CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 8 of 8

_id sigradi2020_297
id sigradi2020_297
authors Arboleda Pardo, Juan Gabriel; García-Alvarado, Rodrigo; Martínez Rocamora, Alejandro
year 2020
title BIM-modeling and programming of curved concrete walls for 3D-printed construction
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 297-305
summary This article presents the parametric design and modeling in BIM of curved walls for 3d-printed construction in concrete, seeking to manage the reduction of materials and construction execution times, and enhance its architectural expression. The process described here is structured in the following phases: (i) conceptual preliminary design exploration, defining formal parameters in Revit, (ii) parametric modeling with Dynamo and Revit, (iii) integration of structural validation and printing programming of the robotic arm, and examples of execution with 3D-printed construction.
keywords BIM, Parametric programming, 3D-printed Construction, Curved wall, Digital fabrication
series SIGraDi
email
last changed 2021/07/16 11:49

_id acadia20_120p
id acadia20_120p
authors Hirth, Kevin
year 2020
title Short Stack
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 120-123
summary Short Stack is a bare minimal structure using only laminated sheets of structural metal decking for all elements of its structure and enclosure. The project operates under a simple principle. Structural metal decking is a one-way system that resists loads well in one direction, but not in the other. When this decking is stacked into rotated sections and tensioned together, the resultant sandwich of corrugated metal is resistant to loading in every direction. These sandwiches become walls, floors, and roofs to a temporary structure. The compounded effect at the edges of the rotated and cropped decking is one of filigree or an ornamental articulation. The sandwich, which is mostly hollow due to the section of the decking, provides a sense of airy lightness that is at odds with its bulky mass. The structure, therefore, teeters between being unexpectedly open and at once heavy. The economy of the project is in its uniformity and persistent singularity. By maintaining a single palette of material and using a plasma cutting CNC bed to cut each section of the decking, the structure is simply assembled. The digital intelligence that lies underneath the apparent formal simplicity of the project is two-fold. Firstly, each sheet of metal decking is different from the next. Because of the locations of bolt-holes and constant variability of rotation and cropping of each sheet, it is a project that expresses uniformity rather than articulation through discretization. Secondly, the project appears solid and monolithic but is hollowed structurally to minimize the weight of the assembly. Parametric tools are implemented to maximize material efficiencies by hollowing the interior of each sandwich for load optimization. The project is presently in prototyping and documentation and will go into construction in Spring 2021 on a site in downtown Denver.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id acadia20_474
id acadia20_474
authors Rossi, Gabriella; Walker, James; Sondergaard, Asborn; Worre Foged, Isak; Pasold, Anke; Hilmer, Jakob
year 2020
title Design-to-Manufacture Workflows of Sound-Scattering Acoustic Brick Walls
doi https://doi.org/10.52842/conf.acadia.2020.1.474
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 474-483.
summary Improving speech intelligibility in classrooms enhances information dissemination, institutional knowledge capture, and quality of learning experience. While off-the-shelf solutions are available for acoustically retrofitting existing learning spaces, they do not allow for a fine-tuned context-specific intervention. However, this possibility is enabled through bespoke digital manufacturing informed by advanced digital simulations. In this research we explore and synchronize architecture, acoustics, computation, and fabrication for the making of better sound environments. We present performance-driven design-to-manufacture (DTM) workflows for sound-scattering brick elements. We reimagine the brick as an acoustically active geometry capable of modulating the sound experience in a university classroom by improving speech intelligibility. We contextualize our research within existing methods of digital performance-based design and robotic fabrication processes, namely wire cutting and pick-and-place applications. We then detail digital methods that combine heuristics and acoustic simulation to design the bricks within the 3D modeling environment, as well as describe the processes of robotic oscillating wire cutting and adaptive pick-and-place developed for the execution of the full-scale demonstrator. Finally, we report on the results of the acoustic analysis performed on the full-scale demonstrator in situ and laboratory measurements of a representative demonstrator which validates our design hypothesis.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2020_313
id caadria2020_313
authors Sanatani, Rohit Priyadarshi
year 2020
title A Machine-Learning driven Design Assistance Framework for the Affective Analysis of Spatial Enclosures
doi https://doi.org/10.52842/conf.caadria.2020.1.741
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 741-750
summary There is a growing research direction that adopts an empirical approach to affective response in space, and aims at generating bodies of quantitative data regarding the correlations between spatial features and emotional states. This paper demonstrates a machine-learning driven computational framework that draws upon training data sets to predict the 'affective impact' of designed enclosures. For demonstration, it has been scripted as a Rhinoceros + Grasshopper based design tool that uses existing training data collected by the author. The data comprises of the spatial parameters of Enclosure Volume (V), Length/Width ratio (P) and Window Area/Total Internal Surface Area ratio (D) - and the corresponding emotional parameters of Valence and Arousal. The test values of these parameters are computed by defining the components of the test enclosure (walls, windows, floors and ceilings) in the script. Nonlinear regression components are run on the training datasets and the test input data is used to compute and display the real time predicted affective state on the circumplex model of affect.
keywords Affective Analysis; Affective Computing; Design Assistance; Machine Learning; Spatial Enclosures
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2020_063
id caadria2020_063
authors Wang, Chunxiao and Lu, Shuai
year 2020
title Influence of Uncertainties in Envelope and Occupant Parameters on the Reliability of Energy-Based Form Optimization of Office Buildings
doi https://doi.org/10.52842/conf.caadria.2020.1.497
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 497-506
summary Building performance optimization is effective in finding optimal designs and improving building energy efficiency, but its reliability can be affected by uncertainties in input parameters. This paper conducts a reliability analysis on energy-based form optimization of office buildings under uncertainties in envelope and occupancy parameters. An optimization process involving Rhinoceros, EnergyPlus and genetic algorithms is first implemented. Then parametric studies of 644 scenarios involving 4 cities in different climates and 3 form variables are conducted. The results indicate that uncertainties in input parameters could lead to major unreliability of optimization results, including reductions up to 13% in energy saving achieved by optimization and descents up to 10% in energy efficiency compared with results before optimization. Moreover, the uncertainty in visual transmittance of windows is the most significant cause for the unreliability, followed by U-value of walls, while the uncertainty in occupant density and occupant schedule has limited influence. The results can help designers understand the uncertainty of which parameters should be controlled and to what extend optimization results can be trusted in various scenarios.
keywords Building Performance Optimization; Form Design; Building Energy Efficiency; Uncertainty Analysis; Office Building
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2020_193
id caadria2020_193
authors Wang, Sihan, Liu, Chi, Zhang, Guo Li, Luo, Qi Huan, Xu, Weishun and Raspall, Felix
year 2020
title Digital Planting - Fabrication of Integrated Concrete Green Wall via Additive Manufacturing
doi https://doi.org/10.52842/conf.caadria.2020.1.145
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 145-151
summary Green walls are becoming a symbol of modern architecture representing sustainability and aesthetics. However, the fabrication of wall components that can nurture the growth of plants and other living creatures requires components to locate soil and other substrates, a controlled rugosity for plants and moss to grip, and conduits to distribute water and nutrients. This is normally done by adding extra attachments to the façade. In this paper, we introduce a digital approach to design and produce architectural components that can integrate green wall's functional requirements into the wall itself. Such components are fabricated via Additive Manufacturing (AM) extrusion with the assists of robotic arms.
keywords Green Wall; Additive Manufacturing; Robotic Fabrication; Clay Printing
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2020_181
id ecaade2020_181
authors Soltani, Sahar, Dias Guimaraes, Gabriela, Liao, Pan, Calixto, Victor and Gu, Ning
year 2020
title Computational Design Sustainability: A Conceptual Framework for Built Environment Research
doi https://doi.org/10.52842/conf.ecaade.2020.1.219
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 219-228
summary This paper presents and demonstrates a "Computational Design Sustainability" (CDS) framework, inspired by "Computational Sustainability" (CS), which is a new area in computational research (C. Gomes & Yang, 2011). CS aims to apply techniques from computer science to address sustainability problems affecting a wide range of fields from environmental sciences to social studies. While CS has been broadly embraced in environmental science, the great potential of this concept to address grand challenges and solve complex problems seems to have not been adequately explored in the built environment domain. Therefore, this paper attempts to formally investigate the application of CS in built environment research addressing different scales of design problems with computational design through proposing the new concept of CDS . These approaches are demonstrated and evaluated through a range of projects collectively conducted by the research team. CDS proposes to advance computational deign research by creating a trade-off between pillars of sustainability in an integrated multifaceted and multidisciplinary approach. The presented conceptual framework provides a formal means to critically understand and further advance these approaches in a systematic way suitable for future development and broader application.
keywords Computational Design Sustainability; Computational Sustainability; Computational Design; Sustainable Development; Built Environment Research
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2020_384
id sigradi2020_384
authors Martínez Otalora, Jose David; Bolshakova, Marina; Rojas Celis, Anyela Piedad; Almonacid Lara, Fabián Humberto
year 2020
title MELNIKOV HOUSE A BIOCLIMATIC ANALYSIS
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 384-391
summary The aim of this article is to recognize the methods of environmental control used by the master of the "constructivist" movement Konstantin Melnikov in a Melnikov's house, a creation whose architectural value has been highlighted on several occasions, it also seeks to demonstrate through modern climate software simulation and analysis tools that in the early 20th century Melnikov consciously used environmental control methods, which makes the afore-mentioned construction a historical example of bioclimatic architecture meant for Russian climate. In order to assess this topic a digital model has been built and different energy simulations were carried out using software such as Climate Consultant, Design Builder and ArchiCAD.
keywords Melnikov house, Energy efficiency, Temperature comfort, B. Giovani‘s strategy
series SIGraDi
email
last changed 2021/07/16 11:49

No more hits.

HOMELOGIN (you are user _anon_213479 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002