CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 650

_id caadria2020_230
id caadria2020_230
authors Shaked, Tom, Bar-Sinai, Karen Lee and Sprecher, Aaron
year 2020
title Autonomous in Craft - Embedding Human Sensibility in Architectural Robotic Fabrication
doi https://doi.org/10.52842/conf.caadria.2020.2.243
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 243-252
summary Recent advancements in robotics allow architects to explore the coupling of manual craft with digital tools. However, current methods remain limited in addressing high-skill, custom tasks involving material uncertainty. In this context, the paper presents three capacities that stand at the core of performing autonomous robotic craft. These include documenting the movements and gestures of local stone craftsmen; augmenting the robotic system with a custom end effector and a sensor toolkit; and enhancing the fabrication process through a protocol that translates the documented data to an autonomous process. The three capacities aid in preserving local crafts, expanding robotic tools with new capabilities, and enabling architectural fabrication with a broader range of materials.
keywords Robotic fabrication; simulation; feedback-based automated manufacturing; digital craft; stone carving
series CAADRIA
email
last changed 2022/06/07 07:56

_id artificial_intellicence2019_31
id artificial_intellicence2019_31
authors Patrik Schumacher and Xuexin Duan
year 2020
title An Architecture for Cyborg Super-Society
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_3
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary This paper embraces the future-open, anti-humanist sensibility of cyborgism from a societal perspective and locates the origin of the ongoing historical transformation of human identities and ways of life in the technology-induced transformation of societal communication dynamics. The evolution of language, and later of writing systems, is identified as crucial empowering engines of human productive cooperation and cultural evolution. Equally crucial for collective human selftransformation is the ever-evolving construction of artificial environments. Built environments are as much a human universal as language and all societal evolution depends on them as frames within which an increasingly complex social order can emerge and evolve. They constitute an indispensable material substrate of societal evolution. These built environments do not only function as physical ordering channels but also operate as information-rich spatio-visual languages, as a form of writing. This insight opens up the project of architectural semiology as task to radically upgrade the communicative capacity of the built environment via deliberate design efforts that understand the design of built environments primarily as the design of an eloquent text formulated by an expressive architectural language. The paper ends with a critical description of a recent academic design research project illustrating how such a semiological project can be conceived. Extrapolating from this leads the authors to speculate about a potentially far-reaching, new medium of communication and means of societal integration, facilitating a ‘cyborg super-society’.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id ijac202018303
id ijac202018303
authors Pedersen, Jens; Narendrakrishnan Neythalath, Jay Hesslink, Asbjørn Søndergaard and Dagmar Reinhardt
year 2020
title Augmented drawn construction symbols: A method for ad hoc robotic fabrication
source International Journal of Architectural Computing vol. 18 - no. 3, 254-269
summary The global construction industry is one the least productive sectors over a 30-year period, which arguably could be related to virtually no implementation of digital and automation technologies within the construction industry. Construction processes arguably consist of expensive manual labor or manual operation of mechanized processes, where hand-drawn markings on work-objects or partly build structures are used to inform and steer the construction process or allows for ad hoc adjustments of elements. As such, the use of on-object, hand-drawn information is considered integral to the modus operandi of a plurality of construction trades, where timber construction and carpentry are of special interest. In contrast, emerging methods of digital production in timber construction implicitly or explicitly seek to eliminate the interpretive component to the construction work, imposing a top-down paradigm of file-to-factory execution. While such systems offer a performance increase compared to manual labor, it is notoriously sensitive to construction tolerances and requires a high level of specialism to be operated, which could alienate craft-educated workers. This research argues that developing methods for digital production compatible with on- site human interpretation and adaptation can help overcome these challenges. In addition, these methods offer the opportunity to increase the robustness and versatility of digital fabrication in the context of the construction site. The article reports on a new method titled “augmented drawn construction symbols” that through a visual communication system converts on-object hand-drawn markings to CAD drawings and sends them to a robotic system. The process is demonstrated on a full-scale prototypical robot setup.
keywords Augmented reality, augmented robotics, computational craft, human machine interface
series other
type normal paper
email
last changed 2020/11/02 13:40

_id sigradi2020_953
id sigradi2020_953
authors Abdallah, Yomna K.; Estevez, Alberto T.
year 2020
title Methodology of Implementing Transformative Bioactive Hybrids in Built Environment to Achieve Sustainability
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 953-961
summary Discrete responsive systems lack functional autonomous transformation, in response to environmental conditions and users' demands; due to shortage in direct integration of biological intelligence. Bioactive hybrids are sufficient solutions as they perform independente self-replication, differentiation of cellular structure, active metabolism, spatial propagation, adaptation, transformation, and morphogenesis. In this paper, a methodology is proposed for the design, fabrication and implementation of these hybrids in the built environment; highlighting their sustainability potentials, by merging synthetic biology, bioengineering and bioprinting, to achieve multiscale active responsiveness. The current work is part of research in biosynthesizing fibroblasts as transformative material in architectural sustainability.
keywords Transformative hybrids, Biodigital, Bioprinting, Robotic materials, Bioengineered systems
series SIGraDi
email
last changed 2021/07/16 11:53

_id caadria2020_233
id caadria2020_233
authors Bar-Sinai, Karen Lee, Shaked, Tom and Sprecher, Aaron
year 2020
title Sensibility at Large - A Post-Anthropocene Vision for Architectural Landscape Editing
doi https://doi.org/10.52842/conf.caadria.2020.2.223
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 223-232
summary The irreversible imprint of humankind on Earth calls for revisiting current construction practices. This paper forwards a vision for post-Anthropocene, large-scale, architectural, and landscape construction. This vision relates to transforming natural terrains into architecture using on-site robotic tools and enabling greater sustainability through increased sensibility. Despite advancements in large-scale digital fabrication in architecture, the field still mainly focuses on the production of objects. The proposed vision aims to advance theory and practice towards territorial scale digital fabrication of environments. Three notions are proposed: material-aware construction, large-scale customization, and integrated fabrication. These aspects are demonstrated through research and teaching projects. Using scale models, they explore the deployment of robotic tools toward reforming, stabilizing, and reconstituting soil in an architectural context. Together, they propose a theoretical ground for in situ digital fabrication for a new era, relinking architecture to the terrains upon which it is formed.
keywords Digital Fabrication; territorial scale; on-site robotics; geomaterials; computational design
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac202018302
id ijac202018302
authors Brath Jensen, Mads; Isak Worre Foged and Hans Jørgen Andersen
year 2020
title A framework for interactive human–robot design exploration
source International Journal of Architectural Computing vol. 18 - no. 3, 235-253
summary This study seeks to identify key aspects for increased integration of interactive robotics within the creative design process. Through its character as foundational research, the study aims to contribute to the advancement of new explorative design methods to support architects in their exploration of fabrication and assembly of an integrated performance-driven architecture. The article describes and investigates a proposed design framework for supporting an interactive human–robot design process. The proposed framework is examined through a 3-week architectural studio, with university master students exploring the design of a brick construction with the support of an interactive robotic platform. Evaluation of the proposed framework was done by triangulation of the authors’ qualitative user observations, quantitative logging of the students’ individual design processes, and through questionnaires completed after finishing the studies. The result suggests that interactive human–robot fabrication is a relevant mode of design with positive effect on the process of creative design exploration.
keywords Design methods, robotic design processes, interactive robotics, computational design, design exploration, creativity
series other
type normal paper
email
last changed 2020/11/02 13:39

_id ijac202018403
id ijac202018403
authors Dagmar Reinhardt, Matthias Hank Haeusler, Kerry London, Lian Loke, Yingbin Feng, Eduardo De Oliveira Barata, Charlotte Firth, Kate Dunn, Nariddh Khean, Alessandra Fabbri, Dylan Wozniak-O’Connor and Rin Masuda
year 2020
title CoBuilt 4.0: Investigating the potential of collaborative robotics for subject matter experts
source International Journal of Architectural Computing vol. 18 - no. 4, 353–370
summary Human-robot interactions can offer alternatives and new pathways for construction industries, industrial growth and skilled labour, particularly in a context of industry 4.0. This research investigates the potential of collaborative robots (CoBots) for the construction industry and subject matter experts; by surveying industry requirements and assessments of CoBot acceptance; by investing processes and sequences of work protocols for standard architecture robots; and by exploring motion capture and tracking systems for a collaborative framework between human and robot co-workers. The research investigates CoBots as a labour and collaborative resource for construction processes that require precision, adaptability and variability.Thus, this paper reports on a joint industry, government and academic research investigation in an Australian construction context. In section 1, we introduce background data to architecture robotics in the context of construction industries and reports on three sections. Section 2 reports on current industry applications and survey results from industry and trade feedback for the adoption of robots specifically to task complexity, perceived safety, and risk awareness. Section 3, as a result of research conducted in Section 2, introduces a pilot study for carpentry task sequences with capture of computable actions. Section 4 provides a discussion of results and preliminary findings. Section 5 concludes with an outlook on how the capture of computable actions provide the foundation to future research for capturing motion and machine learning.
keywords Industry 4.0, collaborative robotics, on-site robotic fabrication, industry research, machine learning
series journal
email
last changed 2021/06/03 23:29

_id ecaade2020_314
id ecaade2020_314
authors Das, Avishek, Worre Foged, Isak and Jensen, Mads Brath
year 2020
title Designing with a Robot - Interactive methods for brick wall design using computer vision
doi https://doi.org/10.52842/conf.ecaade.2020.2.605
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 605-612
summary The deterministic and linear nature of robotic processes in architectural construction often allows no or very little adjustments during the fabrication process. If any need for modification arise the process is usually interrupted, changes are accommodated, and the process is resumed or restarted. The rigidity in this fabrication process leaves little room for creative intervention and human activities and robotic process are often considered as two segregated processes.The paper will present and discuss the methodological and design challenges of interactive robotic fabrication of brickwork with an industrial robotic arm, a webcam and bricks with varying color tones. Emphasis will be on the integration of external computer vision libraries within Rhino Grasshopper to augment the interactive robotic process. The paper will describe and demonstrate a framework comprising (1) robotic pick and place, material selection and evaluation using computer vision, (2) interactive robotic actuation and (3) the role of human input during a probabilistic fabrication-based design process.
keywords interactive robotic fabrication; human robot collaboration; computer vision; masonry; machine learning
series eCAADe
email
last changed 2022/06/07 07:56

_id cdrf2019_79
id cdrf2019_79
authors Guyi Yi1 and Ilaria Di Carlo
year 2020
title Cyborgian Approach of Eco-interaction Design Based on Machine Intelligence and Embodied Experience
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_8
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary The proliferation of digital technology has swelled the amount of time people spent in cyberspace and weakened our sensibility of the physical world. Human beings in this digital era are already cyborgs as the smart devices have become an integral part of our life. Imagining a future where human totally give up mobile phones and embrace nature is neither realistic nor reasonable. What we should aim to explore is the opportunities and capabilities of digital technology in terms of fighting against its own negative effect - cyber addiction, and working as a catalyst that re-embeds human into outdoor world. Cyborgian systems behave through embedded intelligence in the environment and discrete wearable devices for human. In this way, cyborgian approach enables designers to take advantages of digital technologies to achieve two objectives: one is to improve the quality of environment by enhancing our understanding of nonhuman creatures; the other is to encourage a proper level of human participation without disturbing eco-balance. Finally, this paper proposed a cyborgian eco-interaction design model which combines top-down and bottom-up logics and is organized by the Internet of Things, so as to provide a possible solution to the concern that technologies are isolating human and nature.
series cdrf
email
last changed 2022/09/29 07:51

_id cdrf2019_297
id cdrf2019_297
authors H. Mohamed, D. W. Bao, and R. Snooks
year 2020
title Super Composite: Carbon Fibre Infused 3D Printed Tectonics
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_28
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary This research posits an innovative process of embedding carbon fibre as the primary structure within large-scale polymer 3D printed intricate architectural forms. The design and technical implications of this research are explored and demonstrated through two proto-architectural projects, Cloud Affects and Unclear Cloud, developed by the RMIT Architecture Snooks Research Lab. These projects are designed through a tectonic approach that we describe as a super composite – an approach that creates a compression of tectonics through algorithmic selforganisation and advanced manufacturing. Framed within a critical view of the lineage of polymer 3D printing and high tech fibres in the field of architectural design, the research outlines the limitations of existing robotic processes employed in contemporary carbon fibre fabrication. In response, the paper proposes an approach we describe asInfused Fibre Reinforced Plastic (IFRP) as a novel fabrication method for intricate geometries. This method involves 3D printing of sacrificial formwork conduits within the skin of complex architectural forms that are infused with continuous carbon fibre structural elements. Through detailed observation and critical review of Cloud Affects and Unclear Cloud (Fig. 2), the paper assesses innovations and challenges of this research in areas including printing, detailing, structural analysis and FEA modelling. The paper notes how these techniques have been refined through the iterative design of the two projects, including the development of fibre distribution mapping to optimise the structural performance.
series cdrf
email
last changed 2022/09/29 07:51

_id cdrf2019_68
id cdrf2019_68
authors Pierre Cutellic
year 2020
title Growing Shapes with a Generalised Model from Neural Correlates of Visual Discrimination
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_7
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary This paper focuses on the application of visual Event-Related Potentials (ERP) in better generalisations for design and architectural modelling. It makes use of previously built techniques and trained models on EEG signals of a singular individual and observes the robustness of advanced classification models to initiate the development of presentation and classification techniques for enriched visual environments by developing an iterative and generative design process of growing shapes. The pursued interest is to observe if visual ERP as correlates of visual discrimination can hold in structurally similar, but semantically different, experiments and support the discrimination of meaningful design solutions. Following bayesian terms, we will coin this endeavour a Design Belief and elaborate a method to explore and exploit such features decoded from human visual cognition.
series cdrf
email
last changed 2022/09/29 07:51

_id sigradi2020_363
id sigradi2020_363
authors Ulloa Aguayo, Paula Ignacia; García-Alvarado, Rodrigo; Osses Coloma, Mauricio; Pérez Fargallo, Alexis
year 2020
title Robotic Adaptations for Building Works; assembly of concrete blocks “stay-in-place” with robots
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 363-370
summary The progress fostered by the fourth industrial revolution requires building methods according to productivity and sustainability, which also considers the human factor. Therefore, this work addresses safety and efficiency of construction tasks and transformation by robots. As a case study, assembly process of “stay-in-place” concrete blocks is studied, consisting of prefabricated insitu molding pieces with thermal insulation, and finishing included. The movements of the worker in the assembly are evaluated, to be supported by robot procedure and its implications in architectural design. By implementing this technology, human risks in the execution of a work are reduced, allowing greater constructive productivity.
keywords Robots in Architecture, Building Works, Assembly, Digital Fabrication
series SIGraDi
email
last changed 2021/07/16 11:49

_id ecaade2020_298
id ecaade2020_298
authors Zhang, Ye, Zhang, Kun, Chen, KaiDi and Xu, Zhen
year 2020
title Source Material Oriented Computational Design and Robotic Construction
doi https://doi.org/10.52842/conf.ecaade.2020.2.443
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 443-452
summary The disconnection between architectural form and materiality has become an important issue in recent years. Architectural form is mainly decided by the designer, while material data, for example, the natural shape of source materials, is often treated as an afterthought which doesn't factor in decision-making directly. This study proposes a new, real-time scanning-modeling system for obtaining material information, and incorporating the data into a continuous digital chain of computational design and robotic construction. After collecting and visualizing the data, the calculation portion of the chain processes the selection of source materials and generates architectural geometry based on both human-designed rules and various shapes of materials. Finally, at the action end of the chain, an industry robot is used to fabricate the design. End-effector is designed for tightly gripping the irregular source materials. Scripts is written in Grasshopper for positioning the components and assemble them into configurations. This study also shows a pavilion developing with the continuous digital chain
keywords scanning-modeling system; source material information; computational design; robotic construction
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia20_648
id acadia20_648
authors McLemore, Duane
year 2020
title Space Group Symmetry Generation for Design
doi https://doi.org/10.52842/conf.acadia.2020.1.648
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 648-657.
summary This project proposes to implement space group symmetries as a novel descriptive framework for architectural assemblies. To date there is scant examination within architectural computation of this system used to describe the 230 unique configurations of symmetry elements and operations repeating in three dimensions. This research changes this by developing HORTA, a component library for the application of the space groups within Grasshopper. This ongoing project builds a language of arrangement and connectivity from the unambiguous spatial logic and descriptive efficiency of the space groups. This is particularly useful in defining forms for digital fabrication and autonomous assembly at the scale of a material subunit—broadly defined as “bricks.” However, it is not limited to this—HORTA has potential for application across scales, wherever control of repetition and combination with a minimal instruction set is useful. The result is not a tool for a singular design process or specific formal outcomes, but a new system for describing aggregations that inherently balance novelty and predictability. With HORTA, aggregations can be proposed that are composed of a finite but scalable number of possible subunits. Inherently symmetrical, any increase in complexity is realized as an increase in rotations and frequencies of similar subunits rather than an increase in unique unit variants. HORTA theorizes that this previously underexplored area of computation can open sophistication not just in forms but in the description of aggregations with minimal instruction sets, resulting in new methods for the calculation and fabrication of architecture.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_138
id ecaade2020_138
authors Patel, Sayjel Vijay, Tchakerian, Raffi, Lemos Morais, Renata, Zhang, Jie and Cropper, Simon
year 2020
title The Emoting City - Designing feeling and artificial empathy in mediated environments
doi https://doi.org/10.52842/conf.ecaade.2020.2.261
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 261-270
summary This paper presents a theoretical blueprint for implementing artificial empathy into the built environment. Transdisciplinary design principles have oriented the creation of a new model for autonomous environments integrating psychology, architecture, digital media, affective computing and interactive UX design. 'The Emoting City', an interactive installation presented at the 2019 Shenzhen Bi-City Biennale of Urbanism/Architecture, is presented as a first step to explore how to engage AI-driven sensing by integrating human perception, cognition and behaviour in a real-world scenario. The approach described encompasses two main elements: embedded cyberception and responsive surfaces. Its human-AI interface enables new modes of blended interaction that are conducive to self-empathy and insight. It brings forth a new proposition for the development of sensing systems that go beyond social robotics into the field of artificial empathy. The installation innovates in the design of seamless affective computing that combines 'alloplastic' and 'autoplastic' architectures. We believe that our research signals the emergence of a potential revolution in responsive environments, offering a glimpse into the possibility of designing intelligent spaces with the ability to sense, inform and respond to human emotional states in ways that promote personal, cultural and social evolution.
keywords Artificial Intelligence; Responsive Architecture; Affective Computation; Human-AI Interfaces; Artificial Empathy
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia20_130p
id acadia20_130p
authors Swingle, Tyler; Zampini, Davide; Clifford, Brandon
year 2020
title Patty & Jan
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 130-135
summary The construction of architecture relies on an orchestra of moving parts and components throughout the process. These components are designed for the primary loads of the ultimate resting positions, but must also accommodate for secondary loads that occur during the assembly process. Safety, budget, and timing are the most influential factors in conducting the orchestra of architectural construction and typically set the tempo. Patty & Jan explore the curious and playful possibilities of secondary loads such as movement, momentum, and impact. This impractical assembly is not intended to negate practical considerations, but to elevate the field of construction above problem-solving. Patty & Jan builds upon previous research into moving massive masonry elements with little energy by controlling the center of mass (CoM) via physical computation and innovative concrete technologies such as proprietary chemical admixtures and special lightweight additions to entrain air as well as impart high fluidity. The resulting densities of the two concrete mixtures range from one-third the density to double the density of conventional concrete. Patty & Jan contributes to this ongoing research by incorporating the fourth dimension into the assembly process. Patty & Jan are a partnership. They have a reciprocal relationship with one another that ensures one cannot assemble without the other. Beginning with Patty and Jan at a pre-determined distance apart, a weighted tool is removed from Patty to alter the CoM and create a righting moment. Rotating along the riding surface, Patty over rotates to collide with Jan and strikes a resounding echo. The controlled impact triggers Jan first to rotate backward, rebound off its braking surface, and then counter-rotate towards Patty. The two meet along their assembly surfaces in the middle and slip effortlessly into their final assembled position. The resulting performance of Patty & Jan is an embedded intelligence of a theatrical assembly between two massive concrete masonry units (MCMU) through their momentum. Patty & Jan demonstrate the ability to predict the inherent movements and autonomous assemblies of MCMUs. It extends the potential of assembly methods to be social generators such as spectacles or performances. This research is a foundation for thinking about more extensive and more complex construction choreographies that engage material as well as human bodies in the building of architecture.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id ijac202018205
id ijac202018205
authors Ahlquist, Sean
year 2020
title Negotiating human engagement and the fixity of computational design: Toward a performative design space for the differently-abled bodymind
source International Journal of Architectural Computing vol. 18 - no. 2, 174-193
summary Computational design affords agency: the ability to orchestrate the material, spatial, and technical architectural system. In this specific case, it occurs through enhanced, authored means to facilitate making and performance—typically driven by concerns of structural optimization, material use, and responsivity to environmental factors—of an atmospheric rather than social nature. At issue is the positioning of this particular manner of agency solely with the architect auteur. This abruptly halts—at the moment in which fabrication commences—the ability to amend, redefine, or newly introduce fundamentally transformational constituents and their interrelationships and, most importantly, to explore the possibility for extraordinary outcomes. When the architecture becomes a functional, social, and cultural entity, in the hands of the idealized abled-bodied user, agency—especially for one of an otherly body or mind—is long gone. Even an empathetic auteur may not be able to access the motivations of the differently-abled body and neuro- divergent mind, effectively locking the constraints of the design process, which creates an exclusionary system to those beyond the purview of said auteur. It can therefore be deduced that the mechanisms or authors of a conventional computational design process cannot eradicate the exclusionary reality of an architectural system. Agency is critical, yet a more expansive terminology for agent and agency is needed. The burden to conceive of capacities that will always be highly temporal, social, unpredictable, and purposefully unknown must be shifted far from the scope of the traditional directors of the architectural system. Agency, and who it is conferred upon, must function in a manner that dissolves the distinctions between the design, the action of designing, the author of design, and those subjected to it.
keywords Adaptive environments, neurodiversity, inclusion, systems thinking, computational design, disability theory, material systems, design agency
series journal
email
last changed 2020/11/02 13:34

_id cdrf2019_3
id cdrf2019_3
authors Andrej Radman
year 2020
title Machinic Phylum and Architecture
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_1
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary The chapter draws on the anti-substantivist and anti-hylomorphic legacy of two significant Deleuze and Guattari’s interlocutors: Raymond Ruyer and Gilbert Simondon. Ruyer vehemently opposed the logic of mechanicism without regressing to (active) vitalism. His masterpiece Neofinalism, yet to be fully appreciated in architectural circles, is an ode to multiplicity or ‘absolute form’. The title is to be read as a challenge to the hegemony of the step-by-step causation and partes-extra-partes mereology. According to Ruyer, non-locality is the key,not only to the question of subjectivity, but to the problem of life itself. Simondon too shies away from the metaphysics of presence. For him, the process of individuation cannot be grasped on the basis of the fully formed individual. In other words, the knowledge of individuation is the individuation of knowledge. Simondon’s highest ambition in On the Mode of Existence of Technical Objects was to integrate culture and technics (tekhne). The conviction that culture need not be antagonistic to technology is particularly pertinent to the ecologies of architecture. In the second half of the chapter, the affordance theory meets contemporary neurosciences.
series cdrf
email
last changed 2022/09/29 07:51

_id artificial_intellicence2019_15
id artificial_intellicence2019_15
authors Antoine Picon
year 2020
title What About Humans? Artificial Intelligence in Architecture
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_2
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019)
summary Artificial intelligence is about to reshape the architectural discipline. After discussing the relations between artificial intelligence and the broader question of automation in architecture, this article focuses on the future of the interaction between humans and intelligent machines. The way machines will understand architecture may be very different from the reading of humans. Since the Renaissance, the architectural discipline has defined itself as a conversation between different stakeholders, the designer, but also the clients and the artisans in charge of the realization of projects. How can this conversation be adapted to the rise of intelligent machines? Such a question is not only a matter of design effectiveness. It is inseparable from expressive and artistic issues. Just like the fascination of modernist architecture for industrialization was intimately linked to the quest for a new poetics of the discipline, our contemporary interest for artificial intelligence has to do with questions regarding the creative core of the architectural discipline.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_302265 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002