CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 657

_id acadia20_436
id acadia20_436
authors Chun Hin Fong, Jacky; Long Wun Poon, Adabelle; Sze Ngan, Wing; Hei Ho, Chung; Goepel, Garvin; Crolla, Kristof
year 2020
title Augmenting Craft with Mixed Reality
doi https://doi.org/10.52842/conf.acadia.2020.1.436
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 436-444.
summary This paper discusses novel methods for and advantages of integrating augmented reality (AR) and photogrammetry in hand clay-sculpting workflows. These techniques permit nontrained users to achieve higher precision during the sculpting process by holographically overlaying instructions from digital 3D source geometry on top of the sculpting material. By employing alternative notational systems in design implementation methods, the research positions itself in a postdigital context aimed at humanizing digital technologies. Throughout history, devices have been developed to increase production, such as Henry Dexter’s 1842 “Apparatus for Sculptors” for marble sculpting. Extrapolating from this, the workflow presented in this paper uses AR to overlay extracted information from 3D models directly onto the sculptor’s field of vision. This information can then become an AR-driven guidance system that assists the sculptor. Using the Microsoft HoloLens, holographic instructions are introduced in the production sequence, connecting the analog sculpture fabrication directly with a digital environment, thus augmenting the craftspeople’s agency. A series of AR-aided sculpting methods were developed and tested in a demonstrator case study project that created a small-scale clay copy of Henry Moore’s Sheep Piece (1971–1972). This paper demonstrates how user-friendly software and hardware tools have lowered the threshold for end users to develop new methods that straightforwardly facilitate and improve their crafts’ effectiveness and agency. This shows that the fusion of computational design technology and AR visualization technology can innovate a specific craft’s design and production workflow, opening the door for further application developments in more architecture-specific fabrication contexts.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_456
id ecaade2020_456
authors Farinea, Chiara, Awad, Lana, Dubor, Alex and El Atab, Mohamad
year 2020
title Integrating biophotovoltaic and cyber-physical technologies into a 3D printed wall
doi https://doi.org/10.52842/conf.ecaade.2020.2.463
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 463-472
summary The research presented in this paper investigates the development of "3D printed ceramic green wall", a technological Nature Based Solution (NBS) aimed at regenerating urban areas by improving spatial quality and sustainability through clean and autonomous energy production. Building upon previous research, the challenge of this system is to adapt additive manufacturing processes of ceramic 3D printing with biophotovoltaic systems while simultaneously developing digital and cyber-physical frameworks to generate site and user responsive design and autonomous solutions that optimize system performance and energy generation. The paper explores the complex design negotiations between these drivers, focusing particularly on their performance optimization, and finally highlights the system potential as exemplified through a successful implementation of a 1:1 site responsive wall prototype.
keywords Nature based solutions; biophotovoltaic systems; additive manufacturing; responsive design; cyber-physical networks; augmented reality
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2020_209
id ecaade2020_209
authors Han, Yoojin and Lee, Hyunsoo
year 2020
title Investigating the Effectiveness of AR-enhanced Signage in Multi-purpose Commercial Complexes - Focusing on response time to directional signage
doi https://doi.org/10.52842/conf.ecaade.2020.1.145
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 145-152
summary The aim of this study was to investigate next level digital signage utilizing augmented reality for multi-purpose commercial complexes. Recently, despite the rapid growth of the urban solution, mixed-use commercial complexes have experienced significant problems in terms of wayfinding. As a potential solution to the problem, this study sought to determine the effectiveness of state-of-the-art augmented reality (AR) on wayfinding. Focusing on the response time to directional signage, this study compared wayfinding through traditional signage with AR-enhanced signage. The response time in milliseconds was measured using a program developed with Python. In all, 30 sign images were presented to 48 participants in random order. A third of them included existing signs as the control condition, and the others were AR signs with half graphic and half text. The results of this study demonstrated that AR-enhanced signage had tremendous potential to improve wayfinding performance in multi-purpose commercial complexes. Results revealed that response time to directional signage was reduced in AR environments. In particular, the AR signage system combining text and graphics was useful in terms of both response time and cognitive appraisal.
keywords Augmented Reality (AR); Signage; Wayfinding; Multi-purpose Commercial Complexes
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2020_009
id ecaade2020_009
authors Reaver, Kai
year 2020
title After Imagery - Evaluating the use of mixed reality (MR) in urban planning
doi https://doi.org/10.52842/conf.ecaade.2020.1.187
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 187-196
summary While many researchers have developed interesting use cases for Mixed Reality (MR) in urban environments, the paper argues that determining the long-term viability of such applications as planning tools will likely require evaluating whether such applications are compatible with the democratically mandated procedures in Urban Planning. The paper compares this claim to current debates regarding the legality of the use of digital imagery in Urban Planning today. The paper elaborates these arguments through case studies done in Oslo, Norway in the context of developing the "Nordic Digital City". The case studies involve the use of MR in 1) a public competition, 2) a regulation plan, and 3) a building permit. The study thus presents some of the benefits and challenges of using these technologies in such a manner, particularly regarding accuracy, user feedback, and robustness as a common interface. The paper concludes that MR offers several benefits to Urban Planning, but will likely require a highly digitized competent public sector in order to function, in addition to requiring negotiation between the required user data and user privacy rights, suggesting that MR development may migrate from a primarily technical domain to a matter of public policy.
keywords Mixed Reality; Urban Planning; Urbanism; Augmented Reality
series eCAADe
email
last changed 2022/06/07 08:00

_id ijac202018102
id ijac202018102
authors Seifert, Nils; Michael Mühlhaus and Frank Petzold
year 2020
title Urban strategy playground: Rethinking the urban planner’s toolbox
source International Journal of Architectural Computing vol. 18 - no. 1, 20-40
summary This article presents the results of the Urban Strategy Playground research group. Over the last 5 years, the focus of an interdisciplinary team of researchers was the conception, implementation and evaluation of a decision-support system for inner-city urban and architectural planning. The overall aim of past and ongoing research is to enable planners to validate and compare possible planning measures based on objective criteria. The Urban Strategy Playground software framework is an expandable toolbox that supports planners in developing strategies, evaluating them and visually preparing them for political decision-making processes and public participation. Examples of implemented tools are the simulation and monitoring of building codes, analysis of key density indicators and green space provision, simulation of shading, building energy and noise dispersion. For visualising the planning results, the framework provides interfaces for rapid prototyping of haptic models, as well as web viewers and a connection to Augmented Reality applications. Core aspects of the system were evaluated through case studies in cooperation with urban planning offices, housing companies and municipalities, proving feasibility, high acceptance of the decision-support software, and need for more tailored tools.
keywords Urban planning, decision support, participation, augmented reality, 3D printing, visual programming, 3D city model
series journal
email
last changed 2020/11/02 13:34

_id ecaade2021_067
id ecaade2021_067
authors Weissenböck, Renate
year 2021
title Augmented Quarantine - An experiment in online teaching using augmented reality for customized design interventions
doi https://doi.org/10.52842/conf.ecaade.2021.2.095
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 95-104
summary This paper presents experimental research about using Augmented Reality (AR) for interactive design processes, exploring a spatial "live" design method taking place in an overlay of real space and digital models. It discusses the processes and outcomes of a seminar undertaken at Graz University of Technology in winter term 2020/2021. Due to the Covid-19 pandemic, the course was taught online, and conceptualized to allow students the biggest possible learning experience during the lockdown. Ensuring accessibility to all participants, the seminar was based on the use of ubiquitous devices. The implementation of newly developed software, such as "Fologram", enabled the students to use AR systems at home with their personal computers and smartphones. The task of the course was to design customized interventions for the students' own domestic spaces, reacting to changing conditions and needs during the lockdown. The employed workflow was driven by an instant connection between 3D-modeling (Rhinoceros3D), parametric design (Grasshopper) and holographic immersion (Fologram).
keywords augmented reality; remote collaboration; interactive design; customization; online teaching
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2025_809
id caadria2025_809
authors Chakraborty, Shilpi and Fukuda, Tomohiro
year 2025
title Bridging Past and Present - Space syntax as a tool for digital heritage: A comprehensive literature review for integrating spatial analysis in heritage conservations
source Dagmar Reinhardt, Nicolas Rogeau, Christiane M. Herr, Anastasia Globa, Jielin Chen, Taro Narahara (eds.), ARCHITECTURAL INFORMATICS - Proceedings of the 30th CAADRIA Conference, Tokyo, 22-29 March 2025, Volume 4, pp. 325–334
summary This study examines the integration of space syntax into digital heritage practices to address key challenges in preserving historic urban landscapes. The research focuses on three primary issues: the lack of social and cultural integration, low user engagement, and insufficient interdisciplinary collaboration. The research question explores how space syntax can enhance the preservation of both spatial and cultural characteristics in heritage management. A systematic literature review was conducted across 5,694 documents published between 1983 and 2024, utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology for rigorous data collection. The results reveal a substantial increase in relevant publications, with a 64% rise in the 1990s to 2000s and a 498% increase from 2000 to 2010. Geographic analysis shows significant contributions from Italy (16.6%) and China (13.9%). Keyword and thematic analyses highlight the growing intersection of space syntax with urban heritage preservation and cultural management. Key findings include the ability of space syntax to improve environmental management (r = 0.62, p < 0.01), digital modeling accuracy (85% by 2020), and community. The research advances heritage conservation by integrating space syntax with digital practices, proposing a framework for sustainable urban development with future focus on real-time monitoring and sustainable planning.
keywords Cultural heritage, Conceptual framework, Design Research Methodology, Sustainable development
series CAADRIA
email
last changed 2025/04/18 12:27

_id ecaade2020_030
id ecaade2020_030
authors Song, Yang
year 2020
title BloomShell - Augmented Reality for the assembly and real-time modification of complex curved structure
doi https://doi.org/10.52842/conf.ecaade.2020.1.345
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 345-354
summary Augmented Reality (AR) as a new technical tool has developed rapidly in the last few years and has now the potential of bridging the gap between holographic drawings and the real world. This paper addresses whether AR can guide unskilled labour on complex structure assembly and fabrication process. It contains three experiments developed with AR. The research aims to prove that with intuitive holographic instructions, AR helps to reduce the time spent in comparing 2D drawings to the real site during the assembly process, and therefore offers possibilities to improve the construction efficiency significantly. The research also paves the way for shell structures, considering the latest technology such as AR and AI, and gives emphasis on the communication between computer and human during the fabrication process through the physical model. It is an exploration of how people might change their mind or decisions can be changed in a real-time manner harmoniously using AI through AR.
keywords Augmented Reality; complex curved structure assembly; real-time modification; holographic instruction; HoloLens; Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:56

_id cdrf2019_46
id cdrf2019_46
authors Adam Chernick, Christopher Morse, Steve London, Tim Li, David Ménard, John Cerone, and Gregg Pasquarelli
year 2020
title On-Site BIM-Enabled Augmented Reality for Construction
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_5
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary We describe a prototype system for communicating building information and models directly to on-site general contractors and subcontractors. The system, developed by SHoP Architects, consists of a workflow of pre-processing information within Revit, post-processing information outside of Revit, combining data flows inside of a custom application built on top of Unity Reflect, and delivering the information through a mobile application on site with an intuitive user interface. This system incorporates augmented reality in combination with a dashboard of documentation views categorized by building element.
series cdrf
email
last changed 2022/09/29 07:51

_id sigradi2020_577
id sigradi2020_577
authors Appendino, María José; Carboni, Lucía; Tosello, María Elena
year 2020
title Design of a Virtual Reality device to motivate experiences of meaningful learning
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 577-585
summary With the increasing popularization of technologies such as Augmented Reality -AR- and Virtual Reality -VR-, interest aroused in studying the incorporation of these media into design disciplines higher education. The main objective of this investigation was to integrate VR and AR into the lessons, in order to motivate a meaningful learning process for students. The project was developed for a subject corresponding to the first year of the university careers of Architecture, Visual Design, and Industrial Design. This device was effectively implemented for the dictation of virtual classes, in the context of the COVID-19 pandemic.
keywords Virtual Tour, Design Education, Emerging Technologies
series SIGraDi
email
last changed 2021/07/16 11:52

_id ecaade2020_499
id ecaade2020_499
authors Ashour, Ziad and Yan, Wei
year 2020
title BIM-Powered Augmented Reality for Advancing Human-Building Interaction
doi https://doi.org/10.52842/conf.ecaade.2020.1.169
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 169-178
summary The shift from computer-aided design (CAD) to building information modeling (BIM) has made the adoption of augmented reality (AR) promising in the field of architecture, engineering and construction. Despite the potential of AR in this field, the industry and professionals have still not fully adopted it due to registration and tracking limitations and visual occlusions in dynamic environments. We propose our first prototype (BIMxAR), which utilizes existing buildings' semantically rich BIM models and contextually aligns geometrical and non-geometrical information with the physical buildings. The proposed prototype aims to solve registration and tracking issues in dynamic environments by utilizing tracking and motion sensors already available in many mobile phones and tablets. The experiment results indicate that the system can support BIM and physical building registration in outdoor and part of indoor environments, but cannot maintain accurate alignment indoor when relying only on a device's motion sensors. Therefore, additional computer vision and AI (deep learning) functions need to be integrated into the system to enhance AR model registration in the future.
keywords Augmented Reality; BIM; BIM-enabled AR; GPS; Human-Building Interactions; Education
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_350
id acadia20_350
authors Atanasova, Lidia; Mitterberger, Daniela; Sandy, Timothy; Gramazio, Fabio; Kohler, Matthias; Dörfler, Kathrin
year 2020
title Prototype As Artefact
doi https://doi.org/10.52842/conf.acadia.2020.1.350
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 350-359.
summary In digital design-to-fabrication workflows in architecture, in which digitally controlled machines perform complex fabrication tasks, all design decisions are typically made before production. In such processes, the formal definition of the final shape is explicitly inscribed into the design model by means of corresponding step-by-step machine instructions. The increasing use of augmented reality (AR) technologies for digital fabrication workflows, in which people are instructed to carry out complex fabrication tasks via AR interfaces, creates an opportunity to question and adjust the level of detail and the nature of such explicit formal definitions. People’s cognitive abilities could be leveraged to integrate explicit machine intelligence with implicit human knowledge and creativity, and thus to open up digital fabrication to intuitive and spontaneous design decisions during the building process. To address this question, this paper introduces open-ended Prototype-as-Artefact fabrication workflows that examine the possibilities of designing and creative choices while building in a human-robot collaborative setting. It describes the collaborative assembly of a complex timber structure with alternating building actions by two people and a collaborative robot, interfacing via a mobile device with object tracking and AR visualization functions. The spatial timber assembly being constructed follows a predefined grammar but is not planned at the beginning of the process; it is instead designed during fabrication. Prototype-as-Artefact thus serves as a case study to probe the potential of both intuitive and rational aspects of building and to create new collaborative work processes between humans and machines.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2020_455
id sigradi2020_455
authors Bastian, Andrea Verri; Filho, Jarede Joaquim de Souza; Garcia, Júlia Assis de Souza Sampaio
year 2020
title Urban modelling for evaluating photovoltaic potential through solar radiation incidence
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 455-463
summary This study aims to better ascertain the influence that urbanistic parameters exert on the production of solar photovoltaic energy regarding different contexts in the city. Modifications implemented between the years of 2012 and 2016, especially on variables such as Maximum Lot Coverage, Floor Area Ratio, and Setbacks, have been evaluated through virtual models that cover areas in three different city districts. Amongst other implications, an increase in the area occupied by the buildings, as well as a decrease in the distance between them, occurred, causing more mutual shading and the loss of the photovoltaic potential associated with the building envelope.
keywords Urbanistic parameters, Photovoltaic solar energy, Virtual models, Architecture, Urbanism
series SIGraDi
email
last changed 2021/07/16 11:49

_id cdrf2019_57
id cdrf2019_57
authors Caitlyn Parry and Sean Guy
year 2020
title Recycling Construction Waste Material with the Use of AR
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_6
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary This paper aims to present a methodology for reusing and recycling scrap timber from building sites using augmented reality and flexible digital models. The project we present describes a process that enables existing material to be reused and repurposed such that the designed model is updated by the digital inventory of digitised offcuts/waste elements.
series cdrf
email
last changed 2022/09/29 07:51

_id sigradi2020_608
id sigradi2020_608
authors Costa, Eduardo; Duarte, José; Bilén, Sven G.
year 2020
title Robotic Apprentices: Leveraging Augmented Reality for Robot Training in Manufacturing Automation
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 608-614
summary In the scope of Industry 4.0, a framework is proposed to leverage the potential of articulating Augmented Reality and Robotic Manufacturing in the construction industry. The objective of such framework is to enable robots to learn how to perform tasks using direct interaction with human operators. As a first step, we established a connection between a robot and its trainer— or controller—in which the robot mirrors the operator’s actions. Augmented Reality hardware is used for capturing the trainer’s gestures and the surrounding environment. A digital tool was implemented using Grasshopper and additional plugins to control the process.
keywords Augmented reality, Robotic arm, Programming by demonstration, Human–Robot Collaboration, Industry 4.0
series SIGraDi
email
last changed 2021/07/16 11:52

_id caadria2020_141
id caadria2020_141
authors Dezen-Kempter, Eloisa, Mezencio, Davi Lopes, Miranda, Erica De Matos, De Sá, Danilo Pico and Dias, Ulisses
year 2020
title Towards a Digital Twin for Heritage Interpretation - from HBIM to AR visualization
doi https://doi.org/10.52842/conf.caadria.2020.2.183
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 183-191
summary Data-driven Building Information Modelling (BIM) technology has brought new tools to efficiently deal with the tension between the real and the virtual environments in the field of Architecture, Engineering, Construction, and Operation (AECO). For historic assets, BIM represents a paradigm shift, enabling better decision-making about preventive maintenance, heritage management, and interpretation. The potential application of the Historic-BIM is creating a digital twin of the asset. This paper deals with the concept of a virtual environment for the consolidation and dissemination of heritage information. Here we show the process of creating interactive virtual environments for the Pampulha Modern Ensemble designed by Oscar Niemeyer in the 1940s, and the workflow to their dissemination in an AR visualization APP. Our results demonstrate the APP feasibility to the Pampulha's building interpretation.
keywords Augmented Reality (AR); Historic Building Information Modelling (HBIM); Heritage Interpretation; Modern Architecture
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2020_261
id ecaade2020_261
authors Dimopoulos, Georgios, Kontaxakis, Dimitris, Symeonidou, Ioanna and Tsinikas, Nikos
year 2020
title From Analog to Digital: Double Curved Lightweight Structures in Architectural Design Education
doi https://doi.org/10.52842/conf.ecaade.2020.2.181
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 181-188
summary The paper describes an architectural design studio for 5th year students at the Department of Architecture of the Aristotle University in Thessaloniki, Greece. The educational objective of the studio is the design of double curved lightweight structures, employing a creative methodology which instrumentalizes the study of nature as a source of inspiration. The objective of the course is to familiarize the students with curves and form-finding (analogue and digital) with the aim to design forms that display structural stability. The paper will highlight the educational gains from a hybrid design methodology which employs both analog (physical) form-finding tools and digital modeling for the design of double curvature surfaces.
keywords Lightweight structures; Form-finding; Dynamic models; Tensile structures; Architecture education
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2020_426
id caadria2020_426
authors Goepel, Garvin and Crolla, Kristof
year 2020
title Augmented Reality-based Collaboration - ARgan, a bamboo art installation case study
doi https://doi.org/10.52842/conf.caadria.2020.2.313
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 313-322
summary ARgan is a geometrically complex bamboo sculpture that relied on Mixed Reality (MR) for its joint creation by multiple sculptors and used latest Augmented Reality (AR) technology to guide manual fabrication actions. It was built at the Chinese University of Hong Kong in the fall of 2019 by thirty participants of a design-and-build workshop on the integration of AR in construction. As part of its construction workflow, holographic setups were created on multiple devices, including a series of Microsoft HoloLenses and several handheld Smartphones, all linked simultaneously to a single digital base model to interactively guide the manufacturing process. This paper critically evaluates the experience of extending recent AR and MR tool developments towards applications that centre on creative collaborative production. Using ARgan as a demonstrator project, its developed workflow is assessed on its ability to transform a geometrically complex digitally drafted design to its final physically built form, highlighting the necessary strategic integration of variability as an opportunity to relax notions on design precision and exact control. The paper concludes with a plea for digital technology's ability to stimulate dialogue and collaboration in creative production and augment craftsmanship, thus providing greater agency and more diverse design output.
keywords Augmented-Reality; Mixed-Reality; Post-digital; High-tech vs low-tech; Bamboo
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2020_408
id ecaade2020_408
authors Grasser, Alexander, Parger, Alexandra and Hirschberg, Urs
year 2020
title Pervasive Collaboration and Tangible Complexity in Realtime Architecture
doi https://doi.org/10.52842/conf.ecaade.2020.1.393
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 393-400
summary This paper reports on an ongoing experiment in design collaboration: an open collaborative realtime environment that enables participatory design activities in spatially distributed teams. The project builds on online platforms and open source ways of sharing design ideas, but also on recent advances in shared augmented reality enabled by game engine technology. Furthermore it focuses on combinatorial design of collaborative objects: the models shared in this way are not just geometric forms, but informed systems of parts with a procedural or combinatorial logic, an assembly strategy. By pooling and aggregating such intelligent assembly systems in a shared online realtime design space we are trying to move towards pervasive collaboration in architecture. Authors taking part in the project are united in a shared persistent design space and can design collectively. They experience what we refer to as tangible complexity: a playful mode of aggregating and combining design ideas of different authors. We argue that this pervasive collaboration can lead to novel types of complexity: an architecture of socially augmented formations.
keywords Collaborative Objects; Realtime Architecture; Tangible Complexity
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2020_107
id ecaade2020_107
authors Hashimoto, Jason and Park, Hyoung-June
year 2020
title Dance with Shadows - Capturing tacit knowledge with smart device augmented reality (SDAR)
doi https://doi.org/10.52842/conf.ecaade.2020.2.165
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 165-172
summary Tacit knowledge has been notified with its involvement in the creative and innovative process of design. However, it has been an elusive subject due to its difficulty to be articulated, recorded, and communicated. Augmented Reality (AR) is introduced as an affordable, accessible, and collaborative way to revisit tacit knowledge in the design process. In this paper, a computational design approach with Smart Device Augmented Reality (SDAR) is proposed for a real-time fenestration design in a targeted room. In comparison to standard methods of showcasing daylighting metrics, the use of Smart Device Augmented Reality (SDAR) is an alternative method as it delivers a dynamic experience by combining both the real and digital environments, enabling the visualization of the design in its intended site context with real-time feedback. The implementation of the proposed approach is explained and the design process with SDAR is also demonstrated in this paper.
keywords tacit knowledge; augmented reality; simulation; real-time feedback
series eCAADe
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_339343 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002