CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 647

_id caadria2020_426
id caadria2020_426
authors Goepel, Garvin and Crolla, Kristof
year 2020
title Augmented Reality-based Collaboration - ARgan, a bamboo art installation case study
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 313-322
doi https://doi.org/10.52842/conf.caadria.2020.2.313
summary ARgan is a geometrically complex bamboo sculpture that relied on Mixed Reality (MR) for its joint creation by multiple sculptors and used latest Augmented Reality (AR) technology to guide manual fabrication actions. It was built at the Chinese University of Hong Kong in the fall of 2019 by thirty participants of a design-and-build workshop on the integration of AR in construction. As part of its construction workflow, holographic setups were created on multiple devices, including a series of Microsoft HoloLenses and several handheld Smartphones, all linked simultaneously to a single digital base model to interactively guide the manufacturing process. This paper critically evaluates the experience of extending recent AR and MR tool developments towards applications that centre on creative collaborative production. Using ARgan as a demonstrator project, its developed workflow is assessed on its ability to transform a geometrically complex digitally drafted design to its final physically built form, highlighting the necessary strategic integration of variability as an opportunity to relax notions on design precision and exact control. The paper concludes with a plea for digital technology's ability to stimulate dialogue and collaboration in creative production and augment craftsmanship, thus providing greater agency and more diverse design output.
keywords Augmented-Reality; Mixed-Reality; Post-digital; High-tech vs low-tech; Bamboo
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia20_350
id acadia20_350
authors Atanasova, Lidia; Mitterberger, Daniela; Sandy, Timothy; Gramazio, Fabio; Kohler, Matthias; Dörfler, Kathrin
year 2020
title Prototype As Artefact
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 350-359.
doi https://doi.org/10.52842/conf.acadia.2020.1.350
summary In digital design-to-fabrication workflows in architecture, in which digitally controlled machines perform complex fabrication tasks, all design decisions are typically made before production. In such processes, the formal definition of the final shape is explicitly inscribed into the design model by means of corresponding step-by-step machine instructions. The increasing use of augmented reality (AR) technologies for digital fabrication workflows, in which people are instructed to carry out complex fabrication tasks via AR interfaces, creates an opportunity to question and adjust the level of detail and the nature of such explicit formal definitions. People’s cognitive abilities could be leveraged to integrate explicit machine intelligence with implicit human knowledge and creativity, and thus to open up digital fabrication to intuitive and spontaneous design decisions during the building process. To address this question, this paper introduces open-ended Prototype-as-Artefact fabrication workflows that examine the possibilities of designing and creative choices while building in a human-robot collaborative setting. It describes the collaborative assembly of a complex timber structure with alternating building actions by two people and a collaborative robot, interfacing via a mobile device with object tracking and AR visualization functions. The spatial timber assembly being constructed follows a predefined grammar but is not planned at the beginning of the process; it is instead designed during fabrication. Prototype-as-Artefact thus serves as a case study to probe the potential of both intuitive and rational aspects of building and to create new collaborative work processes between humans and machines.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_436
id acadia20_436
authors Chun Hin Fong, Jacky; Long Wun Poon, Adabelle; Sze Ngan, Wing; Hei Ho, Chung; Goepel, Garvin; Crolla, Kristof
year 2020
title Augmenting Craft with Mixed Reality
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 436-444.
doi https://doi.org/10.52842/conf.acadia.2020.1.436
summary This paper discusses novel methods for and advantages of integrating augmented reality (AR) and photogrammetry in hand clay-sculpting workflows. These techniques permit nontrained users to achieve higher precision during the sculpting process by holographically overlaying instructions from digital 3D source geometry on top of the sculpting material. By employing alternative notational systems in design implementation methods, the research positions itself in a postdigital context aimed at humanizing digital technologies. Throughout history, devices have been developed to increase production, such as Henry Dexter’s 1842 “Apparatus for Sculptors” for marble sculpting. Extrapolating from this, the workflow presented in this paper uses AR to overlay extracted information from 3D models directly onto the sculptor’s field of vision. This information can then become an AR-driven guidance system that assists the sculptor. Using the Microsoft HoloLens, holographic instructions are introduced in the production sequence, connecting the analog sculpture fabrication directly with a digital environment, thus augmenting the craftspeople’s agency. A series of AR-aided sculpting methods were developed and tested in a demonstrator case study project that created a small-scale clay copy of Henry Moore’s Sheep Piece (1971–1972). This paper demonstrates how user-friendly software and hardware tools have lowered the threshold for end users to develop new methods that straightforwardly facilitate and improve their crafts’ effectiveness and agency. This shows that the fusion of computational design technology and AR visualization technology can innovate a specific craft’s design and production workflow, opening the door for further application developments in more architecture-specific fabrication contexts.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_209
id ecaade2020_209
authors Han, Yoojin and Lee, Hyunsoo
year 2020
title Investigating the Effectiveness of AR-enhanced Signage in Multi-purpose Commercial Complexes - Focusing on response time to directional signage
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 145-152
doi https://doi.org/10.52842/conf.ecaade.2020.1.145
summary The aim of this study was to investigate next level digital signage utilizing augmented reality for multi-purpose commercial complexes. Recently, despite the rapid growth of the urban solution, mixed-use commercial complexes have experienced significant problems in terms of wayfinding. As a potential solution to the problem, this study sought to determine the effectiveness of state-of-the-art augmented reality (AR) on wayfinding. Focusing on the response time to directional signage, this study compared wayfinding through traditional signage with AR-enhanced signage. The response time in milliseconds was measured using a program developed with Python. In all, 30 sign images were presented to 48 participants in random order. A third of them included existing signs as the control condition, and the others were AR signs with half graphic and half text. The results of this study demonstrated that AR-enhanced signage had tremendous potential to improve wayfinding performance in multi-purpose commercial complexes. Results revealed that response time to directional signage was reduced in AR environments. In particular, the AR signage system combining text and graphics was useful in terms of both response time and cognitive appraisal.
keywords Augmented Reality (AR); Signage; Wayfinding; Multi-purpose Commercial Complexes
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2020_009
id ecaade2020_009
authors Reaver, Kai
year 2020
title After Imagery - Evaluating the use of mixed reality (MR) in urban planning
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 187-196
doi https://doi.org/10.52842/conf.ecaade.2020.1.187
summary While many researchers have developed interesting use cases for Mixed Reality (MR) in urban environments, the paper argues that determining the long-term viability of such applications as planning tools will likely require evaluating whether such applications are compatible with the democratically mandated procedures in Urban Planning. The paper compares this claim to current debates regarding the legality of the use of digital imagery in Urban Planning today. The paper elaborates these arguments through case studies done in Oslo, Norway in the context of developing the "Nordic Digital City". The case studies involve the use of MR in 1) a public competition, 2) a regulation plan, and 3) a building permit. The study thus presents some of the benefits and challenges of using these technologies in such a manner, particularly regarding accuracy, user feedback, and robustness as a common interface. The paper concludes that MR offers several benefits to Urban Planning, but will likely require a highly digitized competent public sector in order to function, in addition to requiring negotiation between the required user data and user privacy rights, suggesting that MR development may migrate from a primarily technical domain to a matter of public policy.
keywords Mixed Reality; Urban Planning; Urbanism; Augmented Reality
series eCAADe
email
last changed 2022/06/07 08:00

_id ijac202018102
id ijac202018102
authors Seifert, Nils; Michael Mühlhaus and Frank Petzold
year 2020
title Urban strategy playground: Rethinking the urban planner’s toolbox
source International Journal of Architectural Computing vol. 18 - no. 1, 20-40
summary This article presents the results of the Urban Strategy Playground research group. Over the last 5 years, the focus of an interdisciplinary team of researchers was the conception, implementation and evaluation of a decision-support system for inner-city urban and architectural planning. The overall aim of past and ongoing research is to enable planners to validate and compare possible planning measures based on objective criteria. The Urban Strategy Playground software framework is an expandable toolbox that supports planners in developing strategies, evaluating them and visually preparing them for political decision-making processes and public participation. Examples of implemented tools are the simulation and monitoring of building codes, analysis of key density indicators and green space provision, simulation of shading, building energy and noise dispersion. For visualising the planning results, the framework provides interfaces for rapid prototyping of haptic models, as well as web viewers and a connection to Augmented Reality applications. Core aspects of the system were evaluated through case studies in cooperation with urban planning offices, housing companies and municipalities, proving feasibility, high acceptance of the decision-support software, and need for more tailored tools.
keywords Urban planning, decision support, participation, augmented reality, 3D printing, visual programming, 3D city model
series journal
email
last changed 2020/11/02 13:34

_id caadria2020_188
id caadria2020_188
authors Suzuki, Takaharu, Ikeda, Hikaru, Takeuchi, Issei, Matsunaga, Fumiya, Sumitomo, Eri and Ikeda, Yasushi
year 2020
title Holonavi - A study on User Interface for Assembly Guidance System with Mixed Reality in a Timber Craft of Architecture
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 691-700
doi https://doi.org/10.52842/conf.caadria.2020.1.691
summary This paper introduces ideas to use Mixed Reality (MR) technologies in craftsman's work of architecture.One of the backgrounds of this study is emerging technology of Mixed Reality becoming much easier to use recently with new devices such as Microsoft Hololens. Among many possible applications of this technique in architectural work, we particularly choose Japanese traditional timber joinery 'Kumiki' as a model case of complicated architectural work.We found that people need a certain sense of 3D recognition and knowledge about right order of assemble. That is what we can suggest for users with our MR guidance system named 'Holonavi' which can show appropriate information in 3D vision in real time. The aim of our research is to find useful knowledge about effective ways and sufficient information to guide users. As a conclusion, we found that guidance with MR technology gives users to have a recognition more effectively for take of right action when they are moving their viewpoint around the object and when they located in the range of reachable distance to the objects. It is the first achievement for use of 'Holonavi' to let people feel more fun to craft something by their hands aided by computer.
keywords Craftsman’s work; Mixed Reality; Digital Construction; Augmented Reality; Hololens
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2021_067
id ecaade2021_067
authors Weissenböck, Renate
year 2021
title Augmented Quarantine - An experiment in online teaching using augmented reality for customized design interventions
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 95-104
doi https://doi.org/10.52842/conf.ecaade.2021.2.095
summary This paper presents experimental research about using Augmented Reality (AR) for interactive design processes, exploring a spatial "live" design method taking place in an overlay of real space and digital models. It discusses the processes and outcomes of a seminar undertaken at Graz University of Technology in winter term 2020/2021. Due to the Covid-19 pandemic, the course was taught online, and conceptualized to allow students the biggest possible learning experience during the lockdown. Ensuring accessibility to all participants, the seminar was based on the use of ubiquitous devices. The implementation of newly developed software, such as "Fologram", enabled the students to use AR systems at home with their personal computers and smartphones. The task of the course was to design customized interventions for the students' own domestic spaces, reacting to changing conditions and needs during the lockdown. The employed workflow was driven by an instant connection between 3D-modeling (Rhinoceros3D), parametric design (Grasshopper) and holographic immersion (Fologram).
keywords augmented reality; remote collaboration; interactive design; customization; online teaching
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2020_161
id caadria2020_161
authors Kido, Daiki, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2020
title Mobile Mixed Reality for Environmental Design Using Real-Time Semantic Segmentation and Video Communication - Dynamic Occlusion Handling and Green View Index Estimation
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 681-690
doi https://doi.org/10.52842/conf.caadria.2020.1.681
summary Mixed reality (MR), that blends the real and virtual worlds, attracted attention for consensus-building among stakeholders in environmental design with the visualization of planned landscape onsite. One of the technical challenges in MR is the occlusion problem which occurs when virtual objects hide physical objects that should be rendered in front of virtual objects. This problem may cause inappropriate simulation. And the visual environmental assessment of present and proposed landscape with MR can be effective for the evidence-based design, such as urban greenery. Thus, this study aims to develop a MR-based environmental assessment system with dynamic occlusion handling and green view index estimation using semantic segmentation based on deep learning. This system was designed for the use on a mobile device with video communication over the Internet to implement a real-time semantic segmentation whose computational cost is high. The applicability of the developed system is shown through case studies.
keywords Mixed Reality (MR); Environmental Design; Dynamic Occlusion Handling; Semantic Segmentation; Green View Index
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2020_260
id caadria2020_260
authors LI, Yan, DU, Hongwu and WANG, Qing
year 2020
title The Association Study Between Residential Building Interface and Perceived Density based on VR Technology - Taking 2 Enclosed Residential Districts of Guangzhou as Examples
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 711-720
doi https://doi.org/10.52842/conf.caadria.2020.1.711
summary As urban development enters the stock increment era , the demand of environmental quality in urban residential districts gradually improves, making the construction of livable residential environment an important direction of urban development. The improvement of livable environment is the inevitable result of this process and perceived density is an indispensable and important part. Among the statistical methods, preference study is the most commonly one to explore the subjective factors affecting preference. The experience of immersive virtual environment can provide a more appropriate analytical method better for traditional image selection. Different permeability of architectural interface has significant influences on the perception of space comfortability, crowding and fascination. In this paper, two existing enclosed residential districts are selected for case study. The factors closely related to perceived density, such as solid Wall, grille, glass, open space, greening, etc, are selected by using immersive virtual technology. Through the interviewees' evaluations of perceived density of the virtual environment, the relationship between building interface and the perceived density of the residential area will be established.
keywords Spatial Perceived Density; Virtual Reality Technology; Enclosed Residential District; Housing Interface; Association Study
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2020_203
id ecaade2020_203
authors Safin, Stéphane and Dorta, Tomás
year 2020
title Unfolding Laypersons Creativity Through Social VR - A case study
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 355-364
doi https://doi.org/10.52842/conf.ecaade.2020.1.355
summary Involving laypersons in collaborative design projects faces the challenge of having an adapted representational ecosystem. There is a lack of adequate representational tools for multidisciplinary actors to graphically and physically vizualize and externalize their ideas. Using VR is a promising way of renewing participatory design, but settings with VR raise the difficulty to express ideas on the model, and to support collaboration since using VR headsets eventually hinder design communication between participants wearing them. In this paper we present the a case study of one workshop involving non-designers as participants, based on collective 3D sketches using a Social VR system (without headsets), in which several users simultaneously and immersively sketch using handheld tablets, operating a 3D model as contextual background. The workshop was supported by a representational ecosystem containing: (1) Traditional freehand sketching on paper and working with pre-cut physical components used as boundary objects to represent a scaled model; and (2) immersive 3D model allowing collective life-sized visualization, 3D sketching and interaction. The paper describers the case study and provide insights about layperson's collaborative design.
keywords Social VR; Representational ecosystem; Laypersons participation; Co-design
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2020_032
id ecaade2020_032
authors Tuzun Canadinc, Seda, Wang, Bihan, Pi, Yalong and Yan, Wei
year 2020
title Multi-User and Web-based Parametric Modeling with Multiple Visual Programming Tools
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 19-28
doi https://doi.org/10.52842/conf.ecaade.2020.1.019
summary This paper presents a new framework for Web-based parametric modeling for design collaboration, allowing multiple users to work on the shared Web-based model in the process of building design and modeling, performance simulation, and optimization. The Web-based model viewer displays a shared model. Two visual programming tools: Grasshopper and Dynamo, are used on users' local computers connected to the Web. Two working prototypes of modeling methods were developed to control and modify building models on the Web. Two case studies with three tests each were conducted on a simplified residential building model. In Case Study 1, two simulated users tested the parametric capabilities on transformations including scaling, translation, and rotation of the shared Web-based model using Grasshopper and Dynamo. In Case Study 2, two simulated users collaborated on the shared Web-based model through Grasshopper in the process of optimization for different building performance objectives, in terms of daylight, energy use, and roof coverage. Web-based parametric modeling is expected to provide opportunities for collaboration in parametric design and optimization. Findings and technical limitations of the framework are discussed in the paper.
keywords Web-based Modeling; Parametric Modeling; Optimization; Visual Programming; Collaborative Design; Building Performance Simulation
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2020_608
id sigradi2020_608
authors Costa, Eduardo; Duarte, José; Bilén, Sven G.
year 2020
title Robotic Apprentices: Leveraging Augmented Reality for Robot Training in Manufacturing Automation
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 608-614
summary In the scope of Industry 4.0, a framework is proposed to leverage the potential of articulating Augmented Reality and Robotic Manufacturing in the construction industry. The objective of such framework is to enable robots to learn how to perform tasks using direct interaction with human operators. As a first step, we established a connection between a robot and its trainer— or controller—in which the robot mirrors the operator’s actions. Augmented Reality hardware is used for capturing the trainer’s gestures and the surrounding environment. A digital tool was implemented using Grasshopper and additional plugins to control the process.
keywords Augmented reality, Robotic arm, Programming by demonstration, Human–Robot Collaboration, Industry 4.0
series SIGraDi
email
last changed 2021/07/16 11:52

_id ecaade2022_368
id ecaade2022_368
authors Das, Avishek, Brunsgaard, Camilla and Madsen, Claus Brondgaard
year 2022
title Understanding the AR-VR Based Architectural Design Workflow among Selected Danish Architecture Practices
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 381–388
doi https://doi.org/10.52842/conf.ecaade.2022.1.381
summary Virtual reality (VR) and augmented reality (AR) have been proposed to be additional architectural design mediums for at least 25 years (Dagit, 1993). Despite rapid technical and technological development, it has not been adopted into architectural design practices as compared to academia and research. Surveys from the American Institute of Architects (AIA) and Royal Institutes of British Architects (RIBA) demonstrate the state of architectural practices; 72% of architects and 65% of architects respectively are not using any kind of virtual, augmented, or mixed reality in their practices(RIBA and Microsoft, 2018; Hampson, 2020). In this paper, the authors investigate the state of practices, issues, challenges, and opportunities of the utilization of virtual, augmented, and mixed realities in six architectural practices in the Danish context. Three of the practices are large architectural practices, one medium-sized practice specializing in institutional, healthcare and cultural architecture, and one firm designing private family houses, kindergartens, daycares and places for people with disability and, one experimental design studio. All these practices have used VR/AR in their projects to various degrees. In recent years Danish architectural practices have been involved in various VR/AR-based exhibitions, demonstrations, and tool developments to promote the usage of the same in design practice. Through a set of qualitative interviews with personnel from key architectural practices, the authors would like to demonstrate the present state of practices. The investigation explores the usage of VR and AR in Danish architecture practices by identifying challenges and opportunities regarding skill levels, architectural typology, use cases, toolchains, and workflow and shows similarities and differences between traditional and VR-based design processes. The main findings show how VR/AR-based visualization helps architects to perceive spatiality and also ushers creativity through immersion and overlays.
keywords Virtual Reality, Augmented Reality, Architectural Design Practice, Denmark
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2020_456
id ecaade2020_456
authors Farinea, Chiara, Awad, Lana, Dubor, Alex and El Atab, Mohamad
year 2020
title Integrating biophotovoltaic and cyber-physical technologies into a 3D printed wall
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 463-472
doi https://doi.org/10.52842/conf.ecaade.2020.2.463
summary The research presented in this paper investigates the development of "3D printed ceramic green wall", a technological Nature Based Solution (NBS) aimed at regenerating urban areas by improving spatial quality and sustainability through clean and autonomous energy production. Building upon previous research, the challenge of this system is to adapt additive manufacturing processes of ceramic 3D printing with biophotovoltaic systems while simultaneously developing digital and cyber-physical frameworks to generate site and user responsive design and autonomous solutions that optimize system performance and energy generation. The paper explores the complex design negotiations between these drivers, focusing particularly on their performance optimization, and finally highlights the system potential as exemplified through a successful implementation of a 1:1 site responsive wall prototype.
keywords Nature based solutions; biophotovoltaic systems; additive manufacturing; responsive design; cyber-physical networks; augmented reality
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2020_408
id ecaade2020_408
authors Grasser, Alexander, Parger, Alexandra and Hirschberg, Urs
year 2020
title Pervasive Collaboration and Tangible Complexity in Realtime Architecture
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 393-400
doi https://doi.org/10.52842/conf.ecaade.2020.1.393
summary This paper reports on an ongoing experiment in design collaboration: an open collaborative realtime environment that enables participatory design activities in spatially distributed teams. The project builds on online platforms and open source ways of sharing design ideas, but also on recent advances in shared augmented reality enabled by game engine technology. Furthermore it focuses on combinatorial design of collaborative objects: the models shared in this way are not just geometric forms, but informed systems of parts with a procedural or combinatorial logic, an assembly strategy. By pooling and aggregating such intelligent assembly systems in a shared online realtime design space we are trying to move towards pervasive collaboration in architecture. Authors taking part in the project are united in a shared persistent design space and can design collectively. They experience what we refer to as tangible complexity: a playful mode of aggregating and combining design ideas of different authors. We argue that this pervasive collaboration can lead to novel types of complexity: an architecture of socially augmented formations.
keywords Collaborative Objects; Realtime Architecture; Tangible Complexity
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2020_517
id ecaade2020_517
authors Lharchi, Ayoub, Ramsgaard Thomsen, Mette and Tamke, Martin
year 2020
title Connected Augmented Assembly - Cloud based Augmented Reality applications in architecture
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 179-186
doi https://doi.org/10.52842/conf.ecaade.2020.1.179
summary Current design practices rely on a set of computational tools to simulate and optimize the design in regards to questions concerning architecture, engineering, and construction. However, little progress has been made in tools related to the design and execution of a building assembly. This paper aims to present an integrated procedure that targets the assembly of complex structures. Two challenges are identified and addressed: first, the necessity of a connected design environment where multiple stakeholders can communicate, modify, and give feedback on the assembly sequence. Second, the instructions for the assembly of structures to untrained users. The suggested method is based on the Assembly Information Modeling framework, which provides a general approach to generate assembly information from CAD data and utilizes AEC cloud platforms as a base for communication and Augmented Reality devices as a Human Machine Interface. Ultimately, both cases are combined to constitute Connected Augmented Assembly, a bidirectional approach to assembly design, review, and execution.
keywords assembly sequence; augmented reality; assisted assembly; cloud aec; assembly information modeling
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2020_137
id caadria2020_137
authors Xu, Qiaoliang, Brown, Andre, Moleta, Tane, Schnabel, Marc Aurel and Rogers, Maria
year 2020
title Inhabiting 'Prosperous Suzhou' through Smart VR - Interrogating an Ancient Artwork and Documents to manifest Tangible and Intangible Heritage
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 173-182
doi https://doi.org/10.52842/conf.caadria.2020.2.173
summary The research investigates digital landscape heritage. It focuses on the application of Virtual Reality (VR) in a game engine. The aim is to aid the understanding and interpretation of ancient principles relating to sensitive and appropriate interaction of the built form and its associated landscape. The principles have at their root harmony of human inhabitation, the built forms and the landscape they are surrounded. This understanding can lead to re-application within a contemporary context, and the VR environment has the potential to augment and enrich it. For the first time ever, the research has reinterpreted a classical depiction of Suzhou, in an 18th-century handscroll painting, into a three-dimensional immersive virtual environment. It proposes that VR can be a way to experience and increase understanding of heritage landscapes; in our case one that now only exists in an ancient idealised painting. The reinterpretation aims to enhance the users' experience and understanding of the Tangible and Intangible Cultural Heritage. The spatialised scene is augmented through the integration of other historical information, such as poems and travel notes, to embed intangible aspects into the gardens and landscapes.
keywords Digital Heritage; Cultural Landscape; Painting Reinterpretation; Immersive Environments; Virtual Reality
series CAADRIA
email
last changed 2022/06/07 07:57

_id cdrf2019_265
id cdrf2019_265
authors Yue Qi, Ruqing Zhong, Benjamin Kaiser, Long Nguyen,Hans Jakob Wagner, Alexander Verl, and Achim Menges
year 2020
title Working with Uncertainties: An Adaptive Fabrication Workflow for Bamboo Structures
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_25
summary This paper presents and investigates a cyber-physical fabrication work-flow, which can respond to the deviations between built- and designed form in realtime with vision augmentation. We apply this method for large scale structures built from natural bamboo poles. Raw bamboo poles obtain evolutionarily optimized fibrous layouts ideally suitable for lightweight and sustainable building construction. Nevertheless, their intrinsically imprecise geometries pose a challenge for reliable, automated construction processes. Despite recent digital advancements, building with bamboo poles is still a labor-intensive task and restricted to building typologies where accuracy is of minor importance. The integration of structural bamboo poles with other building layers is often limited by tolerance issues at the interfaces, especially for large scale structures where deviations accumulate incrementally. To address these challenges, an adaptive fabrication process is developed, in which existing deviations can be compensated by changing the geometry of subsequent joints to iteratively correct the pose of further elements. A vision-based sensing system is employed to three-dimensionally scan the bamboo elements before and during construction. Computer vision algorithms are used to process and interpret the sensory data. The updated conditions are streamed to the computational model which computes tailor-made bending stiff joint geometries that can then be directly fabricated on-the-fly. In this paper, we contextualize our research and investigate the performance domains of the proposed workflow through initial fabrication tests. Several application scenarios are further proposed for full scale vision-augmented bamboo construction systems.
series cdrf
email
last changed 2022/09/29 07:51

_id ecaade2020_390
id ecaade2020_390
authors Ahmadzadeh Bazzaz, Siamak, Fioravanti, Antonio and Coraglia, Ugo Maria
year 2020
title Depth and Distance Perceptions within Virtual Reality Environments - A Comparison between HMDs and CAVEs in Architectural Design
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 375-382
doi https://doi.org/10.52842/conf.ecaade.2020.1.375
summary The Perceptions of Depth and Distance are considered as two of the most important factors in Virtual Reality Environments, as these environments inevitability impact the perception of the virtual content compared with the one of real world. Many studies on depth and distance perceptions in a virtual environment exist. Most of them were conducted using Head-Mounted Displays (HMDs) and less with large screen displays such as those of Cave Automatic Virtual Environments (CAVEs). In this paper, we make a comparison between the different aspects of perception in the architectural environment between CAVE systems and HMD. This paper clarifies the Virtual Object as an entity in a VE and also the pros and cons of using CAVEs and HMDs are explained. Eventually, just a first survey of the planned case study of the artificial port of the Trajan emperor near Fiumicino has been done as for COVID-19 an on-field experimentation could not have been performed.
keywords Visual Perception; Depth and Distance Perception; Virtual Reality; HMD; CAVE; Trajan’s port
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_343495 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002