CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 656

_id ecaade2020_032
id ecaade2020_032
authors Tuzun Canadinc, Seda, Wang, Bihan, Pi, Yalong and Yan, Wei
year 2020
title Multi-User and Web-based Parametric Modeling with Multiple Visual Programming Tools
doi https://doi.org/10.52842/conf.ecaade.2020.1.019
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 19-28
summary This paper presents a new framework for Web-based parametric modeling for design collaboration, allowing multiple users to work on the shared Web-based model in the process of building design and modeling, performance simulation, and optimization. The Web-based model viewer displays a shared model. Two visual programming tools: Grasshopper and Dynamo, are used on users' local computers connected to the Web. Two working prototypes of modeling methods were developed to control and modify building models on the Web. Two case studies with three tests each were conducted on a simplified residential building model. In Case Study 1, two simulated users tested the parametric capabilities on transformations including scaling, translation, and rotation of the shared Web-based model using Grasshopper and Dynamo. In Case Study 2, two simulated users collaborated on the shared Web-based model through Grasshopper in the process of optimization for different building performance objectives, in terms of daylight, energy use, and roof coverage. Web-based parametric modeling is expected to provide opportunities for collaboration in parametric design and optimization. Findings and technical limitations of the framework are discussed in the paper.
keywords Web-based Modeling; Parametric Modeling; Optimization; Visual Programming; Collaborative Design; Building Performance Simulation
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2020_064
id ecaade2020_064
authors Agirbas, Asli
year 2020
title Building Energy Performance of Complex Forms - Test simulation of minimal surface-based form optimization
doi https://doi.org/10.52842/conf.ecaade.2020.1.259
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 259-268
summary Many optimization tools are developed in line with the form-energy relationship to ensure energy efficiency in buildings. However, such studies with complex forms are very limited. Therefore, the MSO-2 model was developed. In this model, on the roof of the conceptual form, minimal surface is used, thus complex forms can be created. In this model, the conceptual form can be optimized (for one day) according to these objectives: increasing daylight in the space with maximum value limitation, reducing radiation on the roof, and enlarging floor surface area of the conceptual form with minimum value limitation. A test simulation was performed with this model. Thus, in order to find the most optimized form in multi-objective optimization, more generations could be produced in a short time and optimized conceptual forms, which were produced, could be tested for energy efficiency.
keywords Multi-Objective Optimization; Radiation Analysis; Building energy performance; Daylighting Analysis
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2024_222
id ecaade2024_222
authors Bindreiter, Stefan; Sisman, Yosun; Forster, Julia
year 2024
title Visualise Energy Saving Potentials in Settlement Development: By linking transport and energy simulation models for municipal planning
doi https://doi.org/10.52842/conf.ecaade.2024.2.079
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 79–88
summary To achieve Sustainable Development Goals, in addition to the switch to sustainable energy sources and energy-efficient buildings, transport offers a major lever for reducing energy consumption and greenhouse gases. The increasing demand for emission-free mobility (e.g. through electromobility) but also heat pumps has a direct impact on the electricity consumption of buildings and settlements. It is still difficult to simulate the effects and interactions of different measures as sector coupling concepts require comprehensible tools for ex ante evaluation of planning measures at the community level and the linking of domain-specific models (energy, transport). Using the municipality of Bruck an der Leitha (Austria) as an example, a digital twin based on an open data model (Bednar et al., 2020) is created for the development of methods, which can be used to simulate measures to improve the settlement structure within the municipality. Forecast models for mobility (Schmaus, 2019; Ritz, 2019) and the building stock are developed or applied and linked via the open data model to be able to run through development scenarios and variants. The forecasting and visualisation options created in the project form the basis for the ex-ante evaluation of measures and policies on the way to a Positive-Energy-District. By identifying and collecting missing data, data gaps are filled for the simulation of precise models in the specific study area. A digital, interactive 3D model is created to examine the forecast results and the different scenarios.
keywords visualisation, decision support, sector coupling, holistic spatial energy models for municipal planning, (energy) saving potentials in settlement development
series eCAADe
email
last changed 2024/11/17 22:05

_id cdrf2019_229
id cdrf2019_229
authors Jingyi Li and Hong Chen
year 2020
title Optimization and Prediction of Design Variables Driven by Building Energy Performance—A Case Study of Office Building in Wuhan
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_22
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary This research focuses on the energy performance of office building in Wuhan. The research explored and predicted the optimal solution of design variables by Multi-Island Genetic Algorithm (MIGA) and RBF Artificial neural networks (RBF-ANNs). Research analyzed the cluster centers of design variable by K-means cluster method. In the study, the RBF-ANNs model was established by 1,000 simulation cases. The RMSE (root mean square error) of the RBF-ANNs model in different energy aspects does not exceed 15%. Comparing to the reference case (the largest energy consumption case in the optimization), the 214 elite cases in RBF-ANNs model save at least 37.5% energy. By the cluster centers of the design variables in the elite cases, the study summarized the benchmark of 14 design variables and also suggested a building energy guidance for Wuhan office building design.
series cdrf
email
last changed 2022/09/29 07:51

_id ijac202018407
id ijac202018407
authors Marcelo Bernal, Victor Okhoya, Tyrone Marshall, Cheney Chen and John Haymaker
year 2020
title Integrating expertise and parametric analysis for a data-driven decision-making practice
source International Journal of Architectural Computing vol. 18 - no. 4, 424–440
summary This study explores the integration of expert design intuition and parametric data analysis. While traditional professional design expertise helps to rapidly frame relevant aspects of the design problem and produce viable solutions, it has limitations in addressing multi-criteria design problems with conflicting objectives. On the other hand, parametric analysis, in combination with data analysis methods, helps to construct and analyze large design spaces of potential design solutions and tradeoffs, within a given frame. We explore a process whereby expert design teams propose a design using their current intuitive and analytical methods. That design is then further optimized using parametric analysis. This study specifically explores the specification of geometric and material properties of building envelopes for two typically conflicting objectives: daylight quality and energy consumption. We compare performance of the design after initial professional design exploration, and after parametric analysis, showing consistently significant performance improvement after the second process. The study explores synergies between intuitive and systematic design approaches, demonstrating how alignment can help expert teams efficiently and significantly improve project performance.
keywords Performance analysis, parametric analysis, design space, design expertise, data analysis, optimization
series journal
email
last changed 2021/06/03 23:29

_id sigradi2020_734
id sigradi2020_734
authors Nope Bernal, Alberto; Ramírez, Anna Gabriela; García Alvarado, Rodrigo; Forcael Durán, Eric
year 2020
title DESIGN OF A NEARLY ZERO-ENERGY HOME WITH EXTREME COLLABORATION IN BIM
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 734-741
summary The global request of energy politics and actions against climate change, reiterate the importance of promoting the nearly zero-energy buildings (nZEB), taking into account environmental habitability and comfort; therefore, this type of buildings has to include a process, design, and construction, intelligent. Accordingly, the present research shows a methodology for the design of almost zero-energy housing, by using BIM under an environment of extreme collaboration; evaluating energy consumption and active solar generation. Thus, the proposed methodology allows optimizing the processes related to design time, level of geometric development, and the application and evaluation of sustainability strategies, to achieve nearly zero-energy housing within the city Concepcion Chile.
keywords Nearly Zero-energy Buildings, Building Information Modeling, Extreme Collaboration, Sustainability
series SIGraDi
email
last changed 2021/07/16 11:52

_id caadria2020_106
id caadria2020_106
authors Tian, Jieren and Yu, Chuanfei
year 2020
title Dynamic Translation of Real-world Environment Factors and Urban Design Operation in a Game Engine - A Case Study of Central District in Tiebei New Town, Nanjing
doi https://doi.org/10.52842/conf.caadria.2020.2.011
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 11-20
summary The building and its urban environment are complex and dynamic data systems. Designers, who make design decisions, need the design tools to simulate the built environment, to estimate the feasibility of the design. However, the static modeling software, widely used nowadays, restricts the linkage relationship between the actual data environment and the simulation model, which lacks the dynamic constraint relationship and the construction of the loop order. Different from traditional modeling and analysis tools, simulation games, with dynamic constraint rules and real-time feedback operations, provide a new way of thinking and a perspective to observe the urban, which makes the simulation game be seen as a simplified analog system, to some extent. Therefore, this paper plan to builds a city model, based on an urban design project of an urban district of Nanjing as an example, by using the Cities: Skylines, a city simulation game with priority of traffic and zoning concept. Based on this dynamic model, the next step will evaluate the original project and carry out further optimization operations in real-time.
keywords real-time interaction; dynamic process simulation; urban environment; city simulation system; simulated game
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2020_009
id caadria2020_009
authors Wang, Likai, Chen, Kian Wee, Janssen, Patrick and Ji, Guohua
year 2020
title Algorithmic generation of architectural Massing Models for building design optimisation - Parametric Modelling Using Subtractive and Additive Form Generation Principles
doi https://doi.org/10.52842/conf.caadria.2020.1.385
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 385-394
summary Using performance-based optimisation to explore unknown design solutions space has become widely acknowledged and considered an efficient approach to designing high-performing buildings. However, the lack of design diversity in the design space defined by the parametric model often confines the search of the optimisation process to a family of similar design variants. In order to overcome this weakness, this paper presents two parametric massing generation algorithms based on the additive and subtractive form generation principles. By abstracting the rule of these two principles, the algorithms can generate diverse building massing design alternatives. This allows the algorithms to be used in performance-based optimisation for exploring a wide range of design alternatives guided by various performance objectives. Two case studies of passive solar energy optimisation are presented to demonstrate the efficacy of the algorithm in helping architects achieve an explorative performance-based optimisation process.
keywords parametric massing algorithms; performance-based optimisation; design exploration; solar irradiation
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia20_228
id acadia20_228
authors Alawadhi, Mohammad; Yan, Wei
year 2020
title BIM Hyperreality
doi https://doi.org/10.52842/conf.acadia.2020.1.228
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 228-236.
summary Deep learning is expected to offer new opportunities and a new paradigm for the field of architecture. One such opportunity is teaching neural networks to visually understand architectural elements from the built environment. However, the availability of large training datasets is one of the biggest limitations of neural networks. Also, the vast majority of training data for visual recognition tasks is annotated by humans. In order to resolve this bottleneck, we present a concept of a hybrid system—using both building information modeling (BIM) and hyperrealistic (photorealistic) rendering—to synthesize datasets for training a neural network for building object recognition in photos. For generating our training dataset, BIMrAI, we used an existing BIM model and a corresponding photorealistically rendered model of the same building. We created methods for using renderings to train a deep learning model, trained a generative adversarial network (GAN) model using these methods, and tested the output model on real-world photos. For the specific case study presented in this paper, our results show that a neural network trained with synthetic data (i.e., photorealistic renderings and BIM-based semantic labels) can be used to identify building objects from photos without using photos in the training data. Future work can enhance the presented methods using available BIM models and renderings for more generalized mapping and description of photographed built environments.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_258
id caadria2020_258
authors Beatricia, Beatricia, Indraprastha, Aswin and Koerniawan, M. Donny
year 2020
title Revisiting Packing Algorithm - A Strategy for Optimum Net-to Gross Office Design
doi https://doi.org/10.52842/conf.caadria.2020.1.405
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 405-414
summary Net-to-gross efficiency is defined as the ratio of net area to a gross area of a building. Net-to-gross efficiency will determine the quantity of leasable building area. On the other side, the effectiveness of the spatial distribution of a floor plan design must follow the value of net-to-gross efficiency. Therefore in the context of office design, there are two challenges need to be improved: 1) to get an optimum value of efficiency, architects need to assign the amount and size of the office units which can be effectively arranged, and 2) to fulfill high net-to-gross efficiency value that usually set out at minimal 85%. This paper aims to apply the packing algorithm as a strategy to achieve optimum net-to-gross efficiency and generating spatial configuration of office units that fit with the result. Our study experimented with series of models and simulations consisting of three stages that start from finding net-to-gross efficiency, defining office unit profiles based on preferable office space units, and applying the packing algorithm to get an optimum office net-to-gross efficiency. Computational processes using physics engine and optimization solvers have been utilized to generate design layouts that have minimal spatial residues, hence increasing the net-to-gross ratio.
keywords net-to-gross efficiency; packing algorithm; modular office area; area optimization;
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2020_227
id ecaade2020_227
authors Bielski, Jessica, Langenhan, Christoph, Weyand, Babara, Neuber, Markus, Eisenstadt, Viktor and Althoff, Klaus-Dieter
year 2020
title Topological Queries and Analysis of School Buildings Based on Building Information Modeling (BIM) Using Parametric Design Tools and Visual Programming to Develop New Building Typologies
doi https://doi.org/10.52842/conf.ecaade.2020.2.279
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 279-288
summary School buildings are currently one of the largest portions of planning and building projects in Germany. In order to reflect the continuous developments in school building construction with constantly changing spatial requirements, an approach to analyse, derive and combine patterns of schools is proposed to adapt school typologies accordingly. Therefore, the topology is analysed, concerning interconnection methods, such as adjacency, accessibility, depth, and flow. The geometric analysis of e.g. room sizes or spatial proportions is enhanced by including grouping of rooms, estimated room clusters, or room shapes. Furthermore, text-matching is used to determine e.g. room program fulfilment, or assigning functional room descriptions to predefined room types, revealing huge differences of terms throughout time and architects. First results of the analyses show a relevant correlation between spatial proportion and room types.
keywords school building typologies; building information modeling (BIM); artificial intelligence (AI); topology; spatial analysis; digital semantic model
series eCAADe
email
last changed 2022/06/07 07:52

_id cdrf2019_57
id cdrf2019_57
authors Caitlyn Parry and Sean Guy
year 2020
title Recycling Construction Waste Material with the Use of AR
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_6
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
summary This paper aims to present a methodology for reusing and recycling scrap timber from building sites using augmented reality and flexible digital models. The project we present describes a process that enables existing material to be reused and repurposed such that the designed model is updated by the digital inventory of digitised offcuts/waste elements.
series cdrf
email
last changed 2022/09/29 07:51

_id caadria2020_118
id caadria2020_118
authors Chow, Ka Lok and van Ameijde, Jeroen
year 2020
title Generative Housing Communities - Design of Participatory Spaces in Public Housing Using Network Configurational Theories
doi https://doi.org/10.52842/conf.caadria.2020.2.283
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 283-292
summary This research-by-design project explores how public housing estates can accommodate social diversity and the appropriation of shared spaces, using qualitative and quantitative analysis of circulation networks. A case study housing estate in Hong Kong was analysed through field observations of movements and activities and as a site for the speculative re-design of shared spaces. Generative design processes were developed based on several parameters, including shortest paths, visibility integration and connectivity integration (Hillier & Hanson, 1984). Additional tools were developed to combine these techniques with optimisation of sunlight access, maximisation of views for residential towers and the provision of permeability of ground level building volumes. The project demonstrates how flexibility of use and social engagement can constitute a platform for self-organisation, similar to Jane Jacobs' notion of vibrant streets leading to active and progressive communities. It shows how computational design and configurational theories can promote a bottom-up approach for generating new types of residential environments that support participatory and diverse communities, rather than a conventional top-down approach that is perceived to embody mechanisms of social regimentation.
keywords Urban Planning and Design; Network Configuration; Community Space and Social Interaction; Hong Kong Public Housing
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia20_564
id acadia20_564
authors Cutajar, Sacha; Costalonga Martins, Vanessa; van der Hoven, Christo; Baszyñski, Piotr; Dahy, Hanaa
year 2020
title Towards Modular Natural Fiber-Reinforced Polymer Architecture
doi https://doi.org/10.52842/conf.acadia.2020.1.564
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 564-573.
summary Driven by the ecological crisis looming over the 21st century, the construction sector must urgently seek alternative design solutions to current building practices. In the wake of emergent digital technologies and novel material strategies, this research proposes a lightweight architectural solution using natural fiber-reinforced polymers (NFRP), which elicit interest for their inherent renewability as compared to high-performance yarns. Two associated fabrication techniques are deployed: tailored fiber placement (TFP) and coreless filament winding (CFW), both favored for their additive efficiencies granted by strategic material placement. A hypothesis is formed, postulating that their combination can leverage the standalone complexities of molds and frames by integrating them as active structural elements. Consequently, the TFP enables the creation of a 2D stiffness-controlled preform to be bent into a permanent scaffold for winding rigid 3D fiber bodies via CFW. A proof of concept is generated via the small-scale prototyping and testing of a stool, with results yielding a design of 1 kg capable of carrying 100 times its weight. Laying the groundwork for a scaled-up architectural proposal, the prototype instigates alterations to the process, most notably the favoring of a modular global design and lapped preform technique. The research concludes with a discussion on the resulting techno-implications for automation, deployment, material life cycle, and aesthetics, rekindling optimism towards future sustainable practices.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_272
id ecaade2020_272
authors De Luca, Francesco and Wortmann, Thomas
year 2020
title Multi-Objective Optimization for Daylight Retrofit
doi https://doi.org/10.52842/conf.ecaade.2020.1.057
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 57-66
summary In sustainable building design, daylight improves occupants' wellbeing and reduces electric lighting use, but glazed areas can increase energy consumption for heating and cooling. Conflicting objectives such as daylight and energy consumption are the primary motivation behind multi-objective optimization. This paper presents the multi-objective optimization problem of maximizing daylight availability and minimizing whole energy consumption for the daylight retrofit of Tallinn University of Technology assembly hall, currently windowless. We present benchmark results of six different multi-objective algorithms and analyze the solutions on the best-known Pareto front. The majority of the analyzed solutions allow for adequate daylight provision of the building without additional energy consumption. Results of daylight and energy simulations for the analyzed solutions, are presented and discussed.
keywords Daylight; Energy efficiency; Retrofit; Parametric design; Multi-objective optimization
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2020_190
id ecaade2020_190
authors Dounas, Theodoros, Jabi, Wassim and Lombardi, Davide
year 2020
title Smart Contracts for Decentralised Building Information Modelling
doi https://doi.org/10.52842/conf.ecaade.2020.2.565
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 565-574
summary The paper presents a model for decentralizing building information modelling, through implementing its infrastructure using the decentralized web. We discuss the shortcomings of BIM in terms of its infrastructure, with a focus on tracing identities of design authorship in this collective design tool. In parallel we examine the issues with BIM in the cloud and propose a decentralized infrastructure based on the Ethereum blockchain and the Interplanetary filesystem (IPFS). A series of computing nodes, that act as nodes on the Ethereum Blockchain, host disk storage with which they participate in a larger storage pool on the Interplanetary Filesystem. This storage is made available through an API is used by architects and designers creating and editing a building information model that resides on the IPFS decentralised storage. Through this infrastructure central servers are eliminated, and BIM libraries and models can be shared with others in an immutable and transparent manner. As such Architecture practices are able to exploit their intellectual property in novel ways, by making it public on the internet. The infrastructure also allows the decentralised creation of a resilient global pool of data that allows the participation of computation agents in the creation and simulation of BIM models.
keywords Blockchain; decentralisation; immutability; resilience; Building Information Modelling
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2020_290
id ecaade2020_290
authors Elesawy, Amr Alaaeldin, Signer, Mario, Seshadri, Bharath and Schlueter, Arno
year 2020
title Aerial Photogrammetry in Remote Locations - A workflow for using 3D point cloud data in building energy modeling
doi https://doi.org/10.52842/conf.ecaade.2020.1.723
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 723-732
summary Building energy modelling (BEM) results are highly affected by the surrounding environment, due to the impact of solar radiation on the site. Hence, modelling the context is a crucial step in the design process. This is challenging when access to the geometrical data of the built and natural environment is unavailable as in remote villages. The acquisition of accurate data through conventional surveying proves to be costly and time consuming, especially in areas with a steep and complex terrain. Photogrammetry using drone-captured aerial images has emerged as an innovative solution to facilitate surveying and modeling. Nevertheless, the workflow of translating the photogrammetry output from data points to surfaces readable by BEM tools proves to be tedious and unclear. This paper presents a streamlined and reproducible approach for constructing accurate building models from photogrammetric data points to use for architectural design and energy analysis in early design stage projects.
keywords Building Energy Modeling; Photogrammetry; 3D Point Clouds; Low-energy architecture; Multidisciplinary design; Education
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2020_456
id ecaade2020_456
authors Farinea, Chiara, Awad, Lana, Dubor, Alex and El Atab, Mohamad
year 2020
title Integrating biophotovoltaic and cyber-physical technologies into a 3D printed wall
doi https://doi.org/10.52842/conf.ecaade.2020.2.463
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 463-472
summary The research presented in this paper investigates the development of "3D printed ceramic green wall", a technological Nature Based Solution (NBS) aimed at regenerating urban areas by improving spatial quality and sustainability through clean and autonomous energy production. Building upon previous research, the challenge of this system is to adapt additive manufacturing processes of ceramic 3D printing with biophotovoltaic systems while simultaneously developing digital and cyber-physical frameworks to generate site and user responsive design and autonomous solutions that optimize system performance and energy generation. The paper explores the complex design negotiations between these drivers, focusing particularly on their performance optimization, and finally highlights the system potential as exemplified through a successful implementation of a 1:1 site responsive wall prototype.
keywords Nature based solutions; biophotovoltaic systems; additive manufacturing; responsive design; cyber-physical networks; augmented reality
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2020_403
id caadria2020_403
authors Ghandi, Mona
year 2020
title Reducing Energy Consumption through Cyber-Physical Adaptive Spaces and Occupants' Biosignals
doi https://doi.org/10.52842/conf.caadria.2020.2.121
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 121-130
summary The field of architecture has long embraced adaptive approaches to address issues of sustainability and efficiency. Building energy consumption accounts for about 40% of the total energy consumption in the U.S. This energy is mainly used for lighting, heating, cooling, and ventilation. Researches show that 30% of that energy is wasted. One of the main reasons for such high energy waste in the commercial (and even private) sectors is a generic assumption about the occupants' preferences. To fill this gap, the objective of this project is to optimize building energy retrofits by creating smart environments that autonomously respond to the occupants' comfort level using affective computing and adaptive systems. This adaptive approach will help optimizing energy consumption without sacrificing occupants' comfort through passive cooling and heating strategy, responding to occupants' preferences detected from their biological and neurological data. Progress towards achieving this goal will make building energy costs more affordable to the benefit of families and businesses and reduce energy waste.
keywords Human-Computer Interaction; Optimizing Energy Consumption; Sustainability + High Performance Built Environment; Adaptive and Interactive Architecture; Cyber-Physical Spaces, Affective Computing, Occupants’ Comfort and Well-Being
series CAADRIA
email
last changed 2022/06/07 07:51

_id sigradi2020_968
id sigradi2020_968
authors Gongora, Nicolás; Chiarella, Mauro
year 2020
title ATMOSPH (DAQ) + APP post-occupancy evaluation (POE). Energy efficiency building optimized in real time
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 968-974
summary Greenhouse issues in existing glass-enclosed buildings can be controlled by optimizing energy efficiency and thermal comfort using low cost, customizable, customizable, open source, transferable resources. For such objectives, it is necessary to strategically link algorithmic, heuristic and manufacturing processes. For the case study, the creation of a personalized data acquisition device (DAQ) and a post-occupational evaluation APP (POE) enabled us to advance on real-time building energy efficiency operating on the need for comfort in the rooms and users.
keywords Data acquisition, Post-occupancy evaluation, Domotic, arduino, Architectural skin
series SIGraDi
email
last changed 2021/07/16 11:53

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_297190 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002