CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id acadia20_516
id acadia20_516
authors Aghaei Meibodi, Mania; Voltl, Christopher; Craney, Ryan
year 2020
title Additive Thermoplastic Formwork for Freeform Concrete Columns
doi https://doi.org/10.52842/conf.acadia.2020.1.516
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 516-525.
summary The degree of geometric complexity a concrete element can assume is directly linked to our ability to fabricate its formwork. Additive manufacturing allows fabrication of freeform formwork and expands the design possibilities for concrete elements. In particular, fused deposition modeling (FDM) 3D printing of thermoplastic is a useful method of formwork fabrication due to the lightweight properties of the resulting formwork and the accessibility of FDM 3D printing technology. The research in this area is in early stages of development, including several existing efforts examining the 3D printing of a single material for formwork— including two medium-scale projects using PLA and PVA. However, the performance of 3D printed formwork and its geometric complexity varies, depending on the material used for 3D printing the formwork. To expand the existing research, this paper reviews the opportunities and challenges of using 3D printed thermoplastic formwork for fabricating custom concrete elements using multiple thermoplastic materials. This research cross-references and investigates PLA, PVA, PETG, and the combination of PLA-PVA as formwork material, through the design and fabrication of nonstandard structural concrete columns. The formwork was produced using robotic pellet extrusion and filament-based 3D printing. A series of case studies showcase the increased geometric freedom achievable in formwork when 3D printing with multiple materials. They investigate the potential variations in fabrication methods and their print characteristics when using different 3D printing technologies and printing materials. Additionally, the research compares speed, cost, geometric freedom, and surface resolution.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_409
id caadria2020_409
authors Naboni, Roberto and Paparella, Giulio
year 2020
title Circular Concrete Construction Through Additive FDM Formwork
doi https://doi.org/10.52842/conf.caadria.2020.1.233
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 233-242
summary One of the major downsides of concrete construction is the difficulty to be adapted, modified and deconstructed. In this work, we look at the potential enabled by the use of Additive Formwork based on Fused Deposition Modelling, in order to design and manufacture structural elements which can be assembled and disassembled easily. We call this new typology of structures Circular Concrete Construction. The paper illustrates an integrated computational workflow, which encompasses design and fabrication. Technological aspects of the 3D printed formwork and its application in reversible node and strut connections are described, with reference to the material and structural aspects, as well as prototyping experiments. The work is a proof of concept that opens perspectives for a new type of reversible concrete construction.
keywords Circular Concrete Construction; Additive Formwork; Additive Manufacturing; Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia20_290
id acadia20_290
authors Stuart-Smith, Robert; Danahy, Patrick; Revelo La Rotta, Natalia
year 2020
title Topological and Material Formation
doi https://doi.org/10.52842/conf.acadia.2020.1.290
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 290-299.
summary Extrusion-based additive manufacturing (AM) is gaining traction in the construction industry, offering lower environmental and economic costs through reductions in material and production time. AM designs achieve these reductions by increasing topological and geometric complexity, and through variable material distribution via custom-programmed robot tool paths. Limited approaches are available to develop AM building designs within a topologically free design search or to leverage material affects relative to structural performance. Established methods such as topological structural optimization (TSO) operate primarily within design rationalization, demonstrating less formal or aesthetic diversity than agent-based methods that exhibit behavioral character. While material-extrusion gravitational affects have been explored in AM research using viscous materials such as concrete and ceramics, established methods are not sufficiently integrated into simulation and structural analysis workflows. A novel three-part method is proposed for the design and simulation of extrusion-based AM that includes topoForm, an evolutionary multi-agent software capable of generating diverse topological designs; matForm, an agent-based AM robot tool-path generator that is geometrically agnostic and adapts material effects to local structural and geometric data; and matSim, a material-physics simulation environment that enables high-resolution AM material effects to be simulated and structurally and aesthetically analyzed. The research enables designers to incorporate and simulate material behavior prior to fabrication and produce instructions suitable for industrial robot AM. The approach is demonstrated in the generative design of four AM column-like elements.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_236p
id acadia20_236p
authors Anton, Ana; Jipa, Andrei; Reiter, Lex; Dillenburger, Benjamin
year 2020
title Fast Complexity
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 236-241
summary The concrete industry is responsible for 8% of the global CO2 emissions. Therefore, using concrete in more complex and optimized shapes can have a significant benefit to the environment. Digital fabrication with concrete aims to overcome the geometric limitations of standardized formworks and thereby reduce the ecological footprint of the building industry. One of the most significant material economy potentials is in structural slabs because they represent 85% of the weight of multi-story concrete structures. To address this opportunity, Fast Complexity proposes an automated fabrication process for highly optimized slabs with ornamented soffits. The method combines reusable 3D-printed formwork (3DPF) and 3D concrete printing (3DCP). 3DPF uses binder-jetting, a process with submillimetre resolution. A polyester coating is applied to ensure reusability and smooth concrete surfaces otherwise not achievable with 3DCP alone. 3DPF is selectively used only where high-quality finishing is necessary, while all other surfaces are fabricated formwork-free with 3DCP. The 3DCP process was developed interdisciplinary at ETH Zürich and employs a two-component material system consisting of Portland cement mortar and calcium aluminate cement accelerator paste. This fabrication process provides a seamless transition from digital casting to 3DCP in a continuous automated process. Fast Complexity selectively uses two complementary additive manufacturing methods, optimizing the fabrication speed. In this regard, the prototype exhibits two different surface qualities, reflecting the specific resolutions of the two digital processes. 3DCP inherits the fine resolution of the 3DPF strictly for the smooth, visible surfaces of the soffit, for which aesthetics are essential. In contrast, the hidden parts of the slab use the coarse resolution specific to the 3DCP process, not requiring any formwork and implicitly achieving faster fabrication. In the context of an increased interest in construction additive manufacturing, Fast Complexity explicitly addresses the low resolution, lack of geometric freedom, and limited reinforcement options typical to layered extrusion 3DCP, as well as the limited customizability in concrete technology.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_564
id acadia20_564
authors Cutajar, Sacha; Costalonga Martins, Vanessa; van der Hoven, Christo; Baszyñski, Piotr; Dahy, Hanaa
year 2020
title Towards Modular Natural Fiber-Reinforced Polymer Architecture
doi https://doi.org/10.52842/conf.acadia.2020.1.564
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 564-573.
summary Driven by the ecological crisis looming over the 21st century, the construction sector must urgently seek alternative design solutions to current building practices. In the wake of emergent digital technologies and novel material strategies, this research proposes a lightweight architectural solution using natural fiber-reinforced polymers (NFRP), which elicit interest for their inherent renewability as compared to high-performance yarns. Two associated fabrication techniques are deployed: tailored fiber placement (TFP) and coreless filament winding (CFW), both favored for their additive efficiencies granted by strategic material placement. A hypothesis is formed, postulating that their combination can leverage the standalone complexities of molds and frames by integrating them as active structural elements. Consequently, the TFP enables the creation of a 2D stiffness-controlled preform to be bent into a permanent scaffold for winding rigid 3D fiber bodies via CFW. A proof of concept is generated via the small-scale prototyping and testing of a stool, with results yielding a design of 1 kg capable of carrying 100 times its weight. Laying the groundwork for a scaled-up architectural proposal, the prototype instigates alterations to the process, most notably the favoring of a modular global design and lapped preform technique. The research concludes with a discussion on the resulting techno-implications for automation, deployment, material life cycle, and aesthetics, rekindling optimism towards future sustainable practices.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_192p
id acadia20_192p
authors Doyle, Shelby; Hunt, Erin
year 2020
title Melting 2.0
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 192-197
summary This project presents computational design and fabrication methods for locating standard steel reinforcement within 3D printed water-soluble PVA (polyvinyl alcohol) molds to create non-standard concrete columns. Previous methods from “Melting: Augmenting Concrete Columns with Water Soluble 3D Printed Formwork” and “Dissolvable 3D Printed Formwork: Exploring Additive Manufacturing for Reinforced Concrete” (Doyle & Hunt 2019) were adapted for larger-scale construction, including the introduction of new hardware, development of custom programming strategies, and updated digital fabrication techniques. Initial research plans included 3D printing continuous PVA formwork with a KUKA Agilus Kr10 R1100 industrial robotic arm. However, COVID-19 university campus closures led to fabrication shifting to the author’s home, and this phase instead relied upon a LulzBot TAZ 6 (build volume of 280 mm x 280 mm x 250 mm) with an HS+ (Hardened Steel) tool head (1.2 mm nozzle diameter). Two methods were developed for this project phase: new 3D printing hardware and custom GCode production. The methods were then evaluated in the fabrication of three non-standard columns designed around five standard reinforcement bars (3/8-inch diameter): Woven, Twisted, Aperture. Each test column was eight inches in diameter (the same size as a standard Sonotube concrete form) and 4 feet tall, approximately half the height of an architecturally scaled 8-foot-tall column. Each column’s form was generated from combining these diameter and height restrictions with the constraints of standard reinforcement placement and minimum concrete coverage. The formwork was then printed, assembled, cast, and then submerged in water to dissolve the molds to reveal the cast concrete. This mold dissolving process limits the applicable scale for the work as it transitions from the research lab to the construction site. Therefore, the final column was placed outside with its mold intact to explore if humidity and water alone can dissolve the PVA formwork in lieu of submersion.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2020_193
id caadria2020_193
authors Wang, Sihan, Liu, Chi, Zhang, Guo Li, Luo, Qi Huan, Xu, Weishun and Raspall, Felix
year 2020
title Digital Planting - Fabrication of Integrated Concrete Green Wall via Additive Manufacturing
doi https://doi.org/10.52842/conf.caadria.2020.1.145
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 145-151
summary Green walls are becoming a symbol of modern architecture representing sustainability and aesthetics. However, the fabrication of wall components that can nurture the growth of plants and other living creatures requires components to locate soil and other substrates, a controlled rugosity for plants and moss to grip, and conduits to distribute water and nutrients. This is normally done by adding extra attachments to the façade. In this paper, we introduce a digital approach to design and produce architectural components that can integrate green wall's functional requirements into the wall itself. Such components are fabricated via Additive Manufacturing (AM) extrusion with the assists of robotic arms.
keywords Green Wall; Additive Manufacturing; Robotic Fabrication; Clay Printing
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2020_377
id sigradi2020_377
authors Xu, Weishun; Huang, Zixun
year 2020
title Robotic Fabrication of Sustainable Hybrid Formwork with Clay and Foam for Concrete Casting
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 377-383
summary This paper presents a hybrid formwork fabrication method utilizing additive manufacturing with clay on top of curved foam surfaces robotically fabricated with hot wire. The primary focus of this study is to develop a relatively efficient and highly sustainable formwork manufacturing method capable of producing geometrically complex modular concrete building components. The method leverages fluidity and recyclability of clay to produce uniquely shaped, free-form parts of the mold, and reduces overall production time by using foam for shared mold support/enclosure. A Calibration and tool path generating method based on computational modeling to integrate the two systems are also subsequently developed.
keywords Robotic fabrication, Hybrid formwork, Mass customization, Clay printing, Foam cutting
series SIGraDi
email
last changed 2021/07/16 11:49

_id acadia20_330
id acadia20_330
authors Yablonina, Maria; Kubail Kalousdian, Nicolas; Menges, Achim
year 2020
title Designing [with] Machines
doi https://doi.org/10.52842/conf.acadia.2020.1.330
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 330-339.
summary The aim of this research is to investigate the potential of a design and fabrication workflow that is centered around the development of task- and site-specific robotic systems for in-situ architectural making: Designing [with] Machines (D[w]M). The project proposes an alternative strategy to the established logic of design for production, in which design decisions are a function of affordances and limitations of available fabrication equipment. D[w]M engages the designer to define their own parameter ranges for the fabrication process through simultaneous development of fabrication machines and complimentary material, and architectural systems. In addition to affording more flexibility, D[w]M offers an opportunity to develop robotic fabrication systems uniquely tailored for deployment on sites that are not suited for conventional robotic equipment. In this paper, D[w]M workflow is outlined in the description of a task- and site-specific robotic system for additive fabrication of a tensile filament-wound object in an in-situ environment. Specifically, the presented project investigates design opportunities afforded by cooperative operation of multiple mobile single-axis robots deployed along linear structural elements of the given site. In utilizing column and beam elements as machine locomotion substrates, the system contributes them to the robotic assembly as parts of the in-situ digital fabrication machine.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_526
id acadia20_526
authors Bruce, Mackenzie; Clune, Gabrielle; Culligan, Ryan; Vansice, Kyle; Attraya, Rahul; McGee, Wes; Yan Ng, Tsz
year 2020
title FORM{less}
doi https://doi.org/10.52842/conf.acadia.2020.1.526
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 526-535
summary Form{less} focuses on the creation of complex thin-shell concrete forms using robotically thermoformed plastic molds. Typically, similar molds would be created using the vacuum forming process, producing direct replications of the pattern. Creating molds with this process is not only time- and material-intensive but also costly if customization is involved. Thin-shell concrete forms often require a labor-intensive process of manually finishing the open-face surface. The devised process of thermoforming two nested molds allows the concrete to be cast in between, with finished surfaces on both sides. Molds made with polyethylene terephthalate glycol (PETG) allow the formwork to be reused and recycled. The research and fabrication work include the development of heating elements and the creation of the robotic process for forming the PETG. The PETG is manipulated via a robotic arm, with a custom magnetic end effector. The integration of robotics not only enables precision for manufacturing but also allows for replicability with unrestricted threedimensional deformation. The repeatable process allows for rapid prototyping and geometric customization. Design options are then simulated computationally using SuperMatterTools, enabling further design exploration of this process without the need for extensive physical prototyping. This research aims to develop a process that allows for the creation of complex geometries while reducing the amount of material waste used for concrete casting. The novelty of the process created by dynamically forming PETG allows for quick production of formwork that is both customizable and replicable. This method of creating double-sided building components is simulated at various scales of implementation.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_363
id sigradi2020_363
authors Ulloa Aguayo, Paula Ignacia; García-Alvarado, Rodrigo; Osses Coloma, Mauricio; Pérez Fargallo, Alexis
year 2020
title Robotic Adaptations for Building Works; assembly of concrete blocks “stay-in-place” with robots
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 363-370
summary The progress fostered by the fourth industrial revolution requires building methods according to productivity and sustainability, which also considers the human factor. Therefore, this work addresses safety and efficiency of construction tasks and transformation by robots. As a case study, assembly process of “stay-in-place” concrete blocks is studied, consisting of prefabricated insitu molding pieces with thermal insulation, and finishing included. The movements of the worker in the assembly are evaluated, to be supported by robot procedure and its implications in architectural design. By implementing this technology, human risks in the execution of a work are reduced, allowing greater constructive productivity.
keywords Robots in Architecture, Building Works, Assembly, Digital Fabrication
series SIGraDi
email
last changed 2021/07/16 11:49

_id acadia20_148p
id acadia20_148p
authors Vansice, Kyle; Attraya, Rahul; Culligan, Ryan; Johnson, Benton; Sondergaard, Asbjorn; Peters, Nate
year 2020
title Stereoform Slab
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 148-153
summary Stereoform Slab is both a pavilion and a prototype - an exhibition for the 2019 Chicago Architectural Biennial. It is an experiment in how digital form-finding and robotics can be leveraged to rethink the future of concrete construction. Stereoform Slab examines the role of one of the most ubiquitous horizontal elements in the city - the concrete slab, also the most common element in contemporary construction. Using smarter forming systems - in this case, a ruled-surface-derived, robotic hotwire process - the Stereoform Slab prototype proved that the amount of material used and waste generated could be minimized without increasing construction complexity, by about 20% over a conventional system. Stereoform also extends the conventional concrete span (column spacing), specifically in Chicago, from 30’ to 45’. In developing a concrete forming system that affords added flexibility without increasing construction costs, it is possible to reduce embodied carbon significantly. The method allows reducing carbon in buildings that aren’t typically the subject of advanced architectural design or rigorous optimization – conventional buildings that compose a majority of our built environment, and its respective contributions to global carbon emissions. Stereoform is the result of a multi-objective design optimization process. Optimal materialization, according to the compressive/tensile physics present in beam design, was balanced against the fabrication constraints of a singularly ruled-surface, which enables fast form-making using robotic hotwire cutting. SOM and Autodesk collaborated to mirror the approach developed to optimize Stereoform slab as a pavilion, to the building scale, using the multi-objective optimization platform Refinery. Project Refinery allowed the team to create a hyper-responsive system design that could adapt to any number of varying programmatic conditions and loading patterns. The development of this approach is a crucial step in making optimization techniques flexible enough to balance the number of competing parameters in the design process available and accessible to a broader design audience within architecture and engineering.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id acadia20_130p
id acadia20_130p
authors Swingle, Tyler; Zampini, Davide; Clifford, Brandon
year 2020
title Patty & Jan
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 130-135
summary The construction of architecture relies on an orchestra of moving parts and components throughout the process. These components are designed for the primary loads of the ultimate resting positions, but must also accommodate for secondary loads that occur during the assembly process. Safety, budget, and timing are the most influential factors in conducting the orchestra of architectural construction and typically set the tempo. Patty & Jan explore the curious and playful possibilities of secondary loads such as movement, momentum, and impact. This impractical assembly is not intended to negate practical considerations, but to elevate the field of construction above problem-solving. Patty & Jan builds upon previous research into moving massive masonry elements with little energy by controlling the center of mass (CoM) via physical computation and innovative concrete technologies such as proprietary chemical admixtures and special lightweight additions to entrain air as well as impart high fluidity. The resulting densities of the two concrete mixtures range from one-third the density to double the density of conventional concrete. Patty & Jan contributes to this ongoing research by incorporating the fourth dimension into the assembly process. Patty & Jan are a partnership. They have a reciprocal relationship with one another that ensures one cannot assemble without the other. Beginning with Patty and Jan at a pre-determined distance apart, a weighted tool is removed from Patty to alter the CoM and create a righting moment. Rotating along the riding surface, Patty over rotates to collide with Jan and strikes a resounding echo. The controlled impact triggers Jan first to rotate backward, rebound off its braking surface, and then counter-rotate towards Patty. The two meet along their assembly surfaces in the middle and slip effortlessly into their final assembled position. The resulting performance of Patty & Jan is an embedded intelligence of a theatrical assembly between two massive concrete masonry units (MCMU) through their momentum. Patty & Jan demonstrate the ability to predict the inherent movements and autonomous assemblies of MCMUs. It extends the potential of assembly methods to be social generators such as spectacles or performances. This research is a foundation for thinking about more extensive and more complex construction choreographies that engage material as well as human bodies in the building of architecture.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id ecaade2020_484
id ecaade2020_484
authors Aguilar, Pavel, Borunda, Luis and Pardal, Cristina
year 2020
title Additive Manufacturing of Variable-Density Ceramics, Photocatalytic and Filtering Slats
doi https://doi.org/10.52842/conf.ecaade.2020.1.097
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 97-106
summary Additive Manufacturing (AM) offers the potential development of novel architectural applications of ceramic building components that can be engineered at the level of material to the extent of designing its performance and properties by density variations. This research presents a computational method and fabrication technique emulating complex material behavior via AM of intricate geometries and presents components with photocatalytic and climatic properties. It proposes an innovative application of AM of ceramic components in architecture to explore potential bioclimatic and antipollution performative use. Lattices are defined and manufactured with density variation gradients by tracing rectilinear clay deposition toolpaths that induce porosity intended for fluid filtering and to maximize sun exposure. The design method for photocatalytic, particle filtration and evaporative cooling local characterization introduced by complex patterning elements in architectural envelope slat components processed with radiation analysis influenced design are validated by simulation and experimental testing on specimens manufactured by paste extrusion.
keywords Ceramic 3D Printing; Paste Extrusion; Photocatalytic Filter; Performative Design
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2020_348
id ecaade2020_348
authors Chiujdea, Ruxandra Stefania and Nicholas, Paul
year 2020
title Design and 3D Printing Methodologies for Cellulose-based Composite Materials
doi https://doi.org/10.52842/conf.ecaade.2020.1.547
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 547-554
summary A growing awareness of architecture's environmental responsibility is encouraging a shift from an industrial age to an ecological one. This shift emphasises a new era of materiality, characterised by a special focus on bio-polymers. The potential of these materials is to address unsustainable modes of resource consumption, and to rebalance our relationship with the natural. However, bio-polymers also challenge current design and manufacturing practices, which rely on highly manufactured and standardized materials. In this paper, we present material experiments and digital design and fabrication methodologies for cellulose-based composites, to create porous biodegradable panels. Cellulose, the most abundant bio-polymer on Earth, has potential for differentiated architectural applications. A key limit is the critical role of additive fabrication methods for larger scale elements, which are a subject of ongoing research. In this paper, we describe how controlling the interdependent relationship between the additive manufacturing process and the material grading enables the manipulation of the material's performance, and the related control aspects including printing parameters such as speed, nozzle diameter, air flow, etc., as well as tool path trajectory. Our design exploration responds to the emerging fabrication methods to achieve different levels of porosity and depth which define the geometry of a panel.
keywords cellulose-based composite material; additive manufacturing; material grading; digital fabrication; spatial print trajectory; porous panels
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2020_184
id ecaade2020_184
authors Kycia, Agata and Guiducci, Lorenzo
year 2020
title Self-shaping Textiles - A material platform for digitally designed, material-informed surface elements
doi https://doi.org/10.52842/conf.ecaade.2020.2.021
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 21-30
summary Despite the cutting edge developments in science and technology, architecture to a large extent still tends to favor form over matter by forcing materials into predefined, often superficial geometries, with functional aspects relegated to materials or energy demanding mechanized systems. Biomaterials research has instead shown a variety of physical architectures in which form and matter are intimately related (Fratzl, Weinkamer, 2007). We take inspiration from the morphogenetic processes taking place in plants' leaves (Sharon et al., 2007), where intricate three-dimensional surfaces originate from in-plane growth distributions, and propose the use of 3D printing on pre-stretched textiles (Tibbits, 2017) as an alternative, material-based, form-finding technique. We 3D print open fiber bundles, analyze the resulting wrinkling phenomenon and use it as a design strategy for creating three-dimensional textile surfaces. As additive manufacturing becomes more and more affordable, materials more intelligent and robust, the proposed form-finding technique has a lot of potential for designing efficient textile structures with optimized structural performance and minimal usage of material.
keywords self-shaping textiles; material form-finding; wrinkling; surface instabilities; bio-inspired design; leaf morphogenesis
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2020_060
id caadria2020_060
authors Lesna, Joanna Maria and Nicholas, Paul
year 2020
title De gradus - Programming heterogeneous performance of functionally graded bio-polymers for degradable agricultural shading structures.
doi https://doi.org/10.52842/conf.caadria.2020.2.383
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 383-392
summary This paper presents an holistic approach to the digital design and fabrication of fungi- and algae-based biopolymers, based on studies and simulations of material properties and post-fabrication behavior. The research is motivated by the problem of plastic waste, the need to create more sustainable manufacturing processes, and the opportunity for material composition and organization to be informed by performance, leading to homogenous, complex and integral architectural elements for temporary architecture of agricultural shading systems. The paper details design and specification methods for functionally graded biopolymer panels, as well as fabrication methods through the making of prototypical built elements. The research details parallel trajectories of: material exploration made out of renewable and biodegradable resources available and abundant in every habitat on the earth; advancement in tools and methods for in-situ robotic additive manufacturing of viscous bio-polymers; development of the strategy for functional grading of the material properties to optimize site specificity and material distribution, and to reduce building material waste. It presents comparative material characterizations, an integrated simulation-based approach to support the process of programming localized performance, and architectural application tested via full-scale prototypes.
keywords functionally graded material; bio-polymer; programmable matter; robotic farbication; multiscale modeling
series CAADRIA
email
last changed 2022/06/07 07:52

_id ijac202018206
id ijac202018206
authors Mitterberger, Daniela and Tiziano Derme
year 2020
title Digital soil: Robotically 3D-printed granular bio-composites
source International Journal of Architectural Computing vol. 18 - no. 2, 194-211
summary Organic granular materials offer a valid alternative for non-biodegradable composites widely adopted in building construction and digital fabrication. Despite the need to find alternatives to fuel-based solutions, current material research in architecture mostly supports strategies that favour predictable, durable and homogeneous solutions. Materials such as soil, due to their physical properties and volatile nature, present new challenges and potentials to change the way we manufacture, built and integrate material systems and environmental factors into the design process. This article proposes a novel fabrication framework that combines high-resolution three-dimensional- printed biodegradable materials with a novel robotic-additive manufacturing process for soil structures. Furthermore, the research reflects on concepts such as affordance and tolerance within the field of digital fabrication, especially in regards to bio-materials and robotic fabrication. Soil as a building material has a long tradition. New developments in earth construction show how earthen buildings can create novel, adaptive and sustainable structures. Nevertheless, existing large-scale earthen construction methods can only produce highly simplified shapes with rough geometrical articulations. This research proposes to use a robotic binder-jetting process that creates novel organic bio-composites to overcome such limitations of common earth constructions. In addition, this article shows how biological polymers, such as polysaccharides-based hydrogels, can be used as sustainable, biodegradable binding agents for soil aggregates. This article is divided into four main sections: architecture and affordance; tolerance versus precision; water-based binders; and robotic fabrication parameters. Digital Soil envisions a shift in the design practice and digital fabrication that builds on methods for tolerance handling. In this context, material and geometrical properties such as material porosity, hydraulic conductivity and natural evaporation rate affect the architectural resolution, introducing a design process driven by matter. Digital Soil shows the potential of a fully reversible biodegradable manufacturing process for load-bearing architectural elements, opening up new fields of application for sustainable material systems that can enhance the ecological potential of architectural construction.
keywords Robotic fabrication, adaptive materials, water-based fabrication, affordance, organic matter, additive manufacturing
series journal
email
last changed 2020/11/02 13:34

_id acadia20_214p
id acadia20_214p
authors Rael, Ronald; San Fratello, Virginia; Curth, Alexander; Arja, Logman
year 2020
title Casa Covida
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 214-219
summary Casa Covida advances large scale earthen additive manufacturing by establishing new methods for the creation of interconnected, partially enclosed dome structures using a lightweight SCARA robotic arm and custom toolpathing software in combination with traditional earthen construction techniques. In the time of Covid-19, digital fabrication and construction are made difficult by a diminished supply chain and the safety concerns associated with a large team. In this project, we use local material, dug from the site itself, and two-three people working outdoors in a socially distanced manner. Three rooms are printed on-site in 500mm intervals by shifting the 3D printer between stations connected by a low-cost 4th-axis constructed from plywood. This system allows virtually simultaneous construction between domes, continuously printing without waiting for drying time on one structure so that a continued cycle of printing can proceed through the three stations 2-4 times a day, thereby minimizing machine downtime. The machine control software used in this project has been developed from the framework of Potterware, a tool built by our team to allow non-technical users to design and 3D print functional ceramics through an interactive web interface.
series ACADIA
type project
email
last changed 2021/10/26 08:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_782763 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002