CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 649

_id caadria2020_066
id caadria2020_066
authors Gaudilliere, Nadja
year 2020
title Computational Tools in Architecture and Their Genesis: The Development of Agent-based Models in Spatial Design
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 497-506
doi https://doi.org/10.52842/conf.caadria.2020.2.497
summary Based on the assumption that socio-technical networks of computation in architecture exist and must be analyzed deeper in order to understand the impact of algorithmic tools on the design process, the present paper offers a foray into it, drawing on science studies methodologies. The research explores in what regard multi-agent systems (MAS) are representative as much from the existence of these socio-technical networks as of how their development influences the tension between tacit and explicit knowledge at play in procedural design processes and of the strategies architectural designers develop to resolve this tension. A methodology of analysis of these phenomena is provided as well as results of the application of this method to MAS, leading to a better understanding of their development and impact in CAAD in the past two decades. Tactics of resolution shaped by early MAS users enable, through a double appropriation, a skillful implementation of architectural practice. Furthermore, their approach partially circumvents the establishment of technical biases tied to this algorithmic typology, at the cost of a lesser massive democratization of the algorithmic tools developed in relation to it.
keywords Computational tools; multi-agent system; architectural practice; tacit knowledge; digital heritage
series CAADRIA
email
last changed 2022/06/07 07:51

_id sigradi2020_52
id sigradi2020_52
authors Hadi, Khatereh; Gomez, Paula; Swarts, Matthew; Marshall, Tyrone; Bernal, Marcelo
year 2020
title Healthcare Design Metrics for Human-Centric Building Analytics
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 52-59
summary Healthcare design practice has shown increasing interest in the assessment of design alternatives from a human-centered approach, focusing on organizational performance, patient health, and wellness outcomes, in addition to building performance. The goal of this research is to advance building analytics by identifying, defining and implementing computational human-centered design metrics. The knowledge is extracted from an exhaustive literature review in the field of evidence-based design (EBD), which has studied the associations between building features and the occupants’ outcomes but has not yet consolidated the findings into metrics and implications for design practice in a systematic manner. In consultation with industry experts, we have prioritized the evaluation aspects and developed a weighted evaluation framework for assessment of various design options. The developed metrics that input building parameters and output potential health and performance outcomes are implemented in a a parametric environment utilizing add-ons accordingly, and using an ambulatory clinic designed by Perkins&Will as a case study.
keywords Building analytics, Healthcare design, Design metrics, Human-centered analytics
series SIGraDi
email
last changed 2021/07/16 11:48

_id sigradi2020_643
id sigradi2020_643
authors Naylor, John Osmond; Leconte, Nancy; Michel Vendryes, Franck Reginald
year 2020
title Education to practice to ecology: A review and preliminary evaluation of a new architectural design curriculum using computational design tools and bamboo in Haiti
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 643-651
summary There is an absence of lightweight, sustainable construction materials in contemporary Haitian construction, a fact highlighted in the disproportionate loss of life in the 2010 Port-au-Prince earthquake. Between 2014 and 2017 the authors delivered a series of architectural design workshops in Haiti to raise awareness and develop design skills for bamboo using computational design tools. This paper provides a review of these workshops and a preliminary evaluation from surveys conducted with the course participants. Results showed architectural education had changed perceptions of bamboo and showed potential positive ecological impact due to subsequent reforestation activities instigated by participants. Weaknesses were in the lack of subsequent use of parametric modelling software. Bamboo material knowledge and a new architectural design methodology have been most relevant to their professional or academic work.
keywords Haiti, Full-culm bamboo, Architectural education, Sustainable development, Parametric design
series SIGraDi
email
last changed 2021/07/16 11:52

_id ecaade2021_011
id ecaade2021_011
authors Nováková, Kateøina and Vele, Jiøí
year 2021
title Prvok - An experiment with 3D printing large doublecurved concrete structure
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 137-144
doi https://doi.org/10.52842/conf.ecaade.2021.2.137
summary In this experimental research project we report on the manufacturing process of the first full-size 3D printed concrete structure in our country. The house was 3D printed by an ABB IRB 6700 robot whose range we made fit with the requirements for transportation size and also, its range determined the size and geometry of the house. During the transformation process from sketch to code we involved students to apply computational design methods. We designed the main load bearing structure which had to be thinnest and lightest possible together with its insulation features and printability. We were aware of the world-wide research in this field started by NASA centennial Challenge called 3D-printed-habitat [Roman,2020] as well as start-ups derived from this research [1,2,3,4]. During the project, we investigated the following matters: (1) the relationship between geometry of the wall in model and in practice (2), setting of the robot and the mixture; and (3) stress test of the wall. With the results of the test we aimed at contribution to standardisation of 3D printed structures in ISO/ASTM 52939:2021. The finalized structure, named "Prvok", was made to prove printability of the mixture and stability of the design.
keywords 3D printing; robot; concrete; grasshopper; experiment; house
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia20_000
id acadia20_000
authors Slocum, Brian; Ago, Viola; Doyle, Shelby; Marcus, Adam; Yablonina, Maria; del Campo, Matias (eds.)
year 2020
title ACADIA 2020: Distributed Proximities
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. 747 p.
doi https://doi.org/10.52842/conf.acadia.2020.1
summary This year’s conference included panels dedicated to the discussion of Ecology and Ethics, Data and Bias, Automation and Agency, Culture and Access, and Labor and Practice, followed by a closing discussion on Speculation and Critique. Conceived as a series of conversations, these are intended to encourage a different type of critical, issues-focused discourse as well as the contextualization of the community’s production within that discourse. The work published here foregrounds these themes while interweaving them with the presentation of the computational design expertise of the ACADIA community, with topics including architectures of care, augmented construction, robotics, programmable matter, biological interactions, machine learning, and disrupted practices, among many others, and panoramas spanning from the nano to the urban. At a time of profound disruption brought about by the global pandemic and coinciding with important sociopolitical events, Distributed Proximities seeks to provide a platform for the continuity of technical discourse while amplifying the space for a dialogue that also recognizes the impacts of the social in all aspects of the research.
series ACADIA
last changed 2023/10/22 12:06

_id artificial_intellicence2019_117
id artificial_intellicence2019_117
authors Stanislas Chaillou
year 2020
title ArchiGAN: Artificial Intelligence x Architecture
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_8
summary AI will soon massively empower architects in their day-to-day practice. This article provides a proof of concept. The framework used here offers a springboard for discussion, inviting architects to start engaging with AI, and data scientists to consider Architecture as a field of investigation. In this article, we summarize a part of our thesis, submitted at Harvard in May 2019, where Generative Adversarial Neural Networks (or GANs) get leveraged to design floor plans and entire buildings .
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id cdrf2019_144
id cdrf2019_144
authors Xuexin Duan
year 2020
title The Development of ‘Agent-Based Parametric Semiology’ as Design Research Program
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_14
summary A new framework, agenda and practice is called for to address the challenges and opportunities architecture must confront in the age of our computationally empowered Post-Fordist network society. This paper introduces the research agenda of ‘agent-based parametric semiology’, and explains the necessity of introducing a new tool, agent-based life-process modelling, as part of the design process, in order to cope with the new complexity and dynamism of architecture’s social functionality. The paper reviews the development of this design research program over the last 10 years. Finally, the paper describes current efforts to move from the illustrative use of life-process modelling to a scientifically grounded quantitative analysis and generative design optimization.
series cdrf
email
last changed 2022/09/29 07:51

_id sigradi2020_120
id sigradi2020_120
authors Álvarez, Natalia; Bernal, Marcelo; Cáceres, Katherine
year 2020
title Evolution and Projection of Computational Design Theories: Generation, Analysis, Selection and Fabrication
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 120-127
summary We can identify a milestone in computational design theories in the intersection between paradigms derived from theories of complexity and technological developments in the early 90’s. These theories provided the l foundation to build interpretation of the potential of the technology by adopting a language based on complexity to frame processes of generation, analysis, selection and manufacturing. To better understand the roots and direction of computational design theories, this study makes an in-depth literature review of four vectors involved in the formation of current dominant theoretical and technical approaches: theories of complexity, technological developments, professional practice and academia. The information collected is organized in chronological order in parallel timelines to facilitate readings exposing the intersections and synergies. The results show the emergence of theoretical approaches based on the convergence of theories and technologies, proof of concept in professional practice and consolidation in academia.
keywords Generative Design, Performance Analysis, Data Analysis, Decision Making & Fabrication
series SIGraDi
email
last changed 2021/07/16 11:48

_id ijac202018205
id ijac202018205
authors Ahlquist, Sean
year 2020
title Negotiating human engagement and the fixity of computational design: Toward a performative design space for the differently-abled bodymind
source International Journal of Architectural Computing vol. 18 - no. 2, 174-193
summary Computational design affords agency: the ability to orchestrate the material, spatial, and technical architectural system. In this specific case, it occurs through enhanced, authored means to facilitate making and performance—typically driven by concerns of structural optimization, material use, and responsivity to environmental factors—of an atmospheric rather than social nature. At issue is the positioning of this particular manner of agency solely with the architect auteur. This abruptly halts—at the moment in which fabrication commences—the ability to amend, redefine, or newly introduce fundamentally transformational constituents and their interrelationships and, most importantly, to explore the possibility for extraordinary outcomes. When the architecture becomes a functional, social, and cultural entity, in the hands of the idealized abled-bodied user, agency—especially for one of an otherly body or mind—is long gone. Even an empathetic auteur may not be able to access the motivations of the differently-abled body and neuro- divergent mind, effectively locking the constraints of the design process, which creates an exclusionary system to those beyond the purview of said auteur. It can therefore be deduced that the mechanisms or authors of a conventional computational design process cannot eradicate the exclusionary reality of an architectural system. Agency is critical, yet a more expansive terminology for agent and agency is needed. The burden to conceive of capacities that will always be highly temporal, social, unpredictable, and purposefully unknown must be shifted far from the scope of the traditional directors of the architectural system. Agency, and who it is conferred upon, must function in a manner that dissolves the distinctions between the design, the action of designing, the author of design, and those subjected to it.
keywords Adaptive environments, neurodiversity, inclusion, systems thinking, computational design, disability theory, material systems, design agency
series journal
email
last changed 2020/11/02 13:34

_id acadia20_456
id acadia20_456
authors Alali, Jiries; Negar Kalantar, Dr.; Borhani, Alireza
year 2020
title Casting on a Dump
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 456-463.
doi https://doi.org/10.52842/conf.acadia.2020.1.456
summary “Casting on a dump” focuses on finding accessible, low-tech fabrication methodologies that allow for the construction of parametrically designed nonstandard modular cast panels. Such an approach adopts a computational design framework using a single low-tech and low-energy fabrication device to create nonrepetitive volumetric panels cast in situ. The design input for these panels is derived from design preferences and environmental control data. The technique expands upon easy to fabricate and cast methods, targeting less-developed logistical settings worldwide, and thus responding to imminent needs related to climate, available resources, and the economy.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2019_3
id cdrf2019_3
authors Andrej Radman
year 2020
title Machinic Phylum and Architecture
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_1
summary The chapter draws on the anti-substantivist and anti-hylomorphic legacy of two significant Deleuze and Guattari’s interlocutors: Raymond Ruyer and Gilbert Simondon. Ruyer vehemently opposed the logic of mechanicism without regressing to (active) vitalism. His masterpiece Neofinalism, yet to be fully appreciated in architectural circles, is an ode to multiplicity or ‘absolute form’. The title is to be read as a challenge to the hegemony of the step-by-step causation and partes-extra-partes mereology. According to Ruyer, non-locality is the key,not only to the question of subjectivity, but to the problem of life itself. Simondon too shies away from the metaphysics of presence. For him, the process of individuation cannot be grasped on the basis of the fully formed individual. In other words, the knowledge of individuation is the individuation of knowledge. Simondon’s highest ambition in On the Mode of Existence of Technical Objects was to integrate culture and technics (tekhne). The conviction that culture need not be antagonistic to technology is particularly pertinent to the ecologies of architecture. In the second half of the chapter, the affordance theory meets contemporary neurosciences.
series cdrf
email
last changed 2022/09/29 07:51

_id artificial_intellicence2019_15
id artificial_intellicence2019_15
authors Antoine Picon
year 2020
title What About Humans? Artificial Intelligence in Architecture
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019)
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_2
summary Artificial intelligence is about to reshape the architectural discipline. After discussing the relations between artificial intelligence and the broader question of automation in architecture, this article focuses on the future of the interaction between humans and intelligent machines. The way machines will understand architecture may be very different from the reading of humans. Since the Renaissance, the architectural discipline has defined itself as a conversation between different stakeholders, the designer, but also the clients and the artisans in charge of the realization of projects. How can this conversation be adapted to the rise of intelligent machines? Such a question is not only a matter of design effectiveness. It is inseparable from expressive and artistic issues. Just like the fascination of modernist architecture for industrialization was intimately linked to the quest for a new poetics of the discipline, our contemporary interest for artificial intelligence has to do with questions regarding the creative core of the architectural discipline.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id sigradi2020_60
id sigradi2020_60
authors Asmar, Karen El; Sareen, Harpreet
year 2020
title Machinic Interpolations: A GAN Pipeline for Integrating Lateral Thinking in Computational Tools of Architecture
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 60-66
summary In this paper, we discuss a new tool pipeline that aims to re-integrate lateral thinking strategies in computational tools of architecture. We present a 4-step AI-driven pipeline, based on Generative Adversarial Networks (GANs), that draws from the ability to access the latent space of a machine and use this space as a digital design environment. We demonstrate examples of navigating in this space using vector arithmetic and interpolations as a method to generate a series of images that are then translated to 3D voxel structures. Through a gallery of forms, we show how this series of techniques could result in unexpected spaces and outputs beyond what could be produced by human capability alone.
keywords Latent space, GANs, Lateral thinking, Computational tools, Artificial intelligence
series SIGraDi
email
last changed 2021/07/16 11:48

_id acadia20_66
id acadia20_66
authors Aviv, Dorit; Wang, Zherui; Meggers, Forrest; Ida, Aletheia
year 2020
title Surface Generation of Radiatively-Cooled Building Skin for Desert Climate
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 66-73.
doi https://doi.org/10.52842/conf.acadia.2020.1.066
summary A radiatively cooled translucent building skin is developed for desert climates, constructed out of pockets of high heat-capacity liquids. The liquids are contained by a wavelength-selective membrane enclosure, which is transmissive in the infrared range of electromagnetic radiation but reflective in the shortwave range, and therefore prevents overheating from solar radiation and at the same time allows for passive cooling through exposure of its thermal mass to the desert sky. To assess the relationship between the form and performance of this envelope design, we develop a feedback loop between computational simulations, analytical models, and physical tests. We conduct a series of simulations and bench-scale experiments to determine the thermal behavior of the proposed skin and its cooling potential. Several materials are considered for their thermal storage capacity. Hydrogel cast into membrane enclosures is tested in real climate conditions. Slurry phase change materials (PCM) are also considered for their additional heat storage capacity. Challenges of membrane welding patterns and nonuniform expansion of the membrane due to the weight of the enclosed liquid are examined in both digital simulations and physical experiments. A workflow is proposed between the radiation analysis based on climate data, the formfinding simulations of the elastic membrane under the liquid weight, and the thermal storage capacity of the overall skin.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_233
id caadria2020_233
authors Bar-Sinai, Karen Lee, Shaked, Tom and Sprecher, Aaron
year 2020
title Sensibility at Large - A Post-Anthropocene Vision for Architectural Landscape Editing
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 223-232
doi https://doi.org/10.52842/conf.caadria.2020.2.223
summary The irreversible imprint of humankind on Earth calls for revisiting current construction practices. This paper forwards a vision for post-Anthropocene, large-scale, architectural, and landscape construction. This vision relates to transforming natural terrains into architecture using on-site robotic tools and enabling greater sustainability through increased sensibility. Despite advancements in large-scale digital fabrication in architecture, the field still mainly focuses on the production of objects. The proposed vision aims to advance theory and practice towards territorial scale digital fabrication of environments. Three notions are proposed: material-aware construction, large-scale customization, and integrated fabrication. These aspects are demonstrated through research and teaching projects. Using scale models, they explore the deployment of robotic tools toward reforming, stabilizing, and reconstituting soil in an architectural context. Together, they propose a theoretical ground for in situ digital fabrication for a new era, relinking architecture to the terrains upon which it is formed.
keywords Digital Fabrication; territorial scale; on-site robotics; geomaterials; computational design
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia20_120
id acadia20_120
authors Barsan-Pipu, Claudiu; Sleiman, Nathalie; Moldovan, Theodor
year 2020
title Affective Computing for Generating Virtual Procedural Environments Using Game Technologies
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 120-129.
doi https://doi.org/10.52842/conf.acadia.2020.2.120
summary Architects have long sought to create spaces that can relate to or even induce specific emotional conditions in their users, such as states of relaxation or engagement. Dynamic or calming qualities were given to these spaces by controlling form, perspective, lighting, color, and materiality. The actual impact of these complex design decisions has been challenging to assess, from both quantitative and qualitative standpoints, because neural empathic responses, defined in this paper by feature indexes (FIs) and mind indexes (MIs), are highly subjective experiences. Recent advances in the fields of virtual procedural environments (VPEs) and virtual reality (VR), supported by powerful game engine (GE) technologies, provide computational designers with a new set of design instruments that, when combined with brain-computing interfacing (BCI) and eye-tracking (E-T) hardware, can be used to assess complex empathic reactions. As the COVID-19 health crisis showed, virtual social interaction becomes increasingly relevant, and the social catalytic potential of VPEs can open new design possibilities. The research presented in this paper introduces the cyber-physical design of such an affective computing system. It focuses on how relevant empathic data can be acquired in real time by exposing subjects within a dynamic VR-based VPE and assessing their emotional responses while controlling the actual generative parameters via a live feedback loop. A combination of VR, BCI, and E-T solutions integrated within a GE is proposed and discussed. By using a VPE inside a BCI system that can be accurately correlated with E-T, this paper proposes to identify potential morphological and lighting factors that either alone or combined can have an empathic effect expressed by the relevant responses of the MIs.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_258
id caadria2020_258
authors Beatricia, Beatricia, Indraprastha, Aswin and Koerniawan, M. Donny
year 2020
title Revisiting Packing Algorithm - A Strategy for Optimum Net-to Gross Office Design
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 405-414
doi https://doi.org/10.52842/conf.caadria.2020.1.405
summary Net-to-gross efficiency is defined as the ratio of net area to a gross area of a building. Net-to-gross efficiency will determine the quantity of leasable building area. On the other side, the effectiveness of the spatial distribution of a floor plan design must follow the value of net-to-gross efficiency. Therefore in the context of office design, there are two challenges need to be improved: 1) to get an optimum value of efficiency, architects need to assign the amount and size of the office units which can be effectively arranged, and 2) to fulfill high net-to-gross efficiency value that usually set out at minimal 85%. This paper aims to apply the packing algorithm as a strategy to achieve optimum net-to-gross efficiency and generating spatial configuration of office units that fit with the result. Our study experimented with series of models and simulations consisting of three stages that start from finding net-to-gross efficiency, defining office unit profiles based on preferable office space units, and applying the packing algorithm to get an optimum office net-to-gross efficiency. Computational processes using physics engine and optimization solvers have been utilized to generate design layouts that have minimal spatial residues, hence increasing the net-to-gross ratio.
keywords net-to-gross efficiency; packing algorithm; modular office area; area optimization;
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2020_240
id ecaade2020_240
authors Bouza, Hayley and Aºut, Serdar
year 2020
title Advancing Reed-Based Architecture through Circular Digital Fabrication
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 117-126
doi https://doi.org/10.52842/conf.ecaade.2020.1.117
summary This paper presents a completed research project that proposes a new approach for creating circular buildings through the use of biodegradable, in situ resources with the help of computational design and digital fabrication technologies. Common Reed (Phragmites Australis) is an abundantly available natural material found throughout the world. Reed is typically used for thatch roofing in Europe, providing insulation and a weather-tight surface. Elsewhere, traditional techniques of weaving and bundling reeds have long been used to create entire buildings. The use of a digital production chain was explored as a means towards expanding the potential of reed as a sustainable, locally produced, construction material. Following an iterative process of designing from the micro to the macro scale and by experimenting with robotic assembly, the result is a reed-based system in the form of discrete components that can be configured to create a variety of structures.
keywords Phragmites Australis; Reed; Discrete Design; Robotic Assembly; Circular Design; Biodegradable Architecture
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_536
id acadia20_536
authors Bruscia, Nicholas
year 2020
title Structural Papercuts
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 536-545.
doi https://doi.org/10.52842/conf.acadia.2020.1.536
summary This paper reviews and explores the topological properties of surface disclinations applied to elastic sheets and suggests how these properties may be reproduced at an architectural scale. A variety of surface disclinations and their translation from digital and physical formfinding processes to thin plywood prototypes are discussed. Initial phases of this research have been focused on the bending behavior of various sheet disclination types and have studied a variety of computational form-finding techniques that demonstrate this behavior in an architectural workflow. Several large-scale prototypes of architectural disclinations were produced to test the scalability of topologically induced surface curvature, discussed within the context of bending-active plate structures.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2019_57
id cdrf2019_57
authors Caitlyn Parry and Sean Guy
year 2020
title Recycling Construction Waste Material with the Use of AR
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_6
summary This paper aims to present a methodology for reusing and recycling scrap timber from building sites using augmented reality and flexible digital models. The project we present describes a process that enables existing material to be reused and repurposed such that the designed model is updated by the digital inventory of digitised offcuts/waste elements.
series cdrf
email
last changed 2022/09/29 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_396197 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002