CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 411

_id artificial_intellicence2019_117
id artificial_intellicence2019_117
authors Stanislas Chaillou
year 2020
title ArchiGAN: Artificial Intelligence x Architecture
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_8
summary AI will soon massively empower architects in their day-to-day practice. This article provides a proof of concept. The framework used here offers a springboard for discussion, inviting architects to start engaging with AI, and data scientists to consider Architecture as a field of investigation. In this article, we summarize a part of our thesis, submitted at Harvard in May 2019, where Generative Adversarial Neural Networks (or GANs) get leveraged to design floor plans and entire buildings .
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id acadia20_594
id acadia20_594
authors Farahbakhsh, Mehdi; Kalantar, Negar; Rybkowski, Zofia
year 2020
title Impact of Robotic 3D Printing Process Parameters on Bond Strength
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 594-603.
doi https://doi.org/10.52842/conf.acadia.2020.1.594
summary Additive manufacturing (AM), also known as 3D printing, offers advantages over traditional construction technologies, increasing material efficiency, fabrication precision, and speed. However, many AM projects in academia and industrial institutions do not comply with building codes. Consequently, they are not considered safe structures for public utilization and have languished as exhibition prototypes. While three discrete scales—micro, mezzo, and macro—are investigated for AM with paste in this paper, structural integrity has been tackled on the mezzo scale to investigate the impact of process parameters on the bond strength between layers in an AM process. Real-world material deposition in a robotic-assisted AM process is subject to environmental factors such as temperature, humidity, the load of upper layers, the pressure of the nozzle on printed layers, etc. Those factors add a secondary geometric characteristic to the printed objects that was missing in the initial digital model. This paper introduces a heuristic workflow for investigating the impacts of three selective process parameters on the bond strength between layers of paste in the robotic-assisted AM of large-scale structures. The workflow includes a method for adding the secondary geometrical characteristic to the initial 3D model by employing X-ray computerized tomography (CT) scanning, digital image processing, and 3D reconstruction. Ultimately, the proposed workflow offers a pattern library that can be used by an architect or artificial intelligence (AI) algorithms in automated AM processes to create robust architectural forms.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id artificial_intellicence2019_15
id artificial_intellicence2019_15
authors Antoine Picon
year 2020
title What About Humans? Artificial Intelligence in Architecture
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019)
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_2
summary Artificial intelligence is about to reshape the architectural discipline. After discussing the relations between artificial intelligence and the broader question of automation in architecture, this article focuses on the future of the interaction between humans and intelligent machines. The way machines will understand architecture may be very different from the reading of humans. Since the Renaissance, the architectural discipline has defined itself as a conversation between different stakeholders, the designer, but also the clients and the artisans in charge of the realization of projects. How can this conversation be adapted to the rise of intelligent machines? Such a question is not only a matter of design effectiveness. It is inseparable from expressive and artistic issues. Just like the fascination of modernist architecture for industrialization was intimately linked to the quest for a new poetics of the discipline, our contemporary interest for artificial intelligence has to do with questions regarding the creative core of the architectural discipline.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id sigradi2020_60
id sigradi2020_60
authors Asmar, Karen El; Sareen, Harpreet
year 2020
title Machinic Interpolations: A GAN Pipeline for Integrating Lateral Thinking in Computational Tools of Architecture
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 60-66
summary In this paper, we discuss a new tool pipeline that aims to re-integrate lateral thinking strategies in computational tools of architecture. We present a 4-step AI-driven pipeline, based on Generative Adversarial Networks (GANs), that draws from the ability to access the latent space of a machine and use this space as a digital design environment. We demonstrate examples of navigating in this space using vector arithmetic and interpolations as a method to generate a series of images that are then translated to 3D voxel structures. Through a gallery of forms, we show how this series of techniques could result in unexpected spaces and outputs beyond what could be produced by human capability alone.
keywords Latent space, GANs, Lateral thinking, Computational tools, Artificial intelligence
series SIGraDi
email
last changed 2021/07/16 11:48

_id ecaade2020_227
id ecaade2020_227
authors Bielski, Jessica, Langenhan, Christoph, Weyand, Babara, Neuber, Markus, Eisenstadt, Viktor and Althoff, Klaus-Dieter
year 2020
title Topological Queries and Analysis of School Buildings Based on Building Information Modeling (BIM) Using Parametric Design Tools and Visual Programming to Develop New Building Typologies
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 279-288
doi https://doi.org/10.52842/conf.ecaade.2020.2.279
summary School buildings are currently one of the largest portions of planning and building projects in Germany. In order to reflect the continuous developments in school building construction with constantly changing spatial requirements, an approach to analyse, derive and combine patterns of schools is proposed to adapt school typologies accordingly. Therefore, the topology is analysed, concerning interconnection methods, such as adjacency, accessibility, depth, and flow. The geometric analysis of e.g. room sizes or spatial proportions is enhanced by including grouping of rooms, estimated room clusters, or room shapes. Furthermore, text-matching is used to determine e.g. room program fulfilment, or assigning functional room descriptions to predefined room types, revealing huge differences of terms throughout time and architects. First results of the analyses show a relevant correlation between spatial proportion and room types.
keywords school building typologies; building information modeling (BIM); artificial intelligence (AI); topology; spatial analysis; digital semantic model
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia20_74
id acadia20_74
authors Bucklin, Oliver; Born, Larissa; Körner, Axel; Suzuki, Seiichi; Vasey, Lauren; T. Gresser, Götz; Knippers, Jan; Menges,
year 2020
title Embedded Sensing and Control
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 74-83.
doi https://doi.org/10.52842/conf.acadia.2020.1.074
summary This paper investigates an interactive and adaptive control system for kinetic architectural applications with a distributed sensing and actuation network to control modular fiber-reinforced composite components. The aim of the project was to control the actuation of a foldable lightweight structure to generate programmatic changes. A server parses input commands and geometric feedback from embedded sensors and online data to drive physical actuation and generate a digital twin for real-time monitoring. Physical components are origami-like folding plates of glass and carbon-fiber-reinforced plastic, developed in parallel research. Accelerometer data is analyzed to determine component geometry. A component controller drives actuators to maintain or move towards desired positions. Touch sensors embedded within the material allow direct control, and an online user interface provides high-level kinematic goals to the system. A hierarchical control system parses various inputs and determines actuation based on safety protocols and prioritization algorithms. Development includes hardware and software to enable modular expansion. This research demonstrates strategies for embedded networks in interactive kinematic structures and opens the door for deeper investigations such as artificial intelligence in control algorithms, material computation, as well as real-time modeling and simulation of structural systems.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_253
id ecaade2020_253
authors Buš, Peter
year 2020
title User-driven Configurable Architectural Assemblies - Towards artificial intelligence-embedded responsive environments
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 483-490
doi https://doi.org/10.52842/conf.ecaade.2020.2.483
summary The paper theoretically elaborates the idea of individual users' customisation activities to create and configure responsive spatial scenarios by means of reconfigurable interactive adaptive assemblies. It reflects Gordon Pask's concept of human and device interaction based on its unpredictable notion speculating a potential to be enhanced by artificial intelligence learning approach of an assembly linked with human activator's participative inputs. Such a link of artificial intelligence, human agency and interactive assembly capable to generate its own spatial configurations by itself and users' stimuli may lead to a new understanding of humans' role in the creation of spatial scenarios. The occupants take the prime role in the evolution of spatial conditions in this respect. The paper aims to position an interaction between the human agents and artificial devices as a participatory and responsive design act to facilitate creative potential of participants as unique individuals without pre-specified or pre-programmed goal set by the designer. Such an approach will pave a way towards true autonomy of responsive built environments, determined by an individual human agent and behaviour of the spatial assemblies to create authentic responsive built forms in a digital and physical space.
keywords deployable systems; responsive assemblies; embedded intelligence; Learning-to-Design-and-Assembly method; Conversation Theory
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2020_017
id ecaade2020_017
authors Chan, Yick Hin Edwin and Spaeth, A. Benjamin
year 2020
title Architectural Visualisation with Conditional Generative Adversarial Networks (cGAN). - What machines read in architectural sketches.
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 299-308
doi https://doi.org/10.52842/conf.ecaade.2020.2.299
summary As a form of visual reasoning, sketching is a human cognitive activity instrumental to architectural design. In the process of sketching, abstract sketches invoke new mental imageries and subsequently lead to new sketches. This iterative transformation is repeated until the final design emerges. Artificial Intelligence and Deep Neural Networks have been developed to imitate human cognitive processes. Amongst these networks, the Conditional Generative Adversarial Network (cGAN) has been developed for image-to-image translation and is able to generate realistic images from abstract sketches. To mimic the cyclic process of abstracting and imaging in architectural concept design, a Cyclic-cGAN that consists of two cGANs is proposed in this paper. The first cGAN transforms sketches to images, while the second from images to sketches. The training of the Cyclic-cGAN is presented and its performance illustrated by using two sketches from well-known architects, and two from architecture students. The results show that the proposed Cyclic-cGAN can emulate architects' mode of visual reasoning through sketching. This novel approach of utilising deep neural networks may open the door for further development of Artificial Intelligence in assisting architects in conceptual design.
keywords visual cognition; design computation; machine learning; artificial intelligence
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia20_406
id acadia20_406
authors Duong, Eric; Vercoe, Garrett; Baharlou, Ehsan
year 2020
title Engelbart
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 406-415.
doi https://doi.org/10.52842/conf.acadia.2020.1.406
summary The internet has long been viewed as a cyberspace of free and collective information, allowing for an increase in the diversity of ideas and viewpoints available to the general public. However, critics argue that the emergence of personalization algorithms on social media and other internet platforms instead reduces information diversity by forming “filter bubbles"" of viewpoints similar to the user’s own. The adoption of these personalization algorithms is due in part to advancements in natural language processing, which allow for textual analysis at unprecedented scales. This paper aims to utilize natural language processing and architectural spatial principles to present social media from a collective viewpoint rather than a personalized one. To accomplish this, the paper introduces Engelbart, a data-driven agent-based system, where real-time Twitter conversations are visualized within a two-dimensional environment. This environment is interacted with by the artificial intelligence (AI) agent, Engelbart, which summarizes crowdsourced thoughts and feelings about current trending topics. The functionality of this web application comes from the natural language processing of thousands of tweets per minute throughout several layers of operations, including sentiment analysis and word embeddings. Presented as an understandable interface, it incorporates the values of cybernetics, cyberspace, agent-based modeling, and data ethics to show the potential for social media to become a more transparent space for collective discussion.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_720
id acadia20_720
authors Farahi, Behnaz
year 2020
title Can the subaltern speak?
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 720-729.
doi https://doi.org/10.52842/conf.acadia.2020.1.720
summary How could design be used as a method of interrogation for addressing larger cultural, social, or political issues? How could we explore the possibility of using emerging technologies such as robotics and artificial intelligence in order to subvert the status quo? The project presented in this paper is inspired by the historical masks, known as Niqab, worn by the Bandari women from southern Iran. It has been said that these masks were developed during Portuguese colonial rule as a way to protect the wearer from the gaze of slave masters looking for pretty women. In this project two robotic masks seemingly begin to develop their own language to communicate with each other, blinking their eyelashes in rapid succession, using Morse code generated by artificial intelligence (AI). The project draws on a Facebook experiment where two AI bots began to develop their own language. It also draws on an incident when an American soldier used his eyes to blink the word “TORTURE” using Morse code during his captivity in Vietnam, and stories of women using code to report domestic abuse during the COVID-19 lockdown. Here the “wink” of the sexual predator is subverted into a language to protect women from the advances of a predator. Through the lens of the design methodology that is referred to as “critical making,” this project bridges AI, interactive design, and critical thinking. Moreover, while most feminist discourse takes a Eurocentric view, this project addresses feminism from a non-Western perspective.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_683
id sigradi2020_683
authors Granero, Adriana Edith; Piegari, Ricardo Gustavo
year 2020
title How does AI affect higher design education? An investigation to open the debate
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 683-688
summary This research tries to open the debate about the possibility offered by Artificial Intelligence. Is there a possibility that AI will help us teach in the Architecture career? Can the student have an AI tutor? The architect's learning is carried out through University Education, which is a complex system of: physical spaces, duration and organization of studies, financing, diplomas and degrees, teaching staff and methods, population or applicants, admission requirements. How does AI affect University Education? Will it generate more opportunities? We proposed an experience with AI and images to evaluate this convergent culture.
keywords Digital Image, Knowledge and Image Generation, Artificial Intelligence, Algorithmic Images, Generative Images
series SIGraDi
email
last changed 2021/07/16 11:52

_id caadria2020_113
id caadria2020_113
authors Kim, Jun Sik and Sweet, Kevin
year 2020
title Mass-tailorisation - through Three Analogies - Resolving the paradox of choice in the architecture design process through the digital continuum of mass-tailorisation
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 527-536
doi https://doi.org/10.52842/conf.caadria.2020.2.527
summary The advent of digital tools and technologies has provided designers with the ability to create in complexities and volumes of unprecedented scale. Thus, perhaps the designer has also become prone to the paradox of choice than ever before, at a time which the decision-making process of the designer is increasing in its significance due to the near-limitless possibilities of design. Mass-tailorisation aims to aid the decision-making process of the designer in a world of unprecedented possibilities but of limited practicalities of reality by narrowing the viable solutions through non-critical design contexts and biases. Mass-tailorisation begins as a reaction to mass-customisation, however, through the aid of digital continuum and the pursuit of the Move 37 phenomenon, mass-tailorisation aims to aid the designer of the modern times.
keywords Mass-tailorisation; Paradox of Choice; Artificial Intelligence; Decision-making; Mass-customisation
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia20_698
id acadia20_698
authors Kimm, Geoff; Burry, Mark
year 2020
title Steering into the Skid
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 698-707.
doi https://doi.org/10.52842/conf.acadia.2020.1.698
summary What if any perceived risks of lost authorship and artistic control posed by a wholesale embrace of artificial intelligence by the architectural profession were instead opportunities? AI’s potential to automate design has been pursued for over 50 years, yet aspirations of early researchers are not fully realized. Nonetheless, AI’s advances continue to be rapid; it is an increasingly viable adjunct to architectural practice, and there are fundamental reasons for why the perceived “risks” of AI cannot be dismissed lightly. Architects’ professional role at the intersection of social issues and technology, however, may allow them to avoid the obsolescence faced by other roles. To do this, we propose architects responsively arbitrage an ever-changing gap between maturing AI and mutable social expectations— arbitrage in the sense of seeking to exercise individual judgment to negotiate between diverse considerations and capacities for mutual advantage. Rather than feel threatened, evolving architectural practice can augment an expanded design process to generate and embed new subtleties and expectations that society may judge contemporary AI alone as being unable to achieve. Although there can be no road map to the future of AI in architecture, historical misevaluations of machines and our own human capabilities inhibit the intertwined, synergistic, and symbiotic union with AI needed to avoid a zero-sum confrontation. To act myopically, defensively, or not at all risks straitjacketing future definitions of what it means to be an architect, designer, or even a professionally unaligned creative and productive human being.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_501
id ecaade2020_501
authors La Russa, Federico Mario and Santagati, Cettina
year 2020
title From the Cognitive to the Sentient Building - Machine Learning for the preservation of museum collections in historical architecture
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 507-516
doi https://doi.org/10.52842/conf.ecaade.2020.2.507
summary The aim of this paper is to evaluate the efficacy of the Digital Twin approach to achieving Sentient buildings able to develop preservation and conservation action plans from environmental data. The case study is based on the integration of an H-BIM model with an AI-based Decision Support System implementing Machine Learning techniques for conserving museum collections in historical buildings.
keywords Digital Twin; Historical Architecture; Artificial Intelligence; Decision Support System; Museum Collections; Preventive Conservation
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2020_167
id ecaade2020_167
authors Newton, David, Piatkowski, Dan, Marshall, Wesley and Tendle, Atharva
year 2020
title Deep Learning Methods for Urban Analysis and Health Estimation of Obesity
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 297-304
doi https://doi.org/10.52842/conf.ecaade.2020.1.297
summary In the 20th and 21st centuries, urban populations have increased dramatically with a whole host of impacts to human health that remain unknown. Research has shown significant correlations between design features in the built environment and human health, but this research has remained limited. A better understanding of this relationship could allow urban planners and architects to design healthier cities and buildings for an increasingly urbanized population. This research addresses this problem by using discriminative deep learning in combination with satellite imagery of census tracts to estimate rates of obesity. Data from the California Health Interview Survey is used to train a Convolutional Neural Network that uses satellite imagery of selected census tracts to estimate rates of obesity. This research contributes knowledge on methods for applying deep learning to urban health estimation, as well as, methods for identifying correlations between urban morphology and human health.
keywords Deep Learning; Artificial Intelligence; Urban Planning; Health; Remote Sensing
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia20_130
id acadia20_130
authors Newton, David
year 2020
title Anxious Landscapes
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 130-137.
doi https://doi.org/10.52842/conf.acadia.2020.2.130
summary Advances in the field of machine learning over the last decade have revolutionized artificial intelligence by providing a flexible means to build analytic, predictive, and generative models from large datasets, but the allied design disciplines have yet to apply these tools at the urban level to draw analytic insights on how the built environment might impact human health. Previous research has found numerous correlations between the built environment and both physical and mental health outcomes—suggesting that the design of our cities may have significant impacts on human health. Developing methods of analysis that can provide insight on the correlations between the built environment and human health could help the allied design disciplines shape our cities in ways that promote human health. This research addresses these issues and contributes knowledge on the use of deep learning (DL) methods for urban analysis and mental health, specifically anxiety. Mental health disorders, such as anxiety, have been estimated to account for the largest proportion of global disease burden. The methods presented allow architects, planners, and urban designers to make use of large remote-sensing datasets (e.g., satellite and aerial images) for design workflows involving analysis and generative design tasks. The research also contributes insight on correlations between anxiety prevalence and specific urban design features—providing actionable intelligence for the planning and design of the urban fabric.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia23_v1_242
id acadia23_v1_242
authors Noel, Vernelle A.
year 2023
title Carnival + AI: Heritage, Immersive virtual spaces, and Machine Learning
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 242-245.
summary Built on a Situated Computations framework, this project explores preservation, reconfiguration, and presentation of heritage through immersive virtual experiences, and machine learning for new understandings and possibilities (Noel 2020; 2017; Leach and Campo 2022; Leach 2021). Using the Trinidad and Tobago Carnival - hereinafter referred to as Carnival - as a case study, Carnival + AI is a series of immersive experiences in design, culture, and artificial intelligence (AI). These virtual spaces create new digital modes of engaging with cultural heritage and reimagined designs of traditional sculptures in the Carnival (Noel 2021). The project includes three virtual events that draw on real events in the Carnival: (1) the Virtual Gallery, which builds on dancing sculptures in the Carnival and showcases AI-generated designs; (2) Virtual J’ouvert built on J’ouvert in Carnival with AI-generated J’ouvert characters specific; and (3) Virtual Mas which builds on the masquerade.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia20_668
id acadia20_668
authors Pasquero, Claudia; Poletto, Marco
year 2020
title Deep Green
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 668-677.
doi https://doi.org/10.52842/conf.acadia.2020.1.668
summary Ubiquitous computing enables us to decipher the biosphere’s anthropogenic dimension, what we call the Urbansphere (Pasquero and Poletto 2020). This machinic perspective unveils a new postanthropocentric reality, where the impact of artificial systems on the natural biosphere is indeed global, but their agency is no longer entirely human. This paper explores a protocol to design the Urbansphere, or what we may call the urbanization of the nonhuman, titled DeepGreen. With the development of DeepGreen, we are testing the potential to bring the interdependence of digital and biological intelligence to the core of architectural and urban design research. This is achieved by developing a new biocomputational design workflow that enables the pairing of what is algorithmically drawn with what is biologically grown (Pasquero and Poletto 2016). In other words, and more in detail, the paper will illustrate how generative adversarial network (GAN) algorithms (Radford, Metz, and Soumith 2015) can be trained to “behave” like a Physarum polycephalum, a unicellular organism endowed with surprising computational abilities and self-organizing behaviors that have made it popular among scientist and engineers alike (Adamatzky 2010) (Fig. 1). The trained GAN_Physarum is deployed as an urban design technique to test the potential of polycephalum intelligence in solving problems of urban remetabolization and in computing scenarios of urban morphogenesis within a nonhuman conceptual framework.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_138
id ecaade2020_138
authors Patel, Sayjel Vijay, Tchakerian, Raffi, Lemos Morais, Renata, Zhang, Jie and Cropper, Simon
year 2020
title The Emoting City - Designing feeling and artificial empathy in mediated environments
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 261-270
doi https://doi.org/10.52842/conf.ecaade.2020.2.261
summary This paper presents a theoretical blueprint for implementing artificial empathy into the built environment. Transdisciplinary design principles have oriented the creation of a new model for autonomous environments integrating psychology, architecture, digital media, affective computing and interactive UX design. 'The Emoting City', an interactive installation presented at the 2019 Shenzhen Bi-City Biennale of Urbanism/Architecture, is presented as a first step to explore how to engage AI-driven sensing by integrating human perception, cognition and behaviour in a real-world scenario. The approach described encompasses two main elements: embedded cyberception and responsive surfaces. Its human-AI interface enables new modes of blended interaction that are conducive to self-empathy and insight. It brings forth a new proposition for the development of sensing systems that go beyond social robotics into the field of artificial empathy. The installation innovates in the design of seamless affective computing that combines 'alloplastic' and 'autoplastic' architectures. We believe that our research signals the emergence of a potential revolution in responsive environments, offering a glimpse into the possibility of designing intelligent spaces with the ability to sense, inform and respond to human emotional states in ways that promote personal, cultural and social evolution.
keywords Artificial Intelligence; Responsive Architecture; Affective Computation; Human-AI Interfaces; Artificial Empathy
series eCAADe
email
last changed 2022/06/07 07:59

_id artificial_intellicence2019_31
id artificial_intellicence2019_31
authors Patrik Schumacher and Xuexin Duan
year 2020
title An Architecture for Cyborg Super-Society
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_3
summary This paper embraces the future-open, anti-humanist sensibility of cyborgism from a societal perspective and locates the origin of the ongoing historical transformation of human identities and ways of life in the technology-induced transformation of societal communication dynamics. The evolution of language, and later of writing systems, is identified as crucial empowering engines of human productive cooperation and cultural evolution. Equally crucial for collective human selftransformation is the ever-evolving construction of artificial environments. Built environments are as much a human universal as language and all societal evolution depends on them as frames within which an increasingly complex social order can emerge and evolve. They constitute an indispensable material substrate of societal evolution. These built environments do not only function as physical ordering channels but also operate as information-rich spatio-visual languages, as a form of writing. This insight opens up the project of architectural semiology as task to radically upgrade the communicative capacity of the built environment via deliberate design efforts that understand the design of built environments primarily as the design of an eloquent text formulated by an expressive architectural language. The paper ends with a critical description of a recent academic design research project illustrating how such a semiological project can be conceived. Extrapolating from this leads the authors to speculate about a potentially far-reaching, new medium of communication and means of societal integration, facilitating a ‘cyborg super-society’.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 20HOMELOGIN (you are user _anon_71830 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002