CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 657

_id acadia20_120
id acadia20_120
authors Barsan-Pipu, Claudiu; Sleiman, Nathalie; Moldovan, Theodor
year 2020
title Affective Computing for Generating Virtual Procedural Environments Using Game Technologies
doi https://doi.org/10.52842/conf.acadia.2020.2.120
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 120-129.
summary Architects have long sought to create spaces that can relate to or even induce specific emotional conditions in their users, such as states of relaxation or engagement. Dynamic or calming qualities were given to these spaces by controlling form, perspective, lighting, color, and materiality. The actual impact of these complex design decisions has been challenging to assess, from both quantitative and qualitative standpoints, because neural empathic responses, defined in this paper by feature indexes (FIs) and mind indexes (MIs), are highly subjective experiences. Recent advances in the fields of virtual procedural environments (VPEs) and virtual reality (VR), supported by powerful game engine (GE) technologies, provide computational designers with a new set of design instruments that, when combined with brain-computing interfacing (BCI) and eye-tracking (E-T) hardware, can be used to assess complex empathic reactions. As the COVID-19 health crisis showed, virtual social interaction becomes increasingly relevant, and the social catalytic potential of VPEs can open new design possibilities. The research presented in this paper introduces the cyber-physical design of such an affective computing system. It focuses on how relevant empathic data can be acquired in real time by exposing subjects within a dynamic VR-based VPE and assessing their emotional responses while controlling the actual generative parameters via a live feedback loop. A combination of VR, BCI, and E-T solutions integrated within a GE is proposed and discussed. By using a VPE inside a BCI system that can be accurately correlated with E-T, this paper proposes to identify potential morphological and lighting factors that either alone or combined can have an empathic effect expressed by the relevant responses of the MIs.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_390
id ecaade2020_390
authors Ahmadzadeh Bazzaz, Siamak, Fioravanti, Antonio and Coraglia, Ugo Maria
year 2020
title Depth and Distance Perceptions within Virtual Reality Environments - A Comparison between HMDs and CAVEs in Architectural Design
doi https://doi.org/10.52842/conf.ecaade.2020.1.375
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 375-382
summary The Perceptions of Depth and Distance are considered as two of the most important factors in Virtual Reality Environments, as these environments inevitability impact the perception of the virtual content compared with the one of real world. Many studies on depth and distance perceptions in a virtual environment exist. Most of them were conducted using Head-Mounted Displays (HMDs) and less with large screen displays such as those of Cave Automatic Virtual Environments (CAVEs). In this paper, we make a comparison between the different aspects of perception in the architectural environment between CAVE systems and HMD. This paper clarifies the Virtual Object as an entity in a VE and also the pros and cons of using CAVEs and HMDs are explained. Eventually, just a first survey of the planned case study of the artificial port of the Trajan emperor near Fiumicino has been done as for COVID-19 an on-field experimentation could not have been performed.
keywords Visual Perception; Depth and Distance Perception; Virtual Reality; HMD; CAVE; Trajan’s port
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_178
id acadia20_178
authors Meeran, Ahmed; Conrad Joyce, Sam
year 2020
title Machine Learning for Comparative Urban Planning at Scale: An Aviation Case Study
doi https://doi.org/10.52842/conf.acadia.2020.1.178
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 178-187.
summary Aviation is in flux, experiencing 5.4% yearly growth over the last two decades. However, with COVID-19 aviation was hard hit. This, along with its contribution to global warming, has led to louder calls to limit its use. This situation emphasizes how urban planners and technologists could contribute to understanding and responding to this change. This paper explores a novel workflow of performing image-based machine learning (ML) on satellite images of over 1,000 world airports that were algorithmically collated using European Space Agency Sentinel2 API. From these, the top 350 United States airports were analyzed with land use parameters extracted around the airport using computer vision, which were mapped against their passenger footfall numbers. The results demonstrate a scalable approach to identify how easy and beneficial it would be for certain airports to expand or contract and how this would impact the surrounding urban environment in terms of pollution and congestion. The generic nature of this workflow makes it possible to potentially extend this method to any large infrastructure and compare and analyze specific features across a large number of images while being able to understand the same feature through time. This is critical in answering key typology-based urban design challenges at a higher level and without needing to perform on-ground studies, which could be expensive and time-consuming.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac202220109
id ijac202220109
authors Ortner, F. Peter; Jing Zhi Tay
year 2022
title Resilient by design: Informing pandemic-safe building redesign with computational models of resident congestion
source International Journal of Architectural Computing 2022, Vol. 20 - no. 1, pp. 129–144
summary This paper describes a computational design-support tool created in response to safe-distancing measures enforced during the COVID-19 pandemic. The tool was developed for a specific use case: understanding congestion in crowded migrant worker dormitories that experienced high rates of COVID-19 transmission in 2020. Building from agent-based and network-based computational simulations, the tool presents a hybrid method for simulating building resident movements based on known or pre-determined schedules and likely itineraries. This hybrid method affords the design tool a novel approach to simultaneous exploration of spatial and temporal design scenarios. The paper demonstrates the use of the tool on an anonymised case study of a high-density migrant worker dormitory, comparing results from a baseline configuration against design variations that modify dormitory physical configuration and schedule. Comparisons between the design scenarios provide evidence for reflections on pandemic-resilient design and operation strategies for dor- mitories. A conclusions section considers the extent to which the model and case study results are applicable to other dense institutional buildings and describes the paper’s contributions to general understanding of configurational and operational aspects of resilience in the built environment.
keywords Design for resilience, evidence-based design, design support, agent-based model, schedule-based model, network analysis
series journal
last changed 2024/04/17 14:29

_id sigradi2020_412
id sigradi2020_412
authors Simeone, Davide; Fioravanti, Antonio; Coraglia, Ugo Maria; Cursi, Stefano
year 2020
title A simulation model for building use re-thinking after the COVID-19 emergency
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 412-417
summary COVID-19 infection is forcing designers and building managers in re-thinking the use and experience of architectural spaces, as well as the interactions within the people in it. To support this difficult task, this research is working on a simulation model, based on agent-based modeling, able to predict the use phenomena of buildings and provided quantitative and qualitative feedback regarding the impact of re-defined use processes to COVID-19 infection risk. The derived platform is particularly designed to support the testing of visiting scenarios in museums and galleries, potentially helping them in their re-opening phases.
keywords Agent-based modeling and simulation (ABMS), COVID-19, Building use, Behavioral simulation, Unity 3D
series SIGraDi
email
last changed 2021/07/16 11:49

_id acadia20_102
id acadia20_102
authors Stojanovic, Djordje; Vujovic, Milica; Miloradovic, Branko
year 2020
title Indoor Positioning System for Occupation Density Control
doi https://doi.org/10.52842/conf.acadia.2020.1.102
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 102-109.
summary The reported research focuses on occupational density as an increasingly important architectural measure and uses occupancy simulation to optimize distancing criteria imposed by the COVID-19 pandemic. The paper addresses the following questions: How to engage computational techniques (CTs) to improve the accuracy of two existing types of indoor positioning systems? How to employ simulation methods in establishing critical occupation density to balance social distancing needs and the efficient use of resources? The larger objective and the aim of further research is to develop an autonomous system capable of establishing an accurate number of people present in a room and informing occupants if space is available according to prescribed sanitary standards. The paper presents occupancy simulation approximating input that would be provided by the outlined multisensor data fusion technique aiming to improve the accuracy of the existing indoor localization solutions. The projected capacity to capture information related to social distancing and occupants’ positioning is used to ground a method for determining a room-specific occupational density threshold. Our early results indicate that the type of activities, equipment, and furniture in a room, addressed through occupants’ positioning, may impact the frequency of distancing incidents. Our initial findings centered on simulation modeling indicate that data, composed of the two sets (occupant count and the number of recorded distancing incidents) can be overlapped to help establish room-specific standards rather than apply generic measures. In conclusion, we discuss the opportunities and challenges of the proposed system and its role after the pandemic.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_089
id ecaade2020_089
authors Ardic, Sabiha Irem, Kirdar, Gulce and Lima, Angela Barros
year 2020
title An Exploratory Urban Analysis via Big Data Approach: Eindhoven Case - Measuring popularity based on POIs, accessibility and perceptual quality parameters
doi https://doi.org/10.52842/conf.ecaade.2020.2.309
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 309-318
summary The cities are equipped with the data as a result of the individuals' sharings and application usage. This significant amount of data has the potential to reveal relations and support user-centric decision making. The focus of the research is to examine the relational factors of the neighborhoods' popularity by implementing a big data approach to contribute to the problem of urban areas' degradation. This paper presents an exploratory urban analysis for Eindhoven at the neighborhood level by considering variables of popularity: density and diversity of points of interest (POI), accessibility, and perceptual qualities. The multi-sourced data are composed of geotagged photos, the location and types of POIs, travel time data, and survey data. These different datasets are evaluated using BBN (Bayesian Belief Network) to understand the relationships between the parameters. The results showed a positive and relatively high connection between popularity - population change, accessibility by walk - density of POIs, and the feeling of safety - social cohesion. For further studies, this approach can contribute to the decision-making process in urban development, specifically in real estate and tourism development decisions to evaluate the land prices or the hot-spot touristic places.
keywords big data approach; neighborhood analysis; popularity; point of interest (POI); accessibility; perceptual quality
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2021_142
id ascaad2021_142
authors Bakir, Ramy; Sara Alsaadani, Sherif Abdelmohsen
year 2021
title Student Experiences of Online Design Education Post COVID-19: A Mixed Methods Study
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 142-155
summary This paper presents findings of a survey conducted to assess students’ experiences within the online instruction stage of their architectural education during the lockdown period caused by the COVID-19 pandemic between March and June 2020. The study was conducted in two departments of architecture in both Cairo branches of the Arab Academy for Science, Technology & Maritime Transport (AASTMT), Egypt, with special focus on courses involving a CAAD component. The objective of this exploratory study was to understand students’ learning experiences within the online period, and to investigate challenges facing architectural education. A mixed methods study was used, where a questionnaire-based survey was developed to gather qualitative and quantitative data based on the opinions of a sample of students from both departments. Findings focus on the qualitative component to describe students’ experiences, with quantitative data used for triangulation purposes. Results underline students’ positive learning experiences and challenges faced. Insights regarding digital tool preferences were also revealed. Findings are not only significant in understanding an important event that caused remote architectural education in Egypt but may also serve as an important stepping-stone towards the future of design education in light of newly-introduced disruptive online learning technologies made necessary in response to lockdowns worldwide
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2020_334
id sigradi2020_334
authors Correa, Natália de Andrade; Alves, Gilfranco Medeiros
year 2020
title From Parametric Design to Contour Crafting Technics: A Lab for Algo+Ritmo, a Brazilian Research Group
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 334-342
summary This article presents a discussion on digital design processes. More precisely about the use of Contour Crafting (CC) as a material and technique solution for the construction which will carry less impact for the environment. It explores the connection between parametric process and the file-to-factory concept analyzing the consequences of those strategies. The paper describes and analyzes a case study starting from the demand for a headquarters project for a university research group. It presents possibilities and discusses futures developments based on the methodology used in the process.
keywords Digital Fabrication, Design Process, File-to-factory, Contour Crafting, Algorithm
series SIGraDi
email
last changed 2021/07/16 11:49

_id caadria2020_316
id caadria2020_316
authors Czynska, Klara
year 2020
title Computational Methods for Examining Reciprocal Relations between the Viewshed of Planned Facilities and Historical Dominants - Their integration within the cultural landscape
doi https://doi.org/10.52842/conf.caadria.2020.1.853
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 853-862
summary The article presents a methodology for the assessment of the impact of new buildings on the cultural landscape, in particular the exposure of historical landmarks. While using digital analysis and a 3D city model, the methodology examines reciprocal visual relations between historical and planned buildings. The following methods have been used: a) Visual Impact Size (VIS) which enables to determine a visual impact area and the degree of architectural facility domination in space; b) comparative analysis (cumulative viewshed) which enables to determine areas where viewsheds of new investment and historical buildings overlap; c) simulation of selected views from the level of human eyesight. The proposed landscape examination methodology has been presented using the case study of Katowice, Poland. The goal was to determine reciprocal relations between historical landmarks of the Silesia Museum and tall buildings planned in the vicinity. The study used a Digital Surface Model (DSM), a 3D city model. All simulations have been performed using software developed by the author (C++).
keywords cumulative viewshed; digital cityscape analysis; historical dominants; visual impact; VIS method
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia20_720
id acadia20_720
authors Farahi, Behnaz
year 2020
title Can the subaltern speak?
doi https://doi.org/10.52842/conf.acadia.2020.1.720
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 720-729.
summary How could design be used as a method of interrogation for addressing larger cultural, social, or political issues? How could we explore the possibility of using emerging technologies such as robotics and artificial intelligence in order to subvert the status quo? The project presented in this paper is inspired by the historical masks, known as Niqab, worn by the Bandari women from southern Iran. It has been said that these masks were developed during Portuguese colonial rule as a way to protect the wearer from the gaze of slave masters looking for pretty women. In this project two robotic masks seemingly begin to develop their own language to communicate with each other, blinking their eyelashes in rapid succession, using Morse code generated by artificial intelligence (AI). The project draws on a Facebook experiment where two AI bots began to develop their own language. It also draws on an incident when an American soldier used his eyes to blink the word “TORTURE” using Morse code during his captivity in Vietnam, and stories of women using code to report domestic abuse during the COVID-19 lockdown. Here the “wink” of the sexual predator is subverted into a language to protect women from the advances of a predator. Through the lens of the design methodology that is referred to as “critical making,” this project bridges AI, interactive design, and critical thinking. Moreover, while most feminist discourse takes a Eurocentric view, this project addresses feminism from a non-Western perspective.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_991
id sigradi2020_991
authors Gomez, Paula; Hadi, Khatereh; Kemenova, Olga; Swarts, Matthew
year 2020
title Spatiotemporal Modeling of COVID-19 Spread in Built Environments
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 991-996
summary This research proposes a Spatiotemporal Modeling approach to understand the role of architecture, specifically the built environment, in the COVID-19 pandemic. The model integrates spatial and temporal parameters to calculate the probability of spread of and exposure to SARS-CoV-2 virus (responsible of COVID-19 disease) due to the combination of four aspects: Spatial configuration, organizational schedules, people’s behavior, and virus characteristics. Spatiotemporal Modeling builds upon the current models of building analytics for architecture combined with predictive models of COVID-19 spread. While most of the current research on COVID-19 spread focuses on mathematical models at regional scales and the CDC guidelines emphasizing on human behavior, our research focuses on the role of buildings in this pandemic, as the intermediate mechanism where human and social activities occur. The goal is to understand the most significant parameters that influence the virus spread within built environments, including human-to-human, fomite (surface-to-human), and airborne ways of transmission, with the purpose of providing a comprehensive parametric model that may help identify the most influential design and organizational decisions for controlling the pandemic. The proof-of-concept study is a healthcare facility.
keywords Spatiotemporal modeling, Agent-based simulation, COVID-19, Virus spread, Built environments, Human behavior, Social distancing
series SIGraDi
email
last changed 2021/07/16 11:53

_id caadria2020_444
id caadria2020_444
authors Higgs, Baptiste and Doherty, Ben
year 2020
title Sanitary Sanity: Evaluating Privacy Preserving Machine Learning Methods for Post-occupancy Evaluation
doi https://doi.org/10.52842/conf.caadria.2020.2.697
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 697-706
summary Traditional post-occupancy evaluation (POE) of building performance has typically privileged physical building attributes over human behavioural data. This is due to a lack of capability and is especially the case for private spaces such as Sanitary Facilities (SFs). A privacy-preserving sensor-based system using Machine Learning (ML) was previously developed, however it was limited to basic body position classification. Yet, SF usage behaviour can be significantly more complex. This research accordingly builds on the aforementioned work to expand behavioural classifications using a sensor-based ML system. Specifically, the case study uses a GridEYE thermal sensor array, which is trained on a cubicle location within a workplace SF. A variety of ML algorithms are then evaluated on their behaviour-classifying ability. A detailed analysis of behaviour-classification performance is then provided. A system with greater fidelity is thus demonstrated, albeit hampered by imprecise behaviour definitions. Regardless, this contributes to the capability of the broader field of research that is investigating Evidence Based Design (EBD) by extending the ability to examine human behaviour, especially in private spaces. This further contributes to the growing body of work surrounding SF provision.
keywords EBD; Data; Internet of Things; Machine Learning; Post Occupancy Evaluation
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
doi https://doi.org/10.52842/conf.caadria.2020.1.873
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia20_84
id acadia20_84
authors Kirova, Nikol; Markopoulou, Areti
year 2020
title Pedestrian Flow: Monitoring and Prediction
doi https://doi.org/10.52842/conf.acadia.2020.1.084
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 84-93.
summary The worldwide lockdowns during the first wave of the COVID-19 pandemic had an immense effect on the public space. The events brought up an opportunity to redesign mobility plans, streets, and sidewalks, making cities more resilient and adaptable. This paper builds on previous research of the authors that focused on the development of a graphene-based sensing material system applied to a smart pavement and utilized to obtain pedestrian spatiotemporal data. The necessary steps for gradual integration of the material system within the urban fabric are introduced as milestones toward predictive modeling and dynamic mobility reconfiguration. Based on the capacity of the smart pavement, the current research presents how data acquired through an agent-based pedestrian simulation is used to gain insight into mobility patterns. A range of maps representing pedestrian density, flow, and distancing are generated to visualize the simulated behavioral patterns. The methodology is used to identify areas with high density and, thus, high risk of transmitting airborne diseases. The insights gained are used to identify streets where additional space for pedestrians is needed to allow safe use of the public space. It is proposed that this is done by creating a dynamic mobility plan where temporal pedestrianization takes place at certain times of the day with minimal disruption of road traffic. Although this paper focuses mainly on the agent-based pedestrian simulation, the method can be used with real-time data acquired by the sensing material system for informed decision-making following otherwise-unpredictable pedestrian behavior. Finally, the simulated data is used within a predictive modeling framework to identify further steps for each agent; this is used as a proof-of-concept through which more insights can be gained with additional exploration.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2022_113
id sigradi2022_113
authors Lobato Valdespino, Juan Carlos; Flores Romero, Jorge Humberto
year 2022
title Digital-cultural inclusion ERT / VDS; workshop indigenous housing for Purépechas Autonomous Communities.
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1053–1062
summary Since March 2020, architecture schools in the world took significant decisions to abandon face-to-face learning; overnight, for security reasons, institutions around the world had to close their doors, confining professors, and students at home to teach online. Education before the Covid-19 pandemic was moving towards digitalization and online teaching, so the emergency exponentially detonated this phenomenon, bringing the Virtual Design Studio (Virtual Design Studio, VDS) as a practical-pedagogical option for distance education. Therefore, defining the concept of Emergency Remote Teaching (ERT). Firstly, the identification and intercession of the previous notions, this work approaches an applicative case with the realization of a workshop, which under the modality Multilevel Workshop -also called Vertical Workshop-, the Faculty of Architecture of the UMSNH proposed to integrate knowledge, skills, and competences under the scheme of Problem Based Learning (PBL).
keywords ERT, VDS, Design, Habitat, Architecture
series SIGraDi
email
last changed 2023/05/16 16:57

_id caadria2020_367
id caadria2020_367
authors Ma, Zhichao, Xiao, Yiqiang and Chen, Xiong
year 2020
title Research on Commercial Space Vitality of Airport Terminal Based on 3D Vision Field Simulation of Pedestrian Flows - Taking Guangzhou Baiyun International Airport Terminal 2 as a Study Case
doi https://doi.org/10.52842/conf.caadria.2020.1.589
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 589-598
summary In recent years, more and more large-scale terminal buildings have emerged. In the design and construction of the terminal, how to increase the non-aeronautical revenue of the terminal has become one of the difficulties and priorities. The commercial vitality is one of the important factors influencing non-aeronautical revenue of the terminal. There is a correlation between passenger flows and commercial space vitality. So it is necessary to analyze the impact of pedestrian flows on commercial space vitality. The commercial space vitality can be evaluated by the vision dwell time on the shop surfaces. This paper focused on the relationship between passenger flows and commercial space vitality at the terminal. We modeled and simulated the domestic mixed-flow hall of Baiyun airport terminal 2 in Massmotion. After the pedestrian 3D vision field simulation, Vision Time Maps were exported to assess the commercial space vitality. After comparing the survey results with simulation results, we can conclude that the mixing of multiple pedestrian flows can improve the commercial space vitality of the airport terminal.
keywords 3D vision field simulation; Airport terminal commercial space vitality; Guangzhou Baiyun International Airport Terminal 2 ; Pedestrian Flow
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2020_586
id sigradi2020_586
authors Perelli Soto, Bruno; Soza Ruiz, Pedro; Tapia Zarricueta, Ricardo
year 2020
title Towards the development of Smart Buildings: A Lowcost IoT Healthcare Management Proposal in Times of a World Pandemic
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 586-593
summary This research addresses the impact that technologies, particularly the Internet of Things, have when facing - directly or indirectly - the current panorama of a pandemic due to COVID-19. First, we review the literature and propose a context that allows for efficient clarification regarding two concerns: where should we insert this project? What are the implications and scope of such a decision? Secondly, we present experiences of implementation of IoT prototypes, which – in context - consider the education of the population of an apartment building, the mitigation and detection of COVID-19 symptoms, and the ability to obtain data from these experiences.
keywords COVID-19, IoT, Design, Smart buildings, Lockdown
series SIGraDi
email
last changed 2021/07/16 11:52

_id sigradi2022_298
id sigradi2022_298
authors Perry, Isha N.; Xue, Zhouyi; Huang, Hui-Ling; Crispe, Nikita; Vegas, Gonzalo; Swarts, Matthew; Gomez Z., Paula
year 2022
title Human Behavior Simulations to Determine Best Strategies for Reducing COVID-19 Risk in Schools
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 39–50
summary The dynamics of COVID-19 spread have been studied from an epidemiological perspective, at city, country, and global scales (Rabajante, 2020, Ma, 2020, and Giuliani et al., 2020), although after two years of the pandemic we know that viruses spread mostly through built environments. This study is part of the Spatiotemporal Modeling of COVID-19 spread in buildings research (Gomez, Hadi, and Kemenova et al., 2020 and 2021), which proposes a multidimensional model that integrates spatial configurations, temporal use of spaces, and virus characteristics into one multidimensional model. This paper presents a specific branch of this model that analyzes the behavioral parameters, such as vaccination, masking, and mRNA booster rates, and compares them to reducing room occupancy. We focused on human behavior, specifically human interactions within six feet. We utilized the multipurpose simulation software, AnyLogic, to quantify individual exposure to the virus, in the high school building by Perkins and Will. The results show how the most effective solution, reducing the occupancy rates or redesigning layouts, being the most impractical one, is as effective as 80% of the population getting a third boost.
keywords Spatiotemporal Modeling, Behavior Analytics, COVID-19 Spread, Agent-Based Simulation, COVID-19 Prevention
series SIGraDi
email
last changed 2023/05/16 16:55

_id sigradi2020_357
id sigradi2020_357
authors Pupo, Regiane Trevisan; Gomez, Luiz Salomao Ribas
year 2020
title The importance of collaborative design process and fabrication during COVID-19 emergency – case in Brazil
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 357-362
summary The current pandemic situation, in which Brazil and the world are going through, has had devastating effects, as well as actions of adaptation, adequacy and solidarity among the world population. The latest ways of automated form materialization using digital fabrication equipment, aided by the creativity of students, teachers, and researchers, have collaborated in the creation of several artifacts around COVID-19. This article reports an experience, right at the beginning of the pandemic in Brazil, of a collaboration design process in the creation and production of an emergency equipment, from the idea to its distribution to society, in record time, preserving quality and efficiency of the proposed product.
keywords Face Shields, FabLab, COVID-19
series SIGraDi
email
last changed 2021/07/16 11:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_517128 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002