, and the workflow to their dissemination in an AR visualization APP. Our results demonstrate the APP feasibility to the Pampulha's building interpretation.
keywords Augmented Reality (AR); Historic Building Information Modelling (HBIM); Heritage Interpretation; Modern Architecture
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2020_290
id ecaade2020_290
authors Elesawy, Amr Alaaeldin, Signer, Mario, Seshadri, Bharath and Schlueter, Arno
year 2020
title Aerial Photogrammetry in Remote Locations - A workflow for using 3D point cloud data in building energy modeling
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 723-732
doi https://doi.org/10.52842/conf.ecaade.2020.1.723
summary Building energy modelling (BEM) results are highly affected by the surrounding environment, due to the impact of solar radiation on the site. Hence, modelling the context is a crucial step in the design process. This is challenging when access to the geometrical data of the built and natural environment is unavailable as in remote villages. The acquisition of accurate data through conventional surveying proves to be costly and time consuming, especially in areas with a steep and complex terrain. Photogrammetry using drone-captured aerial images has emerged as an innovative solution to facilitate surveying and modeling. Nevertheless, the workflow of translating the photogrammetry output from data points to surfaces readable by BEM tools proves to be tedious and unclear. This paper presents a streamlined and reproducible approach for constructing accurate building models from photogrammetric data points to use for architectural design and energy analysis in early design stage projects.
keywords Building Energy Modeling; Photogrammetry; 3D Point Clouds; Low-energy architecture; Multidisciplinary design; Education
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2020_423
id caadria2020_423
authors Erhan, Halil, Zarei, Maryam, Abuzuraiq, Ahmed M., Haas, Alyssa, Alsalman, Osama and Woodbury, Robert
year 2020
title FlowUI: Combining Directly-Interactive Design Modeling with Design Analytics
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 475-484
doi https://doi.org/10.52842/conf.caadria.2020.1.475
summary In a systems building experiment, we explored how directly manipulating non-parametric geometries can be used together with a real-time parametric performance analytics for informed design decision-making in the early phases of design. This combination gives rise to a design process where considerations that would traditionally take place in the late phases of design can become part of the early phases. The paper presents FlowUI, a prototype tool for performance-driven design that is developed in a collaboration with our industry partner as part of our design analytics research program. The tool works with and responds to changes in the design modeling environment, processes the design data and presents the results in design (data) analytics interfaces. We discuss the system's design intent and its overall architecture, followed by a set of suggestions on the comparative analysis of design solutions and design reports generation as integral parts of design exploration tasks.
keywords Non-Parametric Modeling; Performance-Driven Design; Design Analytics; Information Visualization
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2020_499
id sigradi2020_499
authors Espina Bermúdez, Jane
year 2020
title Information, processing and visualization of historical traces and architectural and urban fragments in Maracaibo: A theoretical-methodological approach from information technologies
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 499-507
summary The work presents a theoretical-methodological proposal for the registration, processing and visualization of historical traces and architectural and urban fragments of the Spanish- American models and the oil camp established in Maracaibo, based on ongoing research. The methodology involves theoretical and methodological approaches to Architecture, Urban Planning, History, Geography, Applied Computing. Digital technologies will allow the updating and systematization of data and information of the intangible and tangible components of urban models for their incorporation into the digital medium and collaborate in their patrimonial protection. Results: conceptualization and characterization of urban models; virtual environments, database proposal.
keywords Traces, Fragments, Digital Technologies, Information, Urban Models
series SIGraDi
email
last changed 2021/07/16 11:49

_id cdrf2019_217
id cdrf2019_217
authors Jinghua Song and Sirui Sun
year 2020
title Research on Architectural Form Optimization Method Based on Environmental Performance-Driven Design
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_21
summary In the context of contemporary environment and society, the architectural form optimization based on Environmental performance-driven design is a method by using environmental performance data to optimize the architectural form. Its value lies in dealing with the interaction between architecture and environment, and developing architecture with environmental sustainability. This thesis summarizes the similarities and differences between performance-driven form design and traditional bionic form design. The traditional bionic design separates the bionic object from its complex living environment, and its simple imitation tends to fall into the local rather than the global optimum. However, performancedriven design is different from bionic design. It advocates environmental factors as a driving factor rather than a confrontational factor. It is a systematic global optimal method for studying architectural form. This paper puts forward the specific architectural form optimization simulation process based on the performance-driven thought. Taking the multilayer parking building design of the riparian zone on the south bank of Chongqing as an example, the parametric design method is used to obtain architectural optimization form adapted to the environment.
series cdrf
email
last changed 2022/09/29 07:51

_id ijac202018101
id ijac202018101
authors Karakiewicz, Justyna
year 2020
title Design is real, complex, inclusive, emergent and evil
source International Journal of Architectural Computing vol. 18 - no. 1, 5-19
summary Can computers make our designs more intelligent and better informed? This is the implication of the theme of the special issue. Architectural design is often thought of as the design of the object, and design models of architecture seek to explicate this process. As an architect, however, I cannot subscribe to that view. In this particular article, I will explore how computational approaches have illuminated and expanded my work to enable the interaction of these themes across scores of projects. Underpinning the projects are foundational concepts: design is real, complex, inclusive, emergent and evil. Design is grounded in reality and facts, that we can derive design outcomes from a deep and unblemished understanding of the world around us. It is not a stylistic escape. Reality is complex. Architectural design has sought to simplify. This was inescapable when projects are so large yet need to be communicated succinctly. ‘Less is more’ justified this approach. In town planning, this is evident in the tool of zoning. Parse the problem and then address each piece. What we do is part of a larger effort. The field of architecture seeks distinction. Design theories want to distinguish and elevate architecture. But if design is complex and it is real, then it is tied to messy realism. Designing has to become accessible to other realms of knowledge. Designing is the seeking of opportunity. For many, design is simply finding the answer – think of Herbert Simon’s statement that design is problem solving. Design reveals opportunities, and these emergent conditions are to be grasped. As designers, our decisions have implications. We know now that what we build has future implications in ways that are profound. When we define design as problem solving, we ignore the truth that design is problem making.
keywords Design, panarchy, CAS, complexity, Digital Project, Galapagos
series journal
email
last changed 2020/11/02 13:34

_id sigradi2020_627
id sigradi2020_627
authors Lima, Fernando T.; Muthumanickam, Naveen K.; Miller, Marc L.; Duarte, José P.
year 2020
title World Studio: a pedagogical experience using shape grammars and parametric approaches to design in the context of informal settlements
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 627-634
summary The World is experiencing a rapid surge in urban population, in addition to fast urbanization processes. Contemporary cities witness the rise of numerous urban and social problems, leading to the emergence of informal settlements. Still, computational and parametric resources have increasingly been adopted in novel approaches to urban planning and design. These resources can be used in informal settlements to improve urban quality without losing their essential features. This paper describes a teaching experience in the context of a design studio that uses shape grammars and parametric tools to design for an informal settlement context in Ahmedabad, India.
keywords Shape grammars, Parametrization, Informal settlements, Urban design, Teaching experience
series SIGraDi
email
last changed 2021/07/16 11:52

_id caadria2020_023
id caadria2020_023
authors Liu, Chenjun
year 2020
title Double Loops Parametric Design of Surface Steel Structure Based on Performance and Fabrication
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 23-33
doi https://doi.org/10.52842/conf.caadria.2020.1.023
summary In intelligent epoch, automatic parameter design systems reduce the requirements of the skills needed to create objects. The creator only needs to select the most perceptual primitive form to automatically generate the data system that iterates to the most efficient solution. In this paper, a method of combining performance driven optimization with parametric design is proposed. The iterative evolution is under the control of performance loop and fabrication loop, which makes all the data provided by parametric design in a practical project available for exploring structural analysis and digital prefabrication. Related to the case of surface steel structure, parametric optimization is not limited to a set of shape types or design problems, it would be based on the generality and built-in characteristics of parametric modelling environment in the most convenient and flexible way. (Rolvink et al. 2010)And the given parameters would be fed back on geometric structure, performance indicators, and design variables, so that designers can easily and effectively coordinate and try different solutions. The system transforms the generated data into machine language so that the process including design, analysis, manufacturing, and construction can maintain the orthogonal persistence of the data.
keywords parametric design; component prefabrication; curved steel structure; performance driven
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_645072 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002