CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id ecaade2020_411
id ecaade2020_411
authors Muehlbauer, Manuel, Song, Andy and Burry, Jane
year 2020
title Smart Structures - A Generative Design Framework for Aesthetic Guidance in Structural Node Design - Application of Typogenetic Design for Custom-Optimisation of Structural Nodes
doi https://doi.org/10.52842/conf.ecaade.2020.1.623
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 623-632
summary Virtual prototypes enable performance simulation for building components. The presented research extended the application of generative design using virtual prototypes for interactive optimisation of structural nodes. User-interactivity contributed to the geometric definition of design spaces rather than the final geometric outcome, enabling another stage of generative design for the micro-structure of the structural node. In this stage, the micro-structure inside the design space was generated using fixed topology. In contrast to common optimisation strategies, which converge towards a single optimal outcome, the presented design exploration process allowed the regular review of design solutions. User-based selection guided the evolutionary process of design space exploration applying Online Classification. Another guidance mechanism called Shape Comparison introduced an intelligent control system using an inital image input as design reference. In this way, aesthetic guidance enabled the combined evaluation of quantitative and qualitative criteria in the custom-optimisation of structural nodes. Interactive node design extended the potential for shape variation of custom-optimized structural nodes by addressing the geometric definition of design spaces for multi-scalar structural optimisation.
keywords generative design; evolutionary computation; interactive machine learning; typogenetic design
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2020_064
id ecaade2020_064
authors Agirbas, Asli
year 2020
title Building Energy Performance of Complex Forms - Test simulation of minimal surface-based form optimization
doi https://doi.org/10.52842/conf.ecaade.2020.1.259
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 259-268
summary Many optimization tools are developed in line with the form-energy relationship to ensure energy efficiency in buildings. However, such studies with complex forms are very limited. Therefore, the MSO-2 model was developed. In this model, on the roof of the conceptual form, minimal surface is used, thus complex forms can be created. In this model, the conceptual form can be optimized (for one day) according to these objectives: increasing daylight in the space with maximum value limitation, reducing radiation on the roof, and enlarging floor surface area of the conceptual form with minimum value limitation. A test simulation was performed with this model. Thus, in order to find the most optimized form in multi-objective optimization, more generations could be produced in a short time and optimized conceptual forms, which were produced, could be tested for energy efficiency.
keywords Multi-Objective Optimization; Radiation Analysis; Building energy performance; Daylighting Analysis
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2020_035
id caadria2020_035
authors Pereira, Inês, Belém, Catarina and Leitão, António
year 2020
title Escaping Evolution - A Study on Multi-Objective Optimization
doi https://doi.org/10.52842/conf.caadria.2020.1.295
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 295-304
summary The architectural field is currently experiencing a paradigm shift towards a more environmentally-aware design process. In this new paradigm, known as Performance-Based Design (PBD), building performance emerges as a guiding principle. Unfortunately, PBD entails several problems, for instance, building design is often associated with the simultaneous assessment of multiple performance criteria, which dramatically increases the complexity of the problem. In this vein, recent works claim that coupling optimization tools with PBD approaches allows for more efficient and optima-oriented strategies. This approach, known as Algorithmic Optimization, is based on the use of an optimization tool combined with a parametric model of a design to iteratively generate more efficient design alternatives. This paper focus on evaluating and comparing different classes of Multi-Objective Optimization (MOO) algorithms, namely, metaheuristics and model-based ones. In addition, in order to try to better understand the algorithms' suitability to different optimization problems, this research analyses two different MOO design problems.
keywords Performance-Based Design; Algorithmic Optimization; Multi-Objective Optimization
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2020_273
id caadria2020_273
authors Shuyan, Zhu and Chenlong, Ma
year 2020
title An Informed Method - Visualization for Multi-objective Optimization in Conceptual Design Phase
doi https://doi.org/10.52842/conf.caadria.2020.1.425
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 425-434
summary The relationship of different performance objects may be very complicated that designers can't guarantee the improvement of one object don't affect the others. Multi-objective optimization algorithms provide Pareto optimal design solutions, but because of the nonlinearity introduced by the objective functions, the relationships in the objective space do not extend to the decision variable space and vice versa. Based on the design of building blocks and west facade in a practical project, the paper put forward a visualized method for optimization process of building performance, and combine the multi-objective optimization algorithm with the visualization of fitness landscape, so that architects can easily obtain the knowledge of complex relationships between building performance and building parameters. It is more conducive to obtain a design scheme which can balance the requirements of appearance and performance at the same time, and achieve the ultimate goal of improving the efficiency of design.
keywords Visualization; Multi-objective optimization; Fitness landscape
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2024_409
id ecaade2024_409
authors Zarzycki, Andrzej
year 2024
title BIM-Driven Curriculum for Integrated Design Studios: Maintaining data interoperability and design flexibility
doi https://doi.org/10.52842/conf.ecaade.2024.2.027
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 27–36
summary This paper presents a curricular model for an integrated design studio focused on BIM-driven processes, satisfying the NAAB 2020's student performance criteria SC.5 and SC6. These criteria emphasize quantifiable, evidence-based design thinking by requiring the provision of "measurable environmental impacts" and "measurable outcomes of building performance." The studio, serving as a capstone project, integrates accessible design, user and regulatory requirements into building assemblies, structural and environmental systems, and life safety, underscoring the importance of measurable building performance outcomes. The adoption of computational design tools, particularly Building Information Modeling (BIM), facilitates engagement in environmental and user-focused simulations and ensures data interoperability throughout the design and post-occupancy phases. Utilizing a comprehensive set of tools, including life-cycle assessment (LCA) and energy modeling, the curriculum advances beyond simple simulations to support decision-making and multi-objective optimizations. This approach enables a new form of design thinking that incorporates a broader set of variables and considerations, encouraging students to meet various environmental impact and performance benchmarks, including LEED v.5 Certification points and Architecture 2030 energy standards. The integration of scenario simulation tools empowers students to autonomously advance their projects within a framework of constraints, marking a pedagogical shift towards faculty acting as learning facilitators and promoting student autonomy in design evaluation.
keywords building information modeling, BIM, building performance simulations, design education
series eCAADe
email
last changed 2024/11/17 22:05

_id caadria2020_403
id caadria2020_403
authors Ghandi, Mona
year 2020
title Reducing Energy Consumption through Cyber-Physical Adaptive Spaces and Occupants' Biosignals
doi https://doi.org/10.52842/conf.caadria.2020.2.121
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 121-130
summary The field of architecture has long embraced adaptive approaches to address issues of sustainability and efficiency. Building energy consumption accounts for about 40% of the total energy consumption in the U.S. This energy is mainly used for lighting, heating, cooling, and ventilation. Researches show that 30% of that energy is wasted. One of the main reasons for such high energy waste in the commercial (and even private) sectors is a generic assumption about the occupants' preferences. To fill this gap, the objective of this project is to optimize building energy retrofits by creating smart environments that autonomously respond to the occupants' comfort level using affective computing and adaptive systems. This adaptive approach will help optimizing energy consumption without sacrificing occupants' comfort through passive cooling and heating strategy, responding to occupants' preferences detected from their biological and neurological data. Progress towards achieving this goal will make building energy costs more affordable to the benefit of families and businesses and reduce energy waste.
keywords Human-Computer Interaction; Optimizing Energy Consumption; Sustainability + High Performance Built Environment; Adaptive and Interactive Architecture; Cyber-Physical Spaces, Affective Computing, Occupants’ Comfort and Well-Being
series CAADRIA
email
last changed 2022/06/07 07:51

_id cdrf2019_229
id cdrf2019_229
authors Jingyi Li and Hong Chen
year 2020
title Optimization and Prediction of Design Variables Driven by Building Energy Performance—A Case Study of Office Building in Wuhan
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_22
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary This research focuses on the energy performance of office building in Wuhan. The research explored and predicted the optimal solution of design variables by Multi-Island Genetic Algorithm (MIGA) and RBF Artificial neural networks (RBF-ANNs). Research analyzed the cluster centers of design variable by K-means cluster method. In the study, the RBF-ANNs model was established by 1,000 simulation cases. The RMSE (root mean square error) of the RBF-ANNs model in different energy aspects does not exceed 15%. Comparing to the reference case (the largest energy consumption case in the optimization), the 214 elite cases in RBF-ANNs model save at least 37.5% energy. By the cluster centers of the design variables in the elite cases, the study summarized the benchmark of 14 design variables and also suggested a building energy guidance for Wuhan office building design.
series cdrf
email
last changed 2022/09/29 07:51

_id ijac202018102
id ijac202018102
authors Seifert, Nils; Michael Mühlhaus and Frank Petzold
year 2020
title Urban strategy playground: Rethinking the urban planner’s toolbox
source International Journal of Architectural Computing vol. 18 - no. 1, 20-40
summary This article presents the results of the Urban Strategy Playground research group. Over the last 5 years, the focus of an interdisciplinary team of researchers was the conception, implementation and evaluation of a decision-support system for inner-city urban and architectural planning. The overall aim of past and ongoing research is to enable planners to validate and compare possible planning measures based on objective criteria. The Urban Strategy Playground software framework is an expandable toolbox that supports planners in developing strategies, evaluating them and visually preparing them for political decision-making processes and public participation. Examples of implemented tools are the simulation and monitoring of building codes, analysis of key density indicators and green space provision, simulation of shading, building energy and noise dispersion. For visualising the planning results, the framework provides interfaces for rapid prototyping of haptic models, as well as web viewers and a connection to Augmented Reality applications. Core aspects of the system were evaluated through case studies in cooperation with urban planning offices, housing companies and municipalities, proving feasibility, high acceptance of the decision-support software, and need for more tailored tools.
keywords Urban planning, decision support, participation, augmented reality, 3D printing, visual programming, 3D city model
series journal
email
last changed 2020/11/02 13:34

_id ascaad2022_102
id ascaad2022_102
authors Turki, Laila; Ben Saci, Abdelkader
year 2022
title Generative Design for a Sustainable Urban Morphology
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 434-449
summary The present work concerns the applications of generative design for sustainable urban fabric. This represents an iterative process that involves an algorithm for the generation of solar envelopes to satisfy solar and density constraints. We propose in this paper to explore a meta-universe of human-machine interaction. It aims to design urban forms that offer solar access. This being to minimize heating energy expenditure and provide solar well-being. We propose to study the impact of the solar strategy of building morphosis on energy exposure. It consists of determining the layout and shape of the constructions based on the shading cut-off time. This is a period of desirable solar access. We propose to define it as a balance between the solar irradiation received in winter and that received in summer. We rely on the concept of the solar envelope defined since the 1970s by Knowles and its many derivatives (Koubaa Turki & al., 2020). We propose a parametric model to generate solar envelopes at the scale of an urban block. The generative design makes it possible to create a digital model of the different density solutions by varying the solar access duration. The virtual environment created allows exploring urban morphologies resilient both to urban densification and better use of the context’s resources. The seasonal energy balance, between overexposure in summer and access to the sun in winter, allows reaching high energy and environmental efficiency of the buildings. We have developed an algorithm on Dynamo for the generation of the solar envelope by shading exchange. The program makes it possible to detect the boundaries of the parcels imported from Revit, establish the layout of the building, and generate the solar envelopes for each variation of the shading cut-off time. It also calculates the FAR1 and the FSI2 from the variation of the shading cut-off time for each parcel of the island. We compare the solutions generated according to the urban density coefficients and the solar access duration. Once the optimal solution has been determined, we export the results back into Revit environment to complete the BIM modelling for solar study. This article proposes a method for designing buildings and neighbourhoods in a virtual environment. The latter acts upstream of the design process and can be extended to the different phases of the building life cycle: detailed design, construction, and use.
series ASCAAD
email
last changed 2024/02/16 13:38

_id caadria2020_063
id caadria2020_063
authors Wang, Chunxiao and Lu, Shuai
year 2020
title Influence of Uncertainties in Envelope and Occupant Parameters on the Reliability of Energy-Based Form Optimization of Office Buildings
doi https://doi.org/10.52842/conf.caadria.2020.1.497
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 497-506
summary Building performance optimization is effective in finding optimal designs and improving building energy efficiency, but its reliability can be affected by uncertainties in input parameters. This paper conducts a reliability analysis on energy-based form optimization of office buildings under uncertainties in envelope and occupancy parameters. An optimization process involving Rhinoceros, EnergyPlus and genetic algorithms is first implemented. Then parametric studies of 644 scenarios involving 4 cities in different climates and 3 form variables are conducted. The results indicate that uncertainties in input parameters could lead to major unreliability of optimization results, including reductions up to 13% in energy saving achieved by optimization and descents up to 10% in energy efficiency compared with results before optimization. Moreover, the uncertainty in visual transmittance of windows is the most significant cause for the unreliability, followed by U-value of walls, while the uncertainty in occupant density and occupant schedule has limited influence. The results can help designers understand the uncertainty of which parameters should be controlled and to what extend optimization results can be trusted in various scenarios.
keywords Building Performance Optimization; Form Design; Building Energy Efficiency; Uncertainty Analysis; Office Building
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2020_009
id caadria2020_009
authors Wang, Likai, Chen, Kian Wee, Janssen, Patrick and Ji, Guohua
year 2020
title Algorithmic generation of architectural Massing Models for building design optimisation - Parametric Modelling Using Subtractive and Additive Form Generation Principles
doi https://doi.org/10.52842/conf.caadria.2020.1.385
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 385-394
summary Using performance-based optimisation to explore unknown design solutions space has become widely acknowledged and considered an efficient approach to designing high-performing buildings. However, the lack of design diversity in the design space defined by the parametric model often confines the search of the optimisation process to a family of similar design variants. In order to overcome this weakness, this paper presents two parametric massing generation algorithms based on the additive and subtractive form generation principles. By abstracting the rule of these two principles, the algorithms can generate diverse building massing design alternatives. This allows the algorithms to be used in performance-based optimisation for exploring a wide range of design alternatives guided by various performance objectives. Two case studies of passive solar energy optimisation are presented to demonstrate the efficacy of the algorithm in helping architects achieve an explorative performance-based optimisation process.
keywords parametric massing algorithms; performance-based optimisation; design exploration; solar irradiation
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2020_258
id caadria2020_258
authors Beatricia, Beatricia, Indraprastha, Aswin and Koerniawan, M. Donny
year 2020
title Revisiting Packing Algorithm - A Strategy for Optimum Net-to Gross Office Design
doi https://doi.org/10.52842/conf.caadria.2020.1.405
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 405-414
summary Net-to-gross efficiency is defined as the ratio of net area to a gross area of a building. Net-to-gross efficiency will determine the quantity of leasable building area. On the other side, the effectiveness of the spatial distribution of a floor plan design must follow the value of net-to-gross efficiency. Therefore in the context of office design, there are two challenges need to be improved: 1) to get an optimum value of efficiency, architects need to assign the amount and size of the office units which can be effectively arranged, and 2) to fulfill high net-to-gross efficiency value that usually set out at minimal 85%. This paper aims to apply the packing algorithm as a strategy to achieve optimum net-to-gross efficiency and generating spatial configuration of office units that fit with the result. Our study experimented with series of models and simulations consisting of three stages that start from finding net-to-gross efficiency, defining office unit profiles based on preferable office space units, and applying the packing algorithm to get an optimum office net-to-gross efficiency. Computational processes using physics engine and optimization solvers have been utilized to generate design layouts that have minimal spatial residues, hence increasing the net-to-gross ratio.
keywords net-to-gross efficiency; packing algorithm; modular office area; area optimization;
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2020_180
id ecaade2020_180
authors Bolshakova, Veronika, Besançon, Franck, Guerriero, Annie and Halin, Gilles
year 2020
title Use of a Digital Collaboration Tool for Project Review - A pedagogical experiment with multidisciplinary teams
doi https://doi.org/10.52842/conf.ecaade.2020.2.651
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 651-660
summary This paper emphasizes feedback from a pedagogical experiment in the context of teaching collaboration and design to multidisciplinary teams. A digital collaboration tool, a multi-touch table and collaboration software, was used as a support for discussion and decision-making for weekly project review meetings. The experiment participants' feedback on the use and usability of the digital collaboration tool highlights the potential for the use of synchronous collaboration technology and project-based learning for higher-level education. It also highlights the need for a transition towards implementation of digital tools at project review sessions.
keywords : Synchronous collaboration; Pedagogical experiment; Project-based learning; CSCW; NUI; BIM
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2020_432
id ecaade2020_432
authors Fragkia, Vasiliki and Worre Foged, Isak
year 2020
title Methods for the Prediction and Specification of Functionally Graded Multi-Grain Responsive Timber Composites
doi https://doi.org/10.52842/conf.ecaade.2020.2.585
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 585-594
summary The paper presents design-integrated methods for high-resolution specification and prediction of functionally graded wood-based thermal responsive composites, using machine learning. The objective is the development of new circular design workflow, employing robotic fabrication, in order to predict fabrication files linked to material performance and design requirements, focused on application for intrinsic responsive and adaptive architectural surfaces. Through an experimental case study, the paper explores how machine learning can form a predictive design framework where low-resolution data can solve material systems at high resolution. The experimental computational and prototyping studies show that the presented image-based machine learning method can be adopted and adapted across various stages and scales of architectural design and fabrication. This in turn allows for a design-per-requirement approach that optimizes material distribution and promotes material economy.
keywords material specification; responsive timber composites; machine learning; robotic fabrication; building envelopes
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2020_52
id sigradi2020_52
authors Hadi, Khatereh; Gomez, Paula; Swarts, Matthew; Marshall, Tyrone; Bernal, Marcelo
year 2020
title Healthcare Design Metrics for Human-Centric Building Analytics
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 52-59
summary Healthcare design practice has shown increasing interest in the assessment of design alternatives from a human-centered approach, focusing on organizational performance, patient health, and wellness outcomes, in addition to building performance. The goal of this research is to advance building analytics by identifying, defining and implementing computational human-centered design metrics. The knowledge is extracted from an exhaustive literature review in the field of evidence-based design (EBD), which has studied the associations between building features and the occupants’ outcomes but has not yet consolidated the findings into metrics and implications for design practice in a systematic manner. In consultation with industry experts, we have prioritized the evaluation aspects and developed a weighted evaluation framework for assessment of various design options. The developed metrics that input building parameters and output potential health and performance outcomes are implemented in a a parametric environment utilizing add-ons accordingly, and using an ambulatory clinic designed by Perkins&Will as a case study.
keywords Building analytics, Healthcare design, Design metrics, Human-centered analytics
series SIGraDi
email
last changed 2021/07/16 11:48

_id sigradi2020_470
id sigradi2020_470
authors Iasbik, Marina Pires; Martinez, Andressa Carmo Pena; Gazel, Jorge Lira de Toledo
year 2020
title Integration of BIM and Algorithmic Design logics through data exchange between Grasshopper plugin and Revit and Archicad software
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 470-477
summary The Algorithmic Design's integration with BIM (Building Information Modeling), allows greater potential for formal design innovation, tasks automation, greater geometry control, data assignment, and project documentation throughout its life cycle. This paper aims to assist in this integration, analyzing some plugins for conversion from Grasshopper to Archicad and Revit. Based on a parameterized social housing model, interoperability tests were carried out to compare different workflows and discuss some strategies and logics of algorithmic modeling to facilitate the communication between Grasshopper and BIM.
keywords Algorithm design, Building information modeling, Parametric modeling, Project process, Interoperability
series SIGraDi
email
last changed 2021/07/16 11:49

_id ecaade2020_503
id ecaade2020_503
authors Jansen, Igor and Pi¹tek, £ukasz
year 2020
title The Evolutionary-algorithm-based Automation of the Initial Stage of Apartment Building Design
doi https://doi.org/10.52842/conf.ecaade.2020.2.105
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 105-114
summary The development of information technologies has resulted in a strong return of interest in the concept of automating the design process. Most of the attempts such as works of Hersey and Freedman, Duarte or the PRISM application are based on shape grammars. Another approach is evolutionary simulations in concept creation augmentation such as works of Dogan, Saratsis and Reinhart or Nahara and Terzidis.This study examines to what extent evolutionary algorithms can be used to automate early stages of residential multi-family building architectural design. To facilitate informed decision-making, a tool capable of analysing a building plot and proposing the best fitting building shape was designed and tested with Polish legal regulations taken into consideration.A script generating, analysing, and evolutionally optimising a 3D model of the apartment building, was developed. All models met the basic legal conditions and were optimised by four criteria - view obstruction, insolation, maximal allowed floor area built and building compactness. The script was later used on selected building plots producing thousands of solutions. The best performing solutions were selected and presented together with their calculated parameters.
keywords genetic algorithm; evolutionary simulation; residential building; design automation
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2020_351
id ecaade2020_351
authors Kontovourkis, Odysseas, Stylianou, Sofia and Kyriakides, George
year 2020
title An open-source bio-based material system development for sustainable digital fabrication
doi https://doi.org/10.52842/conf.ecaade.2020.2.031
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 31-40
summary The development of bio-based material systems and their correlation with digital design and fabrication processes is an ever-evolving area of research with a number of experimental investigations. One such direction of investigation is related to the use of mycelium-based materials, which can minimize environmental impact and energy consumption during production, but also can allow alternative sustainable construction approaches to come to the fore. This work proposes an open-source mycelium-based construction material development, emphasizing on three interrelated steps. Firstly, the fungi growth based on Pleurotus ostreatus mycelium. Secondly, the digital production of custom formworks and material casting for uniform growth and building components creation. Finally, the construction technique investigation based on layering and stabilization of components. Through the suggested open-source bio-based material system development, the aim is to provide an alternative approach in construction that involves an ecological material with low environmental impact, interrelated with digital fabrication and assembly processes. This might open new directions of investigation to the wider architecture and construction community, allowing further consideration and possible implementation of mycelium material towards a more sustainable construction.
keywords Bio-based material; mycelium growth; digital fabrication; construction systems; sustainable construction
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2020_511
id ecaade2020_511
authors Maierhofer, Mathias, Ulber, Marie, Mahall, Mona, Serbest, Asli and Menges, Achim
year 2020
title Designing (for) Change - Towards adaptivity-specific architectural design for situational open Environments
doi https://doi.org/10.52842/conf.ecaade.2020.2.575
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 575-584
summary The introduction of cybernetic principles to the architectural discourse some 50 years ago stimulated a new notion of buildings as dynamic and under-specified systems. Although their traditional conception as static and deterministic objects has remained predominant to this day, concepts for adaptive architecture capable of interacting with their surroundings and occupants have gained renewed attention in recent decades. However, investigations so far have largely concentrated on small-scale applications or individual adaptation strategies. The notion of situational open Environments, as argued in this paper, provides a framework through which adaptivity can be conceived and explored more holistically as well as on an inhabitable scale. Environments reject deterministic design and adaptation solutions and hence call for integrative and interactive design strategies that not only allow for the exploration of particularly adaptable (i.e. underspecified) architectural morphologies, but also for the communication and negotiation during their further development beyond deployment. In respect thereof, this paper discusses the potentials and implications of computational (design) strategies, meaning the agencies of buildings, designers, residents, and surroundings. The presented research originates from the author's involvement in an interdisciplinary research project centered around the development of an adaptive high-rise building that incorporates various adaptation strategies.
keywords Adaptive Architecture; Architectural Environment; Computational Design; Agent-based Modeling; Architecture Theory; Cybernetics
series eCAADe
email
last changed 2022/06/07 07:59

_id ijac202018407
id ijac202018407
authors Marcelo Bernal, Victor Okhoya, Tyrone Marshall, Cheney Chen and John Haymaker
year 2020
title Integrating expertise and parametric analysis for a data-driven decision-making practice
source International Journal of Architectural Computing vol. 18 - no. 4, 424–440
summary This study explores the integration of expert design intuition and parametric data analysis. While traditional professional design expertise helps to rapidly frame relevant aspects of the design problem and produce viable solutions, it has limitations in addressing multi-criteria design problems with conflicting objectives. On the other hand, parametric analysis, in combination with data analysis methods, helps to construct and analyze large design spaces of potential design solutions and tradeoffs, within a given frame. We explore a process whereby expert design teams propose a design using their current intuitive and analytical methods. That design is then further optimized using parametric analysis. This study specifically explores the specification of geometric and material properties of building envelopes for two typically conflicting objectives: daylight quality and energy consumption. We compare performance of the design after initial professional design exploration, and after parametric analysis, showing consistently significant performance improvement after the second process. The study explores synergies between intuitive and systematic design approaches, demonstrating how alignment can help expert teams efficiently and significantly improve project performance.
keywords Performance analysis, parametric analysis, design space, design expertise, data analysis, optimization
series journal
email
last changed 2021/06/03 23:29

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_922358 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002