CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 654

_id acadia20_516
id acadia20_516
authors Aghaei Meibodi, Mania; Voltl, Christopher; Craney, Ryan
year 2020
title Additive Thermoplastic Formwork for Freeform Concrete Columns
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 516-525.
doi https://doi.org/10.52842/conf.acadia.2020.1.516
summary The degree of geometric complexity a concrete element can assume is directly linked to our ability to fabricate its formwork. Additive manufacturing allows fabrication of freeform formwork and expands the design possibilities for concrete elements. In particular, fused deposition modeling (FDM) 3D printing of thermoplastic is a useful method of formwork fabrication due to the lightweight properties of the resulting formwork and the accessibility of FDM 3D printing technology. The research in this area is in early stages of development, including several existing efforts examining the 3D printing of a single material for formwork— including two medium-scale projects using PLA and PVA. However, the performance of 3D printed formwork and its geometric complexity varies, depending on the material used for 3D printing the formwork. To expand the existing research, this paper reviews the opportunities and challenges of using 3D printed thermoplastic formwork for fabricating custom concrete elements using multiple thermoplastic materials. This research cross-references and investigates PLA, PVA, PETG, and the combination of PLA-PVA as formwork material, through the design and fabrication of nonstandard structural concrete columns. The formwork was produced using robotic pellet extrusion and filament-based 3D printing. A series of case studies showcase the increased geometric freedom achievable in formwork when 3D printing with multiple materials. They investigate the potential variations in fabrication methods and their print characteristics when using different 3D printing technologies and printing materials. Additionally, the research compares speed, cost, geometric freedom, and surface resolution.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2020_409
id caadria2020_409
authors Naboni, Roberto and Paparella, Giulio
year 2020
title Circular Concrete Construction Through Additive FDM Formwork
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 233-242
doi https://doi.org/10.52842/conf.caadria.2020.1.233
summary One of the major downsides of concrete construction is the difficulty to be adapted, modified and deconstructed. In this work, we look at the potential enabled by the use of Additive Formwork based on Fused Deposition Modelling, in order to design and manufacture structural elements which can be assembled and disassembled easily. We call this new typology of structures Circular Concrete Construction. The paper illustrates an integrated computational workflow, which encompasses design and fabrication. Technological aspects of the 3D printed formwork and its application in reversible node and strut connections are described, with reference to the material and structural aspects, as well as prototyping experiments. The work is a proof of concept that opens perspectives for a new type of reversible concrete construction.
keywords Circular Concrete Construction; Additive Formwork; Additive Manufacturing; Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2020_332
id caadria2020_332
authors Taseva, Yoana, Eftekhar, Nik, Kwon, Hyunchul, Leschok, Matthias and Dillenburger, Benjamin
year 2020
title Large-Scale 3D Printing for Functionally-Graded Facade
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 183-192
doi https://doi.org/10.52842/conf.caadria.2020.1.183
summary Additive manufacturing (AM) technologies such as fused deposition modeling (FDM) have been gaining ground in architecture due to their potential to fabricate geometrically complex building components with integrated functionality. With that in mind, this paper showcases a novel design and fabrication strategy for the production of functionally graded façade elements. Three functional integrations are investigated: gradient infill structures (Figure 1), a non-orthogonal discretization approach for 3D-printed façade elements, and an integrated snapping panel-to-panel connection system. The presented process is then incorporated into a large-scale demonstrator consisting of eight individual façade-panel elements. This paper first presents a prototypical approach for a large-scale, graded 3D-printed facade system with non-standard discretization and then opens the discussion to further related challenges.
keywords Large-scale 3D Printing; Freeform Façade; Functional Integration; Complex 3D Assembly Connection
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia20_130p
id acadia20_130p
authors Swingle, Tyler; Zampini, Davide; Clifford, Brandon
year 2020
title Patty & Jan
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 130-135
summary The construction of architecture relies on an orchestra of moving parts and components throughout the process. These components are designed for the primary loads of the ultimate resting positions, but must also accommodate for secondary loads that occur during the assembly process. Safety, budget, and timing are the most influential factors in conducting the orchestra of architectural construction and typically set the tempo. Patty & Jan explore the curious and playful possibilities of secondary loads such as movement, momentum, and impact. This impractical assembly is not intended to negate practical considerations, but to elevate the field of construction above problem-solving. Patty & Jan builds upon previous research into moving massive masonry elements with little energy by controlling the center of mass (CoM) via physical computation and innovative concrete technologies such as proprietary chemical admixtures and special lightweight additions to entrain air as well as impart high fluidity. The resulting densities of the two concrete mixtures range from one-third the density to double the density of conventional concrete. Patty & Jan contributes to this ongoing research by incorporating the fourth dimension into the assembly process. Patty & Jan are a partnership. They have a reciprocal relationship with one another that ensures one cannot assemble without the other. Beginning with Patty and Jan at a pre-determined distance apart, a weighted tool is removed from Patty to alter the CoM and create a righting moment. Rotating along the riding surface, Patty over rotates to collide with Jan and strikes a resounding echo. The controlled impact triggers Jan first to rotate backward, rebound off its braking surface, and then counter-rotate towards Patty. The two meet along their assembly surfaces in the middle and slip effortlessly into their final assembled position. The resulting performance of Patty & Jan is an embedded intelligence of a theatrical assembly between two massive concrete masonry units (MCMU) through their momentum. Patty & Jan demonstrate the ability to predict the inherent movements and autonomous assemblies of MCMUs. It extends the potential of assembly methods to be social generators such as spectacles or performances. This research is a foundation for thinking about more extensive and more complex construction choreographies that engage material as well as human bodies in the building of architecture.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id acadia20_208p
id acadia20_208p
authors Bernier-Lavigne, Samuel
year 2020
title Object-Field
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 208-213
summary This project aims to continue the correlative study between two fundamental entities of digital architecture: the object and the field. Following periods of experimentations on the ""field"" (materialization of flows of data through animation), the ""field of objects"" (parametricism), the ""object"" (OOO), we investigate the last possible interaction remaining: the ""object-field,"" by merging the formal characteristics of the object with the structural flow of its internal field. This investigation is achieved by exploring the high-resolution features of 3d printing in the design of autonomous architectural objects expressing materiality through topological optimization. The objects are generated by an iterative process of volumetric reduction, resulting in an ensemble of monoliths. Four of them are selected and analyzed through topological optimization in order to extract their internal fields. Next, a series of high-resolution algorithmic systems translate the structural information into 3d printed materiality. Of the four object-fields, one materializes, close to identical, the result of the optimization, giving the keystone to understanding the others. The second one expresses the structural flow through a 1mm voxel system, informed by the optimization, having the effect of stiffening the structure where it is needed and thus generating a new topography on the object. The last two explore the blur that this high-resolution can paradoxically create, with complete integration of the optimal structure in a transparent monolith. This is achieved by a vertex displacement algorithm, and the dissolution of the formal data of the monolith and the structural flows, through the mereological assembly of simple linear elements. For each object-field, a series of drawings was developed using specific algorithmic procedures derived from the peculiarities of their complex geometry. The drawings aim to catalyze coherence throughout the project, where similarities, hitherto kept apart by the multiple materialities, begin to dialogue.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2020_160
id caadria2020_160
authors Bruce, Caitlin, Sweet, Kevin and Ok, Jeongbin
year 2020
title Closing the Loop - Recycling Waste Plastic
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 135-144
doi https://doi.org/10.52842/conf.caadria.2020.1.135
summary Worldwide we produce billions of tonnes of waste per year, including a million tonnes of plastic waste. Currently, there are methods for recycling plastic, but these methods can be expensive and time-consuming, resulting in most of the plastic being thrown into the landfill. Because plastic does not fully degrade, it ends up in the ocean and other waterways, poisoning the water with toxins. The purpose of this research is to provide a solution to reducing plastic waste by creating an alternative method of recycling that utilises new technologies such as additive manufacturing, to create a building material that fits into the concept of the circular economy. The findings of this research explored the recycling of plastic by collecting plastic waste such as PLA (Polylactic Acid) from old 3D printed models and other sources. The plastic was recycled into filament for additive manufacturing (AM) and used to print a building component, establishing a foundational proof of concept for the use of recycled plastic as a potential building material.
keywords Additive Manufacturing; 3D Printing; Recycling Plastic ; Recycled Filament ; Waste Plastic
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia20_594
id acadia20_594
authors Farahbakhsh, Mehdi; Kalantar, Negar; Rybkowski, Zofia
year 2020
title Impact of Robotic 3D Printing Process Parameters on Bond Strength
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 594-603.
doi https://doi.org/10.52842/conf.acadia.2020.1.594
summary Additive manufacturing (AM), also known as 3D printing, offers advantages over traditional construction technologies, increasing material efficiency, fabrication precision, and speed. However, many AM projects in academia and industrial institutions do not comply with building codes. Consequently, they are not considered safe structures for public utilization and have languished as exhibition prototypes. While three discrete scales—micro, mezzo, and macro—are investigated for AM with paste in this paper, structural integrity has been tackled on the mezzo scale to investigate the impact of process parameters on the bond strength between layers in an AM process. Real-world material deposition in a robotic-assisted AM process is subject to environmental factors such as temperature, humidity, the load of upper layers, the pressure of the nozzle on printed layers, etc. Those factors add a secondary geometric characteristic to the printed objects that was missing in the initial digital model. This paper introduces a heuristic workflow for investigating the impacts of three selective process parameters on the bond strength between layers of paste in the robotic-assisted AM of large-scale structures. The workflow includes a method for adding the secondary geometrical characteristic to the initial 3D model by employing X-ray computerized tomography (CT) scanning, digital image processing, and 3D reconstruction. Ultimately, the proposed workflow offers a pattern library that can be used by an architect or artificial intelligence (AI) algorithms in automated AM processes to create robust architectural forms.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_456
id ecaade2020_456
authors Farinea, Chiara, Awad, Lana, Dubor, Alex and El Atab, Mohamad
year 2020
title Integrating biophotovoltaic and cyber-physical technologies into a 3D printed wall
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 463-472
doi https://doi.org/10.52842/conf.ecaade.2020.2.463
summary The research presented in this paper investigates the development of "3D printed ceramic green wall", a technological Nature Based Solution (NBS) aimed at regenerating urban areas by improving spatial quality and sustainability through clean and autonomous energy production. Building upon previous research, the challenge of this system is to adapt additive manufacturing processes of ceramic 3D printing with biophotovoltaic systems while simultaneously developing digital and cyber-physical frameworks to generate site and user responsive design and autonomous solutions that optimize system performance and energy generation. The paper explores the complex design negotiations between these drivers, focusing particularly on their performance optimization, and finally highlights the system potential as exemplified through a successful implementation of a 1:1 site responsive wall prototype.
keywords Nature based solutions; biophotovoltaic systems; additive manufacturing; responsive design; cyber-physical networks; augmented reality
series eCAADe
email
last changed 2022/06/07 07:55

_id cdrf2019_297
id cdrf2019_297
authors H. Mohamed, D. W. Bao, and R. Snooks
year 2020
title Super Composite: Carbon Fibre Infused 3D Printed Tectonics
source Proceedings of the 2020 DigitalFUTURES The 2nd International Conference on Computational Design and Robotic Fabrication (CDRF 2020)
doi https://doi.org/https://doi.org/10.1007/978-981-33-4400-6_28
summary This research posits an innovative process of embedding carbon fibre as the primary structure within large-scale polymer 3D printed intricate architectural forms. The design and technical implications of this research are explored and demonstrated through two proto-architectural projects, Cloud Affects and Unclear Cloud, developed by the RMIT Architecture Snooks Research Lab. These projects are designed through a tectonic approach that we describe as a super composite – an approach that creates a compression of tectonics through algorithmic selforganisation and advanced manufacturing. Framed within a critical view of the lineage of polymer 3D printing and high tech fibres in the field of architectural design, the research outlines the limitations of existing robotic processes employed in contemporary carbon fibre fabrication. In response, the paper proposes an approach we describe asInfused Fibre Reinforced Plastic (IFRP) as a novel fabrication method for intricate geometries. This method involves 3D printing of sacrificial formwork conduits within the skin of complex architectural forms that are infused with continuous carbon fibre structural elements. Through detailed observation and critical review of Cloud Affects and Unclear Cloud (Fig. 2), the paper assesses innovations and challenges of this research in areas including printing, detailing, structural analysis and FEA modelling. The paper notes how these techniques have been refined through the iterative design of the two projects, including the development of fibre distribution mapping to optimise the structural performance.
series cdrf
email
last changed 2022/09/29 07:51

_id caadria2020_363
id caadria2020_363
authors Pal, Abhipsa, Chan, Wi Leen, Tan, Ying Yi, Chia, Pei Zhi and Tracy, Kenneth Joseph
year 2020
title Knit Concrete Formwork
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 213-222
doi https://doi.org/10.52842/conf.caadria.2020.1.213
summary The manufacture of concrete funicular shells often relies on traditional formwork construction techniques to provide a sculptured cavity for the fluid material to occupy (Bechthold, 2004). While this enables a predictable geometric outcome, the extensive use of timber and/or steel to construct these formworks account for up to 60% of the total production cost of concrete and are discarded after the casting is complete (Lloret et al. 2014). Thus, we propose an alternative method to create prefabricated modular systems out of concrete casted in customised tubular knitted membranes. These perform as a network of struts that can be affixed onto 3D printed nodes of a singular design. Altogether, these components serve as a kit-of-parts that can be transported to site and assembled together to create shell geometries.
keywords Knitted Textile; Fabric Formwork; Concrete Casting
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia20_214p
id acadia20_214p
authors Rael, Ronald; San Fratello, Virginia; Curth, Alexander; Arja, Logman
year 2020
title Casa Covida
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 214-219
summary Casa Covida advances large scale earthen additive manufacturing by establishing new methods for the creation of interconnected, partially enclosed dome structures using a lightweight SCARA robotic arm and custom toolpathing software in combination with traditional earthen construction techniques. In the time of Covid-19, digital fabrication and construction are made difficult by a diminished supply chain and the safety concerns associated with a large team. In this project, we use local material, dug from the site itself, and two-three people working outdoors in a socially distanced manner. Three rooms are printed on-site in 500mm intervals by shifting the 3D printer between stations connected by a low-cost 4th-axis constructed from plywood. This system allows virtually simultaneous construction between domes, continuously printing without waiting for drying time on one structure so that a continued cycle of printing can proceed through the three stations 2-4 times a day, thereby minimizing machine downtime. The machine control software used in this project has been developed from the framework of Potterware, a tool built by our team to allow non-technical users to design and 3D print functional ceramics through an interactive web interface.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaade2020_128
id ecaade2020_128
authors Ramsgaard Thomsen, Mette, Tamke, Martin, Sparre-Petersen, Maria, Fabritius Buchwald, Emil and Hnídková, Simona
year 2020
title Silica - A circular material paradigm by 3D printing recycled glass
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 613-622
doi https://doi.org/10.52842/conf.ecaade.2020.2.613
summary Silica examines the making of 3D printed tiles from recycled container glass. This paper describes an interdisciplinary exploration into how robot-controlled extrusion can offer new material practices by which to fabricate glass elements of an architectural scale. We pursue working with recycled container glass powder - a waste product derived from the reprocessing of recycled container glass - to contribute to circular development within an interdisciplinary artistic development context in the meeting between architecture and glass design. The project has two aims. On the one hand, it builds an in-depth understanding of the parameters of fabrication and devising means by which to control these through digital design methods and their interfacing with robotic fabrication processes. On the other hand, it critically questions the architectural, aesthetic and performative properties of these material practices and their embedded methods.
keywords Robotic fabrication; Digital design systems; Circular economy; 3D Glass printing; New material practices
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2020_203
id ecaade2020_203
authors Safin, Stéphane and Dorta, Tomás
year 2020
title Unfolding Laypersons Creativity Through Social VR - A case study
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 355-364
doi https://doi.org/10.52842/conf.ecaade.2020.1.355
summary Involving laypersons in collaborative design projects faces the challenge of having an adapted representational ecosystem. There is a lack of adequate representational tools for multidisciplinary actors to graphically and physically vizualize and externalize their ideas. Using VR is a promising way of renewing participatory design, but settings with VR raise the difficulty to express ideas on the model, and to support collaboration since using VR headsets eventually hinder design communication between participants wearing them. In this paper we present the a case study of one workshop involving non-designers as participants, based on collective 3D sketches using a Social VR system (without headsets), in which several users simultaneously and immersively sketch using handheld tablets, operating a 3D model as contextual background. The workshop was supported by a representational ecosystem containing: (1) Traditional freehand sketching on paper and working with pre-cut physical components used as boundary objects to represent a scaled model; and (2) immersive 3D model allowing collective life-sized visualization, 3D sketching and interaction. The paper describers the case study and provide insights about layperson's collaborative design.
keywords Social VR; Representational ecosystem; Laypersons participation; Co-design
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2020_855
id sigradi2020_855
authors Salinas Arriagada, Alexis; García Alvarado, Rodrigo; Carrasco Perez, Patricio
year 2020
title Bio-mimetic design for architecture built by 3D robotic printing
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 855-862
summary This work presents a parametric development for Architecture by 3D printing, through robotic arms. It addresses a bio-mimetic design approach based on morphological features of animal beings, and develops a spectrum of design possibilities for vertical pieces. The measurements arising from the process extrusion and the possibilities of eccentricity of the manufacturing cord are exposed. As well as variables for design, like the own gravitational restrictions and vertical growth, both in morphological and constructive logic, as a search for relationships closer to the natural world. Suggesting that the new deposition construction systems call for an architecture based on biological principles.
keywords Architecture, Parametric Design, Bio-mimetic, Robotics, 3D-Printed Construction
series SIGraDi
email
last changed 2021/07/16 11:53

_id acadia20_48
id acadia20_48
authors Schofield, Alex
year 2020
title Coral Carbonate
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 48-57.
doi https://doi.org/10.52842/conf.acadia.2020.1.048
summary This work-in-progress paper describes a body of research that utilizes the invention and application of a novel method to 3D-print calcium carbonate (CaCO3). The resultant 3D-printed objects can be computationally optimized and used as a scaffold for the growth of various aquatic life that exists at the interface of soft edges and the built, specifically (but not limited to) coral polyps. Rather than utilizing materials designed for anthropocentric terrestrial environments, we can harness materials and forms native to aquatic ecosystems in combination with advanced computation and fabrication techniques to help foster applied research in service to healthier ecosystems and cohabitation. This paper introduces the novel application of a 3D-printed calcium carbonate, mimicking a similar material composition to that of coral, and describes the additive manufactured medium with regard to 3D powder-printing methodologies. Hypothesis and proposal of morphogenesis in surface and volume are identified as key factors for interface with aquatic organisms. Current and future applications are additionally exhibited through a combination of material composition, surface, and form as targeted intervention and artificial restoration for aquatic ecosystems. While our planet requires anthropocentric mitigation strategies for reduction of greenhouse gases that contribute to aquatic life’s greatest threats, we must simultaneously develop strategies for adaptation that immediately respond to the current realities of a changing climate.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_436
id caadria2020_436
authors Teng, Teng and Sabin, Jenny
year 2020
title PICA - A Designer Oriented Low-Cost Personal Robotic Fabrication Platform for Sketch Level Prototyping
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 473-483
doi https://doi.org/10.52842/conf.caadria.2020.2.473
summary As digital design and fabrication are becoming increasingly prevalent, it is essential to consider how these technologies can be made more affordable and intuitively introduced to individual designers with limited computing skills. In this paper, we present an affordable personal robotic fabrication platform, PICA, consisting of a 3D printed robotic arm with a set of controller programs. The platform allows designers with limited computational design skills to assemble motors and 3D printed parts easily and to operate it in a code-free environment with direct manipulation through 3D modeling software. With the real-time communication between 3D modeling software and this robotic fabrication platform, PICA also allows designers to efficiently change the topological properties of geometry during the fabrication process. Based on a comparative observation of several application scenarios of using PICA among two groups of architecture students, the research can be summarized as follows: 1.) The project has proved to be an affordable approach to ease the materializing process when converting a designer's initial intent from digital space to a physical prototype. 2.) Designers could be facilitated by utilizing this robotic fabrication platform, especially during the period of conceptual design.
keywords Robotic Fabrication; Design and Fabrication; Tool Development; Designer Oriented ; Ubiquitous Manufacturing
series CAADRIA
email
last changed 2022/06/07 07:58

_id artificial_intellicence2019_295
id artificial_intellicence2019_295
authors Xiang Wang, Kam-Ming Mark Tam, Alexandre Beaudouin-Mackay,Benjamin Hoyle, Molly Mason, Zhe Guo, Weizhe Gao, Ce Li, Weiran Zhu,Zain Karsan, Gene Ting-Chun Kao, Liming Zhang, Hua Chai, Philip F. Yuan, and Philippe Block
year 2020
title 3d-Printed Bending-Active Formwork for Shell Structures
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2026)
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_18
summary This paper presents a novel building technique for the formwork of thin shell structures with 3d-printed bending-active mesh sheets. To enhance the structural stiffness of the flexible plastic materials, bending-active form is applied to utilize the geometry stiffening effect through the large deformation of bending. As it is the main problem to determine the final geometry of the bent surface, design methods with consideration of the numerical simulation is researched and both simulations via dynamic relaxation and finite element method are presented. Several demonstrator pavilions and the building process are shown to test the feasibilities of the presented building techniques in the real shell project. It is expected that this method could be applied into more thin shell projects to realize an efficient building technology with less exhaust of materials.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id ecaade2020_348
id ecaade2020_348
authors Chiujdea, Ruxandra Stefania and Nicholas, Paul
year 2020
title Design and 3D Printing Methodologies for Cellulose-based Composite Materials
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 547-554
doi https://doi.org/10.52842/conf.ecaade.2020.1.547
summary A growing awareness of architecture's environmental responsibility is encouraging a shift from an industrial age to an ecological one. This shift emphasises a new era of materiality, characterised by a special focus on bio-polymers. The potential of these materials is to address unsustainable modes of resource consumption, and to rebalance our relationship with the natural. However, bio-polymers also challenge current design and manufacturing practices, which rely on highly manufactured and standardized materials. In this paper, we present material experiments and digital design and fabrication methodologies for cellulose-based composites, to create porous biodegradable panels. Cellulose, the most abundant bio-polymer on Earth, has potential for differentiated architectural applications. A key limit is the critical role of additive fabrication methods for larger scale elements, which are a subject of ongoing research. In this paper, we describe how controlling the interdependent relationship between the additive manufacturing process and the material grading enables the manipulation of the material's performance, and the related control aspects including printing parameters such as speed, nozzle diameter, air flow, etc., as well as tool path trajectory. Our design exploration responds to the emerging fabrication methods to achieve different levels of porosity and depth which define the geometry of a panel.
keywords cellulose-based composite material; additive manufacturing; material grading; digital fabrication; spatial print trajectory; porous panels
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2020_395
id caadria2020_395
authors Loo, Stella Yi Ning, Jayashankar, Dhileep Kumar, Gupta, Sachin and Tracy, Kenneth
year 2020
title Hygro-Compliant: Responsive Architecture with Passively Actuated Compliant Mechanisms
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 223-232
doi https://doi.org/10.52842/conf.caadria.2020.1.223
summary Research investigating water-driven passive actuation demonstrates the potential to transform how buildings interact with their environment while avoiding the complications of conventionally powered actuation. Previous experiments evidence the possibilities of bi-layer materials (Reichert, Menges, and Correa 2015; Correa et al. 2015) and mechanical assemblies with discretely connected actuating members (Gupta et al. 2019). By leveraging changes in weather to power actuated building components these projects explore the use of smart biomaterials and responsive building systems. Though promising the implementation of these technologies requires deep engagement into material synthesis and fabrication. This paper presents the design and prototyping of a rain responsive façade system using chitosan hygroscopic films as actuators counterbalanced by programmed compliant mechanisms. Building on previous work into chitosan film assemblies this research focuses on the development of compliant mechanisms as a means of controlling movement without over-complicated rotating parts.
keywords Passive Actuation; Responsive Architecture; Bio-polymers; 4D Structures; Compliant Mechanism
series CAADRIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_638112 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002