CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 653

_id acadia20_446
id acadia20_446
authors Norell, Daniel; Rodhe, Einar; Hedlund, Karin
year 2020
title Completions
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 446-455.
doi https://doi.org/10.52842/conf.acadia.2020.1.446
summary Reuse of construction and demolition waste tends to be exceptional rather than systemic, despite the fact that such waste exists in excess. One of the challenges in handling used elements and materials is integrating them into a digital workflow through means of survey and representation. Techniques such as 3D scanning and robotic fabrication have been used to target irregular geometries of such extant material. Scanning can be applied to digitally define a unique rather than standard stock of materials or, as in the field of preservation, to transfer specific forms and qualities onto a new stock. This paper melds these two approaches through Completions, a project that promotes reuse by integrating salvaged elements and materials into new assemblies. Drawing from the ancient practice of reuse known as spolia, the work develops from the identification and documentation of a varied set of used entities that become points of departure for subsequent design and production of new entities. This involves multiple steps, from locating and selecting used elements to scanning and fabrication. Three assemblies based on salvaged objects are produced: a window frame, a door panel, and a mantelpiece. Different means of documentation are outlined in relation to specific qualities of these objects, from photogrammetry to image and mesh-based tracing. Authentic qualities belonging to these elements, such as wear and patina, are coupled with more ambiguous forms and materialities only attainable through digital survey and fabrication. Finally, Completions speculates on how more automated workflows might make it feasible to develop extensive virtual catalogs of used objects that designers could interact with remotely.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_229
id ecaade2020_229
authors Schützenhofer, Stefan, Honic, Meliha and Kovacic, Iva
year 2020
title Design Optimisation via BIM Supported Material Passports
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 289-296
doi https://doi.org/10.52842/conf.ecaade.2020.1.289
summary Scarceness of resources, lack of waste sites, dependency on imports, increasing urbanization thus increasing consumption of resources and upcoming of waste are current challenges in built environment. Reduction of both, energy and resources consumption, should thereby be the primary aims for sustainable design. Even though by 2020 70% of the building waste has to be either recycled or reused , resources efficiency is less considered than energy efficiency in the design stage of buildings. Previous research has shown, that the generation of Building Information Modelling (BIM)-based Material Passports (MP) is possible and can for example be used for optimization in early design stages. In the current curricula the energy design is well represented in the courses of building science, however, optimization of resource efficiency and recycling potentials are still lacking. The focus of this proposal is the implementation of the developed BIM-based Material Passports in teaching for optimization of design proposals, thus enhancing the awareness for recyclability and reusability in construction among students of architecture and civil engineering.
keywords BIM in education; Material Passport; Sustainability in education; Environmental sustainability; Integrated Planning
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2020_115
id ecaade2020_115
authors Azambuja Varela, Pedro and Sousa, José Pedro
year 2020
title Liquid Stereotomy - the Tamandua Vault
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 361-370
doi https://doi.org/10.52842/conf.ecaade.2020.2.361
summary A renewed interest in stereotomy, narrowly entwined with digital technologies, has allowed for the recovery and proposal of new techniques and expressions in this building approach. A new classification scheme for stereotomy research allows for the framing of various aspects related to this discipline, including a newly developed fabrication system specially tailored for the wedge-shaped voussoirs. This fabrication system is based in a reusable mould which may assume an infinite number of geometries, avoiding the wasteful discarding of material found in subtractive strategies. The usage of a mould also allows for more sustainable materials to be employed, catering to current challenges. The strategies subject for demonstration in this project rely on various bottom-up approaches, which involve particle physic simulations such as a hanging model to compute an optimal stereo-funicular shape, or spring mechanisms to find optimal coplanar solutions. The proposed mechanisms work in a parametric algorithmically environment, able to handle dozens of uniquely different voussoirs at the same time. Together with the automatic translation to fabrication data, the proposed shape complexity would hardly be built with classic tools. The Tamandua Vault project has the purpose of exemplifying the possibilities of an updated stereotomy, while its design demonstrates current strategies that may be employed in the resolution of complex geometrical problems and bespoke fabrication of construction components for stereotomy.
keywords stereotomy; digital design; digital fabrication; compression; sustainability
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2020_071
id caadria2020_071
authors Carroll, Stan
year 2020
title Managing Risk in a Research-Based Practice as Projects Scale To Construction:A Case Study
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 65-74
doi https://doi.org/10.52842/conf.caadria.2020.1.065
summary Research-based architectural practices often experiment along the bleeding edge of the new frontier of design and include developing methodologies unfamiliar to the construction industry. Successfully implementing the resulting research methodologies to an architectural scale requires careful consideration of risk management within a Design-Bid-Build construction project. How a firm manages the risk when scaling a research conclusion to an architectural scale is an essential aspect of assuring the success of the project. These considerations are particularly acute within firms whose research involves convoluted geometry. In the field of doubly-curved geometric material systems, the level of precision required to manage professional risk is commensurate with the level of geometric complexity. Adopting the mindset of a Medieval master mason's process within the context of twenty-first-century materials and processes can be a method toward a successful project. By performing well thought-out transfer procedures of digital data, resolving the fundamental challenges of fabrication, and including structural analysis as a part of the early design phases, experimental architectural expressions can be realized without extra financial risk to the designer.
keywords Risk Management; Research-Based Practice; Complex Geometry; Digital Fabrication; Computational Design
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2020_180
id caadria2020_180
authors Jensen, Mads Brath and Das, Avishek
year 2020
title Technologies and Techniques for Collaborative Robotics in Architecture - - establishing a framework for human-robotic design exploration
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 293-302
doi https://doi.org/10.52842/conf.caadria.2020.2.293
summary This study investigates the technological and methodological challenges in establishing an indeterministic approach to robotic fabrication that allows for a collaborative and creative design/fabrication process. The research objective enquires into how robotic processes in architecture can move from deterministic fabrication processes towards explorative and indeterministic design processes. To address this research objective, the study specifically explores how an architect and a robot can engage in a process of co-creation and co-evolution, that is enabled by a collaborative robotic arm equipped with an electric gripper and a web camera. Through a case-based experiment, of designing and constructing an adjustable façade system consisting of parallel wood lamellas, designer and robotic system co-create by means of interactive processes. The study will present and discuss the technological implementations used to construct the interactive robotic-based design process, with emphasis on the integration of visual analysis features in Grasshopper and on the benefits of establishing a state machine for interactive and creative robotic control in architecture.
keywords Design cognition; Digital fabrication ; Construction; Human-computer interaction
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia20_506
id acadia20_506
authors Khalilbeigi Khameneh, Arman; Mottaghi, Esmaeil; Ghazvinian, Ali; Kalantari, Saeede
year 2020
title Con-Create
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 506-515.
doi https://doi.org/10.52842/conf.acadia.2020.1.506
summary Net structures, because of their minimal material waste and intuitive aesthetics, are gaining more interest recently. There are various efforts to redesign the tensile- and compression-only structures, as the computational tools and novel materials have broadened the scope of geometries possible to construct. However, the fabrication process of these structures faces different challenges, especially for mass construction. Some of these challenges are related to the technology and equipment utilized for materializing these complicated forms and geometries. Working with concrete as a quickly forming material for these irregular forms seems promising. Nevertheless, using this material has difficulties, including the preparation of formworks and joints, material reinforcement, structural behavior in the fresh state, and the assembly procedure. This paper introduces a method based on computational design and geometrical solutions to address some of these challenges. The goal is to shift the complexity of construction from the high-tech equipment used in the fabrication stage to integrating design and fabrication through a hierarchical system made entirely by affordable 2D CNC laser cutters. The stages of developing the method and the process of designing and building an architectural size proof-of-concept prototype by the proposed method are discussed. The efficiency of the method has been shown by comparing the designed prototype with the Con-Create Pavilion.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_517
id ecaade2020_517
authors Lharchi, Ayoub, Ramsgaard Thomsen, Mette and Tamke, Martin
year 2020
title Connected Augmented Assembly - Cloud based Augmented Reality applications in architecture
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 179-186
doi https://doi.org/10.52842/conf.ecaade.2020.1.179
summary Current design practices rely on a set of computational tools to simulate and optimize the design in regards to questions concerning architecture, engineering, and construction. However, little progress has been made in tools related to the design and execution of a building assembly. This paper aims to present an integrated procedure that targets the assembly of complex structures. Two challenges are identified and addressed: first, the necessity of a connected design environment where multiple stakeholders can communicate, modify, and give feedback on the assembly sequence. Second, the instructions for the assembly of structures to untrained users. The suggested method is based on the Assembly Information Modeling framework, which provides a general approach to generate assembly information from CAD data and utilizes AEC cloud platforms as a base for communication and Augmented Reality devices as a Human Machine Interface. Ultimately, both cases are combined to constitute Connected Augmented Assembly, a bidirectional approach to assembly design, review, and execution.
keywords assembly sequence; augmented reality; assisted assembly; cloud aec; assembly information modeling
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia20_176p
id acadia20_176p
authors Lok, Leslie; Zivkovic, Sasa
year 2020
title Ashen Cabin
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 176-181
summary Ashen Cabin, designed by HANNAH, is a small building 3D-printed from concrete and clothed in a robotically fabricated envelope made of irregular ash wood logs. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, forms of construction, and architectural design languages. Ashen Cabin challenges preconceived notions about material standards in wood. The cabin utilizes wood infested by the Emerald Ash Borer (EAB) for its envelope, which, unfortunately, is widely considered as ‘waste’. At present, the invasive EAB threatens to eradicate most of the 8.7 billion ash trees in North America (USDA, 2019). Due to their challenging geometries, most infested ash trees cannot be processed by regular sawmills and are therefore regarded as unsuitable for construction. Infested and dying ash trees form an enormous and untapped material resource for sustainable wood construction. By implementing high precision 3D scanning and robotic fabrication, the project upcycles Emerald-Ash-Borer-infested ‘waste wood’ into an abundantly available, affordable, and morbidly sustainable building material for the Anthropocene. Using a KUKA KR200/2 with a custom 5hp band saw end effector at the Cornell Robotic Construction Laboratory (RCL), the research team can saw irregular tree logs into naturally curved boards of various and varying thicknesses. The boards are arrayed into interlocking SIP façade panels, and by adjusting the thickness of the bandsaw cut, the robotically carved timber boards can be assembled as complex single curvature surfaces or double-curvature surfaces. The undulating wooden surfaces accentuate the building’s program and yet remain reminiscent of the natural log geometry which they are derived from. The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ijac202018206
id ijac202018206
authors Mitterberger, Daniela and Tiziano Derme
year 2020
title Digital soil: Robotically 3D-printed granular bio-composites
source International Journal of Architectural Computing vol. 18 - no. 2, 194-211
summary Organic granular materials offer a valid alternative for non-biodegradable composites widely adopted in building construction and digital fabrication. Despite the need to find alternatives to fuel-based solutions, current material research in architecture mostly supports strategies that favour predictable, durable and homogeneous solutions. Materials such as soil, due to their physical properties and volatile nature, present new challenges and potentials to change the way we manufacture, built and integrate material systems and environmental factors into the design process. This article proposes a novel fabrication framework that combines high-resolution three-dimensional- printed biodegradable materials with a novel robotic-additive manufacturing process for soil structures. Furthermore, the research reflects on concepts such as affordance and tolerance within the field of digital fabrication, especially in regards to bio-materials and robotic fabrication. Soil as a building material has a long tradition. New developments in earth construction show how earthen buildings can create novel, adaptive and sustainable structures. Nevertheless, existing large-scale earthen construction methods can only produce highly simplified shapes with rough geometrical articulations. This research proposes to use a robotic binder-jetting process that creates novel organic bio-composites to overcome such limitations of common earth constructions. In addition, this article shows how biological polymers, such as polysaccharides-based hydrogels, can be used as sustainable, biodegradable binding agents for soil aggregates. This article is divided into four main sections: architecture and affordance; tolerance versus precision; water-based binders; and robotic fabrication parameters. Digital Soil envisions a shift in the design practice and digital fabrication that builds on methods for tolerance handling. In this context, material and geometrical properties such as material porosity, hydraulic conductivity and natural evaporation rate affect the architectural resolution, introducing a design process driven by matter. Digital Soil shows the potential of a fully reversible biodegradable manufacturing process for load-bearing architectural elements, opening up new fields of application for sustainable material systems that can enhance the ecological potential of architectural construction.
keywords Robotic fabrication, adaptive materials, water-based fabrication, affordance, organic matter, additive manufacturing
series journal
email
last changed 2020/11/02 13:34

_id ecaade2020_009
id ecaade2020_009
authors Reaver, Kai
year 2020
title After Imagery - Evaluating the use of mixed reality (MR) in urban planning
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 187-196
doi https://doi.org/10.52842/conf.ecaade.2020.1.187
summary While many researchers have developed interesting use cases for Mixed Reality (MR) in urban environments, the paper argues that determining the long-term viability of such applications as planning tools will likely require evaluating whether such applications are compatible with the democratically mandated procedures in Urban Planning. The paper compares this claim to current debates regarding the legality of the use of digital imagery in Urban Planning today. The paper elaborates these arguments through case studies done in Oslo, Norway in the context of developing the "Nordic Digital City". The case studies involve the use of MR in 1) a public competition, 2) a regulation plan, and 3) a building permit. The study thus presents some of the benefits and challenges of using these technologies in such a manner, particularly regarding accuracy, user feedback, and robustness as a common interface. The paper concludes that MR offers several benefits to Urban Planning, but will likely require a highly digitized competent public sector in order to function, in addition to requiring negotiation between the required user data and user privacy rights, suggesting that MR development may migrate from a primarily technical domain to a matter of public policy.
keywords Mixed Reality; Urban Planning; Urbanism; Augmented Reality
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia20_360
id acadia20_360
authors Schneider, Maxie; Fransén Waldhör, Ebba; Denz, Paul-Rouven; Vongsingha, Puttakhun; Suwannapruk, Natchai; Sauer, Christiane
year 2020
title Adaptive Textile Facades Through the Integration of Shape Memory Alloy
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 360-370.
doi https://doi.org/10.52842/conf.acadia.2020.1.360
summary The R&D project ADAPTEX showcases a material-driven and computationally informed design approach to adaptive textile facades through the integration of shape memory alloy (SMA) as an actuator. The results exhibit thermally responsive and self-sufficient sun-shading solutions with innovative design potential that enhance the energy performance of the built environment. With regard to climate targets, an environmentally viable concept is proposed that reduces the energy required for climatization, is lightweight, and can function as a refurbishment system. Two concepts—ADAPTEX Wave and ADAPTEX Mesh—are being developed to be tested as full-scale demonstrators for facade deployment by an interdisciplinary team from architecture, textile design, facade engineering, and material research. The two concepts follow a material-driven, low-complexity design strategy and differ in type of kinetic movement, textile construction, integration of the SMA, reset force, and scale of permeability. In this paper, we describe the computational design process and tools to develop and design current and future prototypes and demonstrators, providing insights on the challenges and potentials of developing textiles with integrated shape memory alloys for architectural applications.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac202018403
id ijac202018403
authors Dagmar Reinhardt, Matthias Hank Haeusler, Kerry London, Lian Loke, Yingbin Feng, Eduardo De Oliveira Barata, Charlotte Firth, Kate Dunn, Nariddh Khean, Alessandra Fabbri, Dylan Wozniak-O’Connor and Rin Masuda
year 2020
title CoBuilt 4.0: Investigating the potential of collaborative robotics for subject matter experts
source International Journal of Architectural Computing vol. 18 - no. 4, 353–370
summary Human-robot interactions can offer alternatives and new pathways for construction industries, industrial growth and skilled labour, particularly in a context of industry 4.0. This research investigates the potential of collaborative robots (CoBots) for the construction industry and subject matter experts; by surveying industry requirements and assessments of CoBot acceptance; by investing processes and sequences of work protocols for standard architecture robots; and by exploring motion capture and tracking systems for a collaborative framework between human and robot co-workers. The research investigates CoBots as a labour and collaborative resource for construction processes that require precision, adaptability and variability.Thus, this paper reports on a joint industry, government and academic research investigation in an Australian construction context. In section 1, we introduce background data to architecture robotics in the context of construction industries and reports on three sections. Section 2 reports on current industry applications and survey results from industry and trade feedback for the adoption of robots specifically to task complexity, perceived safety, and risk awareness. Section 3, as a result of research conducted in Section 2, introduces a pilot study for carpentry task sequences with capture of computable actions. Section 4 provides a discussion of results and preliminary findings. Section 5 concludes with an outlook on how the capture of computable actions provide the foundation to future research for capturing motion and machine learning.
keywords Industry 4.0, collaborative robotics, on-site robotic fabrication, industry research, machine learning
series journal
email
last changed 2021/06/03 23:29

_id cdrf2019_36
id cdrf2019_36
authors Dan Luo, Joseph M. Gattas, and Poah Shiun Shawn Tan
year 2020
title Real-Time Defect Recognition and Optimized Decision Making for Structural Timber Jointing
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_4
summary Non-structural or out-of-grade timber framing material contains a large proportion of visual and natural defects. A common strategy to recover usable material from these timbers is the marking and removing of defects, with the generated intermediate lengths of clear wood then joined into a single piece of fulllength structural timber. This paper presents a novel workflow that uses machine learning based image recognition and a computational decision-making algorithm to enhance the automation and efficiency of current defect identification and rejoining processes. The proposed workflow allows the knowledge of worker to be translated into a classifier that automatically recognizes and removes areas of defects based on image capture. In addition, a real-time optimization algorithm in decision making is developed to assign a joining sequence of fragmented timber from a dynamic inventory, creating a single piece of targeted length with a significant reduction in material waste. In addition to an industrial application, this workflow also allows for future inventory-constrained customizable fabrication, for example in production of non-standard architectural components or adaptive reuse or defect-avoidance in out-of-grade timber construction.
series cdrf
email
last changed 2022/09/29 07:51

_id caadria2020_078
id caadria2020_078
authors Joyce, Gabriella and Pelosi, Antony
year 2020
title Robotic Connections for CLT Panels
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 403-412
doi https://doi.org/10.52842/conf.caadria.2020.2.403
summary In a climate where standard methods of construction are being challenged, developments in engineered timbers are allowing mass timber construction to be explored as a sustainable alternative to current building methods that can change the future of the built environment. Cross-laminated timber (CLT) is at the forefront of this evolution and, with the advancement in computational design and digital fabrication tools, there lies an opportunity to redefine standard construction. This project creates connections inspired by traditional Japanese joinery that have been adapted to be used for the panel construction of CLT structures. Using a combination of digital modelling and advanced digital fabrication, the project utilizes CLT offcuts as a primary connection material. The system not only reduces waste but also mitigates thermal bridging and lowers the number of connection points whilst increasing the ease of building and fabrication. Connection systems are designed and prototyped using a robotic arm and are then evaluated within the context of a building scale and considers largeâ€scale fabrication and onâ€site assembly whilst continuing to focus on the reduction of waste.
keywords Robotics; CLT; Connections; Waste; Timber
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2020_185
id ecaade2020_185
authors Wurzer, Gabriel, Lorenz, Wolfgang E., Forster, Julia, Bindreiter, Stefan, Lederer, Jakob, Gassner, Andreas, Mitteregger, Mathias, Kotroczo, Erich, Pöllauer, Pia and Fellner, Johann
year 2020
title M-DAB - Towards re-using material resources of the city
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 127-132
doi https://doi.org/10.52842/conf.ecaade.2020.1.127
summary If we strive for a de-carbonized future, we need to think of buildings within a city as resources that can be re-used rather than being disposed of. Together with considerations on refurbishment options and future building materials, this gives a decision field for stakeholders which depends on the current "building stock" - the set of pre-existing buildings which are characterized e.g. by building period, location and material composition. Changes in that context are hard to argue for since (1.) some depend on statistics, other (2.) on the concrete neighborhood and thus the space in which buildings are embedded, yet again others on (3.) future extrapolations again dealing with both of the aforementioned environments. To date, there exists no tool that can handle this back-and-forth between different abstraction levels and horizons in time; nor is it possible to pursue such an endeavor without a proper framework. Which is why the authors of this paper are aiming to provide one, giving a model of change in the context of re-using material resource of the city, when faced with numerous abstraction levels (spatial or abstract; past, current or future) which have feedback loops between them. The paper focuses on a concrete case study in the city of Vienna, however, chances are high that this will apply to every other building stock throughout the world if enough data is available. As a matter of fact, this approach will ensure that argumentation can happen on multiple levels (spatial, statistical, past, now and future) but keeps its focus on making the building stock of a city a resource for sustainable development.
keywords material reuse; sustainability; waste reduction; Design and computation of urban and local systems – XS to XL; Health and materials in architecture and cities
series eCAADe
email
last changed 2022/06/07 07:57

_id ijac202321102
id ijac202321102
authors Özerol, Gizem; Semra Arslan Selçuk
year 2023
title Machine learning in the discipline of architecture: A review on the research trends between 2014 and 2020
source International Journal of Architectural Computing 2023, Vol. 21 - no. 1, pp. 23–41
summary Abstract Through the recent technological developments within the fourth industrial revolution, artificial intelligence (AI) studies have had a huge impact on various disciplines such as social sciences, information communication technologies (ICTs), architecture, engineering, and construction (AEC). Regarding decision-making and forecasting systems in particular, AI and machine learning (ML) technologies have provided an opportunity to improve the mutual relationships between machines and humans. When the connection between ML and architecture is considered, it is possible to claim that there is no parallel acceleration as in other disciplines. In this study, and considering the latest breakthroughs, we focus on revealing what ML and architecture have in common. Our focal point is to reveal common points by classifying and analyzing current literature through describing the potential of ML in architecture. Studies conducted using ML techniques and subsets of AI technologies were used in this paper, and the resulting data were interpreted using the bibliometric analysis method. In order to discuss the state-of-the-art research articles which have been published between 2014 and 2020, main subjects, subsets, and keywords were refined through the search engines. The statistical figures were demonstrated as huge datasets, and the results were clearly delineated through Sankey diagrams. Thanks to bibliometric analyses of the current literature of WOS (Web of Science), CUMINCAD (Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD, and CAAD futures), predictable data have been presented allowing recommendations for possible future studies for researchers.
keywords Artificial intelligence, machine learning, deep learning, architectural research, bibliometric analysis
series journal
last changed 2024/04/17 14:30

_id caadria2020_281
id caadria2020_281
authors Abdelmohsen, Sherif and Hassab, Ahmed
year 2020
title A Computational Approach for the Mass Customization of Materially Informed Double Curved A Computational Approach for the Mass Customization of Materially Informed Double Curved Façade Panels
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 163-172
doi https://doi.org/10.52842/conf.caadria.2020.1.163
summary Despite recent approaches to enable the mass customization of double curved façade panels, there still exist challenges including waste reduction, accuracy, surface continuity, economic feasibility, and workflow disintegration. This paper proposes a computational approach for the design and fabrication of materially informed double curved façade panels with complex geometry. This approach proposes an optimized workflow to generate customizable double curved panels with complex geometry and different material properties, and optimize fabrication workflow for waste reduction. This workflow is applied to four different fabrication techniques: (1) vacuum forming, (2) clay extrusion, (3) sectioning, and (4) tessellation. Four experiments are introduced to apply surface rationalization and optimization using Rhino and Grasshopper scripting. Upon simulating each of the four design-to-fabrication techniques through different iterations, the experiment results demonstrated how the proposed workflows produced optimized surfaces with higher levels of accuracy and reduced waste material, customized per type of material and surface complexity.
keywords Digital fabrication; Double curved facades; Mass customization; Design-to-fabrication
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:54

_id ascaad2021_142
id ascaad2021_142
authors Bakir, Ramy; Sara Alsaadani, Sherif Abdelmohsen
year 2021
title Student Experiences of Online Design Education Post COVID-19: A Mixed Methods Study
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 142-155
summary This paper presents findings of a survey conducted to assess students’ experiences within the online instruction stage of their architectural education during the lockdown period caused by the COVID-19 pandemic between March and June 2020. The study was conducted in two departments of architecture in both Cairo branches of the Arab Academy for Science, Technology & Maritime Transport (AASTMT), Egypt, with special focus on courses involving a CAAD component. The objective of this exploratory study was to understand students’ learning experiences within the online period, and to investigate challenges facing architectural education. A mixed methods study was used, where a questionnaire-based survey was developed to gather qualitative and quantitative data based on the opinions of a sample of students from both departments. Findings focus on the qualitative component to describe students’ experiences, with quantitative data used for triangulation purposes. Results underline students’ positive learning experiences and challenges faced. Insights regarding digital tool preferences were also revealed. Findings are not only significant in understanding an important event that caused remote architectural education in Egypt but may also serve as an important stepping-stone towards the future of design education in light of newly-introduced disruptive online learning technologies made necessary in response to lockdowns worldwide
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2020_258
id caadria2020_258
authors Beatricia, Beatricia, Indraprastha, Aswin and Koerniawan, M. Donny
year 2020
title Revisiting Packing Algorithm - A Strategy for Optimum Net-to Gross Office Design
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 405-414
doi https://doi.org/10.52842/conf.caadria.2020.1.405
summary Net-to-gross efficiency is defined as the ratio of net area to a gross area of a building. Net-to-gross efficiency will determine the quantity of leasable building area. On the other side, the effectiveness of the spatial distribution of a floor plan design must follow the value of net-to-gross efficiency. Therefore in the context of office design, there are two challenges need to be improved: 1) to get an optimum value of efficiency, architects need to assign the amount and size of the office units which can be effectively arranged, and 2) to fulfill high net-to-gross efficiency value that usually set out at minimal 85%. This paper aims to apply the packing algorithm as a strategy to achieve optimum net-to-gross efficiency and generating spatial configuration of office units that fit with the result. Our study experimented with series of models and simulations consisting of three stages that start from finding net-to-gross efficiency, defining office unit profiles based on preferable office space units, and applying the packing algorithm to get an optimum office net-to-gross efficiency. Computational processes using physics engine and optimization solvers have been utilized to generate design layouts that have minimal spatial residues, hence increasing the net-to-gross ratio.
keywords net-to-gross efficiency; packing algorithm; modular office area; area optimization;
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2020_209
id caadria2020_209
authors Bissoonauth, Chitraj, Fischer, Thomas and Herr, Christiane M.
year 2020
title An Ethnographic Enquiry into Digital Design Tool Making
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 213-222
doi https://doi.org/10.52842/conf.caadria.2020.2.213
summary This paper presents an ethnographic pilot study into the design and application of digital design tools in a leading Shanghai-based architecture and engineering firm. From a participant observer's point of view, we employ qualitative research methods to enquire the conditions and experiences entailed in day-to-day collaborative activities in conjunction with the custom-development of digital design tools in advanced practice. The described initial ethnographic enquiry lasted for six weeks. While previous studies tended to favour post-rationalised and outcome-focused reports into toolmaking for design, we observe through participant observation that daily collaboration in practice is multi-faceted and overwhelmingly more complex. This paper further portrays and reflects on the concomitant opportunities and challenges of participant observation as a research method that can bridge academia and practice. We argue that, in order to appreciate and to inform digital design toolmaking practices, it is essential to recognise the richness of practice, in and of itself.
keywords digital design toolmaking; custom-developed tools; collaborative processes; ethnography; participant observation
series CAADRIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_785751 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002